Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Dyslipidemia Management in 2020: An Update on Diagnosis and Therapeutic Perspectives

Author(s): Ioannis D. Karantas*, Mehmet E. Okur*, Neslihan Ü. Okur and Panoraia I. Siafaka

Volume 21, Issue 5, 2021

Published on: 10 August, 2020

Page: [815 - 834] Pages: 20

DOI: 10.2174/1871530320666200810144004

Price: $65

conference banner
Abstract

Cardiovascular diseases are the leading cause of death in the modern world and dyslipidemia is one of the major risk factors. The current therapeutic strategies for cardiovascular diseases involve the management of risk factors, especially dyslipidemia and hypertension. Recently, the updated guidelines of dyslipidemia management were presented, and the newest data were included in terms of diagnosis, imaging, and treatment. In this targeted literature review, the researchers presented the most recent evidence on dyslipidemia management by including the current therapeutic goals for it. In addition, the novel diagnostic tools based on theranostics are shown. Finally, the future perspectives on treatment based on novel drug delivery systems and their potential to be used in clinical trials were also analyzed. It should be noted that dyslipidemia management can be achieved by the strict lifestyle change, i.e., by adopting a healthy life, and choosing the most suitable medication. This review can help medical professionals as well as specialists of other sciences to update their knowledge on dyslipidemia management, which can lead to better therapeutic outcomes and newer drug developments.

Keywords: Dyslipidemia, diagnosis, therapy, drug carriers, clinical trials, drug targets, cardiovascular risk.

Graphical Abstract

[1]
Townsend, N.; Wilson, L.; Bhatnagar, P.; Wickramasinghe, K.; Rayner, M.; Nichols, M. Cardiovascular disease in Europe: epidemiological update 2016. Eur. Heart J., 2016, 37(42), 3232-3245.
[http://dx.doi.org/10.1093/eurheartj/ehw334] [PMID: 27523477]
[2]
Okur, M.E.; Karantas, I.D.; Okur, N.U.; Siafaka, P.I. Hypertension in 2017: Update in Treatment and Pharmaceutical Innovations. Curr. Pharm. Des., 2017, 23(44), 6795-6814.
[http://dx.doi.org/10.2174/1381612823666170927123454] [PMID: 28969533]
[3]
Okur, M.E.; Karantas, I.D.; Siafaka, P.I. Diabetes Mellitus: A Review on Pathophysiology, Current Status of Oral Medications and Future Perspectives. Acta Pharm. Sci., 2017, 55(1), 61-82.
[http://dx.doi.org/10.23893/1307-2080.APS.0555]
[4]
Carbone, S.; Canada, J.M.; Billingsley, H.E.; Siddiqui, M.S.; Elagizi, A.; Lavie, C.J. Obesity paradox in cardiovascular disease: where do we stand? Vasc. Health Risk Manag., 2019, 15, 89-100.
[http://dx.doi.org/10.2147/VHRM.S168946] [PMID: 31118651]
[5]
Gidding, S.S.; Allen, N.B. Cholesterol and Atherosclerotic Cardiovascular Disease: A Lifelong Problem. J. Am. Heart Assoc., 2019, 8(11)e012924
[http://dx.doi.org/10.1161/JAHA.119.012924] [PMID: 31137996]
[6]
Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers, 2019, 5(1), 56.
[http://dx.doi.org/10.1038/s41572-019-0106-z] [PMID: 31420554]
[7]
Feingold, K.R.; Grunfeld, C. Lipids: a key player in the battle between the host and microorganisms. J. Lipid Res., 2012, 53(12), 2487-2489.
[http://dx.doi.org/10.1194/jlr.E033407] [PMID: 23075464]
[8]
Olivecrona, G. Role of lipoprotein lipase in lipid metabolism. Curr. Opin. Lipidol., 2016, 27(3), 233-241.
[http://dx.doi.org/10.1097/MOL.0000000000000297] [PMID: 27031275]
[9]
Kidambi, S.; Patel, S.B. Cholesterol and non-cholesterol sterol transporters: ABCG5, ABCG8 and NPC1L1: a review. Xenobiotica, 2008, 38(7-8), 1119-1139.
[http://dx.doi.org/10.1080/00498250802007930] [PMID: 18668442]
[10]
Dallinga-Thie, G.M.; Franssen, R.; Mooij, H.L.; Visser, M.E.; Hassing, H.C.; Peelman, F.; Kastelein, J.J.P.; Péterfy, M.; Nieuwdorp, M. The metabolism of triglyceride-rich lipoproteins revisited: new players, new insight. Atherosclerosis, 2010, 211(1), 1-8.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.12.027] [PMID: 20117784]
[11]
Kindel, T.; Lee, D.M.; Tso, P. The mechanism of the formation and secretion of chylomicrons. Atheroscler. Suppl., 2010, 11(1), 11-16.
[http://dx.doi.org/10.1016/j.atherosclerosissup.2010.03.003] [PMID: 20493784]
[12]
Cox, R.; García-Palmieri, M. Cholesterol, Triglycerides, and Associated Lipoproteins.Clinical Methods: The History, Physical, and Laboratory Examinations; Walker, H.; Hall, W.; Hurst, J., Eds.; Butterworths: Boston, 1990, pp. 153-160.
[13]
Wengrofsky, P. Dyslipidemia and Its Role in the Pathogenesis of Atherosclerotic Cardiovascular Disease: Implications for Evaluation and Targets for Treatment of Dyslipidemia Based on Recent GuidelinesDyslipidemia; IntechOpen; , 2019.
[14]
García-Giustiniani, D.; Stein, R. Genetics of Dyslipidemia. Arq. Bras. Cardiol., 2016, 106(5), 434-438.
[PMID: 27305287]
[15]
Qi, L.; Ding, X.; Tang, W.; Li, Q.; Mao, D.; Wang, Y. Prevalence and Risk Factors Associated with Dyslipidemia in Chongqing, China. Int. J. Environ. Res. Public Health, 2015, 12(10), 13455-13465.
[http://dx.doi.org/10.3390/ijerph121013455] [PMID: 26516874]
[16]
Bayram, F.; Kocer, D.; Gundogan, K.; Kaya, A.; Demir, O.; Coskun, R.; Sabuncu, T.; Karaman, A.; Cesur, M.; Rizzo, M.; Toth, P.P.; Gedik, V. Prevalence of dyslipidemia and associated risk factors in Turkish adults. J. Clin. Lipidol., 2014, 8(2), 206-216.
[http://dx.doi.org/10.1016/j.jacl.2013.12.011] [PMID: 24636181]
[17]
Kolovou, G.D.; Anagnostopoulou, K.K.; Cokkinos, D.V. Pathophysiology of dyslipidaemia in the metabolic syndrome. Postgrad. Med. J., 2005, 81(956), 358-366.
[http://dx.doi.org/10.1136/pgmj.2004.025601] [PMID: 15937200]
[18]
Leon, A.S.; Bronas, U.G. Dyslipidemia and Risk of Coronary Heart Disease: Role of Lifestyle Approaches for Its Management. Am. J. Lifestyle Med., 2009, 3(4), 257-273.
[http://dx.doi.org/10.1177/1559827609334518]
[19]
Ruiz-Núñez, B.; Pruimboom, L.; Dijck-Brouwer, D.A.J.; Muskiet, F.A.J. Lifestyle and nutritional imbalances associated with Western diseases: causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. J. Nutr. Biochem., 2013, 24(7), 1183-1201.
[http://dx.doi.org/10.1016/j.jnutbio.2013.02.009] [PMID: 23657158]
[20]
Becker, D.J.; Gordon, R.Y.; Morris, P.B.; Yorko, J.; Gordon, Y.J.; Li, M.; Iqbal, N. Simvastatin vs therapeutic lifestyle changes and supplements: randomized primary prevention trial. Mayo Clin. Proc., 2008, 83(7), 758-764.
[http://dx.doi.org/10.4065/83.7.758] [PMID: 18613992]
[21]
Mohammadbeigi, A.; Moshiri, E.; Mohammadsalehi, N.; Ansari, H.; Ahmadi, A. Dyslipidemia Prevalence in Iranian Adult Men: The Impact of Population-Based Screening on the Detection of Undiagnosed Patients. World J. Mens Health, 2015, 33(3), 167-173.
[http://dx.doi.org/10.5534/wjmh.2015.33.3.167] [PMID: 26770936]
[22]
Kaur, J. A comprehensive review on metabolic syndrome. Cardiol. Res. Pract., 2014, 2014943162
[http://dx.doi.org/10.1155/2014/943162] [PMID: 24711954]
[23]
Rhee, E-J.; Kim, H.C.; Kim, J.H.; Lee, E.Y.; Kim, B.J.; Kim, E.M.; Song, Y.; Lim, J.H.; Kim, H.J.; Choi, S.; Moon, M.K.; Na, J.O.; Park, K-Y.; Oh, M.S.; Han, S.Y.; Noh, J.; Yi, K.H.; Lee, S-H.; Hong, S-C.; Jeong, I-K. 2018 Guidelines for the management of dyslipidemia. Korean J. Intern. Med. (Korean. Assoc. Intern. Med.), 2019, 34(4), 723-771.
[http://dx.doi.org/10.3904/kjim.2019.188] [PMID: 31272142]
[24]
Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; Graham, I.M.; Halliday, A.; Landmesser, U.; Mihaylova, B.; Pedersen, T.R.; Riccardi, G.; Richter, D.J.; Sabatine, M.S.; Taskinen, M-R.; Tokgozoglu, L.; Wiklund, O.; Mueller, C.; Drexel, H.; Aboyans, V.; Corsini, A.; Doehner, W.; Farnier, M.; Gigante, B.; Kayikcioglu, M.; Krstacic, G.; Lambrinou, E.; Lewis, B.S.; Masip, J.; Moulin, P.; Petersen, S.; Petronio, A.S.; Piepoli, M.F.; Pintó, X.; Räber, L.; Ray, K.K.; Reiner, Ž.; Riesen, W.F.; Roffi, M.; Schmid, J-P.; Shlyakhto, E.; Simpson, I.A.; Stroes, E.; Sudano, I.; Tselepis, A.D.; Viigimaa, M.; Vindis, C.; Vonbank, A.; Vrablik, M.; Vrsalovic, M.; Zamorano, J.L.; Collet, J-P.; Koskinas, K.C.; Casula, M.; Badimon, L.; John Chapman, M.; De Backer, G.G.; Delgado, V.; Ference, B.A.; Graham, I.M.; Halliday, A.; Landmesser, U.; Mihaylova, B.; Pedersen, T.R.; Riccardi, G.; Richter, D.J.; Sabatine, M.S.; Taskinen, M-R.; Tokgozoglu, L.; Wiklund, O.; Windecker, S.; Aboyans, V.; Baigent, C.; Collet, J-P.; Dean, V.; Delgado, V.; Fitzsimons, D.; Gale, C.P.; Grobbee, D.; Halvorsen, S.; Hindricks, G.; Iung, B.; Jüni, P.; Katus, H.A.; Landmesser, U.; Leclercq, C.; Lettino, M.; Lewis, B.S.; Merkely, B.; Mueller, C.; Petersen, S.; Petronio, A.S.; Richter, D.J.; Roffi, M.; Shlyakhto, E.; Simpson, I.A.; Sousa-Uva, M.; Touyz, R.M.; Nibouche, D.; Zelveian, P.H.; Siostrzonek, P.; Najafov, R.; van de Borne, P.; Pojskic, B.; Postadzhiyan, A.; Kypris, L.; Špinar, J.; Larsen, M.L.; Eldin, H.S.; Viigimaa, M.; Strandberg, T.E.; Ferrières, J.; Agladze, R.; Laufs, U.; Rallidis, L.; Bajnok, L.; Gudjónsson, T.; Maher, V.; Henkin, Y.; Gulizia, M.M.; Mussagaliyeva, A.; Bajraktari, G.; Kerimkulova, A.; Latkovskis, G.; Hamoui, O.; Slapikas, R.; Visser, L.; Dingli, P.; Ivanov, V.; Boskovic, A.; Nazzi, M.; Visseren, F.; Mitevska, I.; Retterstøl, K.; Jankowski, P.; Fontes-Carvalho, R.; Gaita, D.; Ezhov, M.; Foscoli, M.; Giga, V.; Pella, D.; Fras, Z.; de Isla, L.P.; Hagström, E.; Lehmann, R.; Abid, L.; Ozdogan, O.; Mitchenko, O.; Patel, R.S. ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur. Heart J., 2020, 41(1), 111-188.
[http://dx.doi.org/10.1093/eurheartj/ehz455] [PMID: 31504418]
[25]
Gustafsson, M.; Flood, C.; Jirholt, P.; Borén, J. Retention of atherogenic lipoproteins in atherogenesis. Cell. Mol. Life Sci., 2004, 61(1), 4-9.
[http://dx.doi.org/10.1007/s00018-003-3262-x] [PMID: 14704849]
[26]
Tsimikas, S.; Karwatowska-Prokopczuk, E.; Gouni-Berthold, I.; Tardif, J-C.; Baum, S.J.; Steinhagen-Thiessen, E.; Shapiro, M.D.; Stroes, E.S.; Moriarty, P.M.; Nordestgaard, B.G.; Xia, S.; Guerriero, J.; Viney, N.J.; O’Dea, L.; Witztum, J.L. AKCEA-APO(a)-LRx Study Investigators. Lipoprotein(a) Reduction in Persons with Cardiovascular Disease. N. Engl. J. Med., 2020, 382(3), 244-255.
[http://dx.doi.org/10.1056/NEJMoa1905239] [PMID: 31893580]
[27]
Stulnig, T.M.; Morozzi, C.; Reindl-Schwaighofer, R.; Stefanutti, C. Looking at Lp(a) and Related Cardiovascular Risk: from Scientific Evidence and Clinical Practice. Curr. Atheroscler. Rep., 2019, 21(10), 37.
[http://dx.doi.org/10.1007/s11883-019-0803-9] [PMID: 31350625]
[28]
Lippi, G.; Guidi, G. Lipoprotein(a): an emerging cardiovascular risk factor. Crit. Rev. Clin. Lab. Sci., 2003, 40(1), 1-42.
[http://dx.doi.org/10.1080/713609328] [PMID: 12627747]
[29]
O’Donoghue, M.L.; Fazio, S.; Giugliano, R.P.; Stroes, E.S.G.; Kanevsky, E.; Gouni-Berthold, I.; Im, K.; Lira Pineda, A.; Wasserman, S.M.; Češka, R.; Ezhov, M.V.; Jukema, J.W.; Jensen, H.K.; Tokgözoğlu, S.L.; Mach, F.; Huber, K.; Sever, P.S.; Keech, A.C.; Pedersen, T.R.; Sabatine, M.S. Lipoprotein(a), PCSK9 Inhibition, and Cardiovascular Risk. Circulation, 2019, 139(12), 1483-1492.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.037184] [PMID: 30586750]
[30]
Tsimikas, S.; Viney, N.J.; Hughes, S.G.; Singleton, W.; Graham, M.J.; Baker, B.F.; Burkey, J.L.; Yang, Q.; Marcovina, S.M.; Geary, R.S.; Crooke, R.M.; Witztum, J.L. Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study. Lancet, 2015, 386(10002), 1472-1483.
[http://dx.doi.org/10.1016/S0140-6736(15)61252-1] [PMID: 26210642]
[31]
Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; Watts, G.F.; Borén, J.; Fazio, S.; Horton, J.D.; Masana, L.; Nicholls, S.J.; Nordestgaard, B.G.; van de Sluis, B.; Taskinen, M-R.; Tokgözoglu, L.; Landmesser, U.; Laufs, U.; Wiklund, O.; Stock, J.K.; Chapman, M.J.; Catapano, A.L. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J., 2017, 38(32), 2459-2472.
[http://dx.doi.org/10.1093/eurheartj/ehx144] [PMID: 28444290]
[32]
Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and atherosclerosis. Circulation, 2002, 105(9), 1135-1143.
[http://dx.doi.org/10.1161/hc0902.104353] [PMID: 11877368]
[33]
Libby, P. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2012, 32(9), 2045-2051.
[http://dx.doi.org/10.1161/ATVBAHA.108.179705] [PMID: 22895665]
[34]
Moore, K.J.; Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell, 2011, 145(3), 341-355.
[http://dx.doi.org/10.1016/j.cell.2011.04.005] [PMID: 21529710]
[35]
Moore, K.J.; Sheedy, F.J.; Fisher, E.A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol., 2013, 13(10), 709-721.
[http://dx.doi.org/10.1038/nri3520] [PMID: 23995626]
[36]
Helkin, A.; Stein, J.J.; Lin, S.; Siddiqui, S.; Maier, K.G.; Gahtan, V. Dyslipidemia Part 1--Review of Lipid Metabolism and Vascular Cell Physiology. Vasc. Endovascular Surg., 2016, 50(2), 107-118.
[http://dx.doi.org/10.1177/1538574416628654] [PMID: 26983667]
[37]
Zak, A.; Zeman, M.; Slaby, A.; Vecka, M. Xanthomas: clinical and pathophysiological relations. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2014, 158(2), 181-188.
[http://dx.doi.org/10.5507/bp.2014.016] [PMID: 24781043]
[38]
Ladizinski, B.; Lee, K.C. Eruptive xanthomas in a patient with severe hypertriglyceridemia and type 2 diabetes. CMAJ, 2013, 185(18), 1600-1600.
[http://dx.doi.org/10.1503/cmaj.130148] [PMID: 23754108]
[39]
de Pretis, N.; Amodio, A.; Frulloni, L. Hypertriglyceridemic pancreatitis: Epidemiology, pathophysiology and clinical management. United European Gastroenterol. J., 2018, 6(5), 649-655.
[http://dx.doi.org/10.1177/2050640618755002] [PMID: 30083325]
[40]
Wong, S.; Shields, R.; Silva, R.A. Lipemia Retinalis in a Woman With Hypertriglyceridemia. JAMA Ophthalmol., 2019, 137(11)e186224
[http://dx.doi.org/10.1001/jamaophthalmol.2018.6224] [PMID: 31725839]
[41]
Tremblay, K.; Méthot, J.; Brisson, D.; Gaudet, D. Etiology and risk of lactescent plasma and severe hypertriglyceridemia. J. Clin. Lipidol., 2011, 5(1), 37-44.
[http://dx.doi.org/10.1016/j.jacl.2010.11.004] [PMID: 21262505]
[42]
Inokuchi, R.; Matsumoto, A.; Azihara, R.; Sato, H.; Kumada, Y.; Yokoyama, H.; Okada, M.; Ishida, T.; Nakamura, K.; Nakajima, S.; Yahagi, N.; Shinohara, K. Hypertriglyceridemia as a possible cause of coma: a case report. J. Med. Case Reports, 2012, 6(1), 412.
[http://dx.doi.org/10.1186/1752-1947-6-412] [PMID: 23198781]
[43]
Toor, A.; Toor, A.; Khalighi, K.; Krishnamurthy, M. Triglyceride Levels Greater Than 10,000 mg/dL in a 49-Year-Old Female without Evidence of Pancreatitis. Case Rep. Endocrinol., 2019, 20196273196
[http://dx.doi.org/10.1155/2019/6273196] [PMID: 31240137]
[44]
Avasia, A.R.; Rodziewicz, N.; Bhushan, S.; Singh, N. Milky Serum in Hypertriglyceridemia: Clinical Image. Arch. Case Reports Clin. Med., 2015, 01(01), 104.
[45]
Taddei, C.; Jackson, R.; Zhou, B.; Bixby, H.; Danaei, G.; Di Cesare, M.; Kuulasmaa, K.; Hajifathalian, K.; Bentham, J.; Bennett, J.E.; Aekplakorn, W.; Cifkova, R.; Dallongeville, J.; DeBacquer, D.; Giampaoli, S.; Gudnason, V.; Khang, Y-H.; Laatikainen, T.; Mann, J.; Marques-Vidal, P.; Mensah, G.A.; Müller-Nurasyid, M.; Ninomiya, T.; Petkeviciene, J.; Rodríguez-Artalejo, F.; Servais, J.; Söderberg, S.; Stavreski, B.; Wilsgaard, T.; Zdrojewski, T.; Zhao, D.; Stevens, G.A.; Savin, S.; Cowan, M.J.; Riley, L.M.; Ezzati, M.; Adams, R.J.; Aekplakorn, W.; Ahrens, W.; Amouyel, P.; Amuzu, A.; Anderssen, S.A.; Ariansen, I.; Arveiler, D.; Aspelund, T.; Auvinen, J.; Avdicová, M.; Banach, M.; Bandosz, P.; Banegas, J.R.; Barbagallo, C.M.; Bata, I.; Baur, L.A.; Beaglehole, R.; Bennett, J.E.; Bernotiene, G.; Bi, Y.; Bienek, A.; Björkelund, C.; Bo, S.; Boehm, B.O.; Bonaccio, M.; Bongard, V.; Borchini, R.; Borghs, H.; Breckenkamp, J.; Brenner, H.; Bruno, G.; Busch, M.A.; Cabrera de León, A.; Capuano, V.; Casanueva, F.F.; Casas, J-P.; Caserta, C.A.; Censi, L.; Chen, F.; Chen, S.; Chirlaque, M-D.; Cho, B.; Cho, Y.; Chudek, J.; Cifkova, R.; Claessens, F.; Clarke, J.; Clays, E.; Cooper, C.; Costanzo, S.; Cottel, D.; Cowell, C.; Crujeiras, A.B.; Cui, L.; D’Arrigo, G.; Dallongeville, J.; Dauchet, L.; De Backer, G.; De Bacquer, D.; de Gaetano, G.; De Henauw, S.; De Smedt, D.; Dennison, E.; Deschamps, V.; DiCastelnuovo, A.; Dobson, A.J.; Donfrancesco, C.; Döring, A.; Drygas, W.; Du, Y.; Dziankowska-Zaborszczyk, E.; Eggertsen, R.; Ekelund, U.; Elosua, R.; Eriksson, J.G.; Evans, A.; Faeh, D.; Felix-Redondo, F.J.; Fernández-Bergés, D.; Ferrari, M.; Ferrieres, J.; Finn, J.D.; Forslund, A-S.; Forsner, M.; Frontera, G.; Fujita, Y.; Gaciong, Z.; Galvano, F.; Gao, J.; Garcia-de-la-Hera, M.; Garnett, S.P.; Gaspoz, J-M.; Gasull, M.; Gates, L.; Giampaoli, S.; Gianfagna, F.; Gill, T.K.; Giovannelli, J.; Goltzman, D. NCD Risk Factor Collaboration (NCD-RisC). National trends in total cholesterol obscure heterogeneous changes in HDL and non-HDL cholesterol and total-to-HDL cholesterol ratio: a pooled analysis of 458 population-based studies in Asian and Western countries. Int. J. Epidemiol., 2020, 49(1), 173-192.
[http://dx.doi.org/10.1093/ije/dyz099] [PMID: 31321439]
[46]
Oğuz, A.; Güleç, S.; Temizhan, A.; Altuntaş, Y.; Karşıdağ, K.; Akalın, A.A.; Tümerdem Çalık, B.; İmeryüz, N. The Frequency of Dyslipidemia in Adults in Turkey. J. Am. Coll. Cardiol., 2013, 62(18), C6.
[http://dx.doi.org/10.1016/j.jacc.2013.08.025]
[47]
Kayıkçıoğlu, M. Systematic Review and Meta-Analysis of Epidemiological Studies for Cardiovascular Risk Factors Conducted in Turkey: Prevelance of Dislipidemias and Lipid Data. Turk Kardiyol. Dern. Arsivi-Archives Turkish Soc. Cardiol., 2018, 46(7), 556-574.
[http://dx.doi.org/10.5543/tkda.2018.23450]
[48]
Elisaf, M.; Tzouvelekis, E.; Nikas, N. Greek EURIKA Investigators. Primary prevention of cardiovascular disease in Greece: Greek results of the EURIKA study. Hellenic J. Cardiol., 2014, 55(3), 217-226.
[PMID: 24862614]
[49]
Sbarouni, E.; Voudris, V.; Georgiadou, P.; Hamilos, M.; Steg, P.G.; Fox, K.M.; Greenlaw, N.; Ferrari, R.; Vardas, P.E. Clinical presentation and management of stable coronary artery disease: insights from the international prospective CLARIFY registry - results from the Greek national cohort. Hellenic J. Cardiol., 2014, 55(6), 442-447.
[PMID: 25432195]
[50]
Andrikopoulos, G.; Tzeis, S.; Mantas, I.; Olympios, C.; Kitsiou, A.; Kartalis, A.; Kranidis, A.; Tsaknakis, T.; Richter, D.; Pras, A.; Pipilis, A.; Lampropoulos, S.; Oikonomou, K.; Gotsis, A.; Anastasiou-Nana, M.; Triposkiadis, F.; Goudevenos, J.; Theodorakis, G.; Vardas, P. Epidemiological characteristics and in-hospital management of acute coronary syndrome patients in Greece: results from the TARGET study. Hellenic J. Cardiol., 2012, 53(1), 33-40.
[PMID: 22275741]
[51]
Stone, N.J.; Robinson, J.G.; Lichtenstein, A.H.; Bairey Merz, C.N.; Blum, C.B.; Eckel, R.H.; Goldberg, A.C.; Gordon, D.; Levy, D.; Lloyd-Jones, D.M.; McBride, P.; Schwartz, J.S.; Shero, S.T.; Smith, S.C., Jr; Watson, K.; Wilson, P.W.F.; Eddleman, K.M.; Jarrett, N.M.; LaBresh, K.; Nevo, L.; Wnek, J.; Anderson, J.L.; Halperin, J.L.; Albert, N.M.; Bozkurt, B.; Brindis, R.G.; Curtis, L.H.; DeMets, D.; Hochman, J.S.; Kovacs, R.J.; Ohman, E.M.; Pressler, S.J.; Sellke, F.W.; Shen, W.K.; Smith, S.C., Jr; Tomaselli, G.F. American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation, 2014, 129(25)(Suppl. 2), S1-S45.
[http://dx.doi.org/10.1161/01.cir.0000437738.63853.7a] [PMID: 24222016]
[52]
Jellinger, P.S.; Handelsman, Y.; Rosenblit, P.D.; Bloomgarden, Z.T.; Fonseca, V.A.; Garber, A.J.; Grunberger, G.; Guerin, C.K.; Bell, D.S.H.; Mechanick, J.I.; Pessah-Pollack, R.; Wyne, K.; Smith, D.; Brinton, E.A.; Fazio, S.; Davidson, M. American association of clinical endocrinologists and American college of endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease. Endocr. Pract., 2017, 23(Suppl. 2), 1-87.
[http://dx.doi.org/10.4158/EP171764.APPGL] [PMID: 28437620]
[53]
Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; Sever, P.S.; Pedersen, T.R. FOURIER Steering Committee and Investigators. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med., 2017, 376(18), 1713-1722.
[http://dx.doi.org/10.1056/NEJMoa1615664] [PMID: 28304224]
[54]
Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; White, J.A.; Theroux, P.; Darius, H.; Lewis, B.S.; Ophuis, T.O.; Jukema, J.W.; De Ferrari, G.M.; Ruzyllo, W.; De Lucca, P.; Im, K.; Bohula, E.A.; Reist, C.; Wiviott, S.D.; Tershakovec, A.M.; Musliner, T.A.; Braunwald, E.; Califf, R.M. IMPROVE-IT Investigators. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N. Engl. J. Med., 2015, 372(25), 2387-2397.
[http://dx.doi.org/10.1056/NEJMoa1410489] [PMID: 26039521]
[55]
Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; Jukema, J.W.; Lecorps, G.; Mahaffey, K.W.; Moryusef, A.; Pordy, R.; Quintero, K.; Roe, M.T.; Sasiela, W.J.; Tamby, J-F.; Tricoci, P.; White, H.D.; Zeiher, A.M. ODYSSEY OUTCOMES Committees and Investigators. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med., 2018, 379(22), 2097-2107.
[http://dx.doi.org/10.1056/NEJMoa1801174] [PMID: 30403574]
[56]
Garg, N.; Muduli, S.K.; Kapoor, A.; Tewari, S.; Kumar, S.; Khanna, R.; Goel, P.K. Comparison of different cardiovascular risk score calculators for cardiovascular risk prediction and guideline recommended statin uses. Indian Heart J., 2017, 69(4), 458-463.
[http://dx.doi.org/10.1016/j.ihj.2017.01.015] [PMID: 28822511]
[57]
Cartier, L-J.; Collins, C.; Lagacé, M.; Douville, P. Comparison of fasting and non-fasting lipid profiles in a large cohort of patients presenting at a community hospital. Clin. Biochem., 2018, 52, 61-66.
[http://dx.doi.org/10.1016/j.clinbiochem.2017.11.007] [PMID: 29129625]
[58]
Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; Reiner, Ž.; Riccardi, G.; Taskinen, M-R.; Tokgozoglu, L.; Verschuren, W.M.M.; Vlachopoulos, C.; Wood, D.A.; Zamorano, J.L.; Cooney, M.T. ESC Scientific Document Group. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur. Heart J., 2016, 37(39), 2999-3058.
[http://dx.doi.org/10.1093/eurheartj/ehw272] [PMID: 27567407]
[59]
Hennekens, C.H.; Lopez-Sendon, J. Overview of the prevention of cardiovascular disease events in those with established disease (secondary prevention) or at high risk Available at: https://www.uptodate.com/contents/overview-of-the-prevention-of-cardiovascular-disease-events-in-those-with-established-disease-secondary-prevention-or-at-high-risk
[60]
Jin, J. Lipid Disorders: Screening and Treatment. JAMA, 2016, 316(19), 2056.
[http://dx.doi.org/10.1001/jama.2016.16650] [PMID: 27838718]
[61]
Arsenault, B.J.; Rana, J.S.; Stroes, E.S.G.; Després, J-P.; Shah, P.K.; Kastelein, J.J.P.; Wareham, N.J.; Boekholdt, S.M.; Khaw, K-T. Beyond low-density lipoprotein cholesterol: respective contributions of non-high-density lipoprotein cholesterol levels, triglycerides, and the total cholesterol/high-density lipoprotein cholesterol ratio to coronary heart disease risk in apparently healthy men and women. J. Am. Coll. Cardiol., 2009, 55(1), 35-41.
[http://dx.doi.org/10.1016/j.jacc.2009.07.057] [PMID: 20117361]
[62]
Thanassoulis, G. Screening for High Lipoprotein(a). Circulation, 2019, 139(12), 1493-1496.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.038989] [PMID: 30883219]
[63]
Weiss, M.C.; Berger, J.S.; Gianos, E.; Fisher, E.; Schwartzbard, A.; Underberg, J.; Weintraub, H. Lipoprotein(a) screening in patients with controlled traditional risk factors undergoing percutaneous coronary intervention. J. Clin. Lipidol., 2017, 11(5), 1177-1180.
[http://dx.doi.org/10.1016/j.jacl.2017.07.005] [PMID: 28801030]
[64]
Pollin, T.I.; Quartuccio, M. What We Know About Diet, Genes, and Dyslipidemia: Is There Potential for Translation? Curr. Nutr. Rep., 2013, 2(4), 236-242.
[http://dx.doi.org/10.1007/s13668-013-0065-z] [PMID: 24524012]
[65]
Drouin-Chartier, J-P.; Tremblay, A.J.; Lépine, M-C.; Lemelin, V.; Lamarche, B.; Couture, P. Substitution of dietary ω-6 polyunsaturated fatty acids for saturated fatty acids decreases LDL apolipoprotein B-100 production rate in men with dyslipidemia associated with insulin resistance: a randomized controlled trial. Am. J. Clin. Nutr., 2018, 107(1), 26-34.
[http://dx.doi.org/10.1093/ajcn/nqx013] [PMID: 29381796]
[66]
Riccardi, G.; Vaccaro, O.; Costabile, G.; Rivellese, A.A. How Well Can We Control Dyslipidemias Through Lifestyle Modifications? Curr. Cardiol. Rep., 2016, 18(7), 66.
[http://dx.doi.org/10.1007/s11886-016-0744-7] [PMID: 27216846]
[67]
Handelsman, Y.; Lepor, N.E. PCSK9 Inhibitors in Lipid Management of Patients With Diabetes Mellitus and High Cardiovascular Risk: A Review. J. Am. Heart Assoc., 2018, 7(13)e008953
[http://dx.doi.org/10.1161/JAHA.118.008953] [PMID: 29934421]
[68]
Tai, M-H.; Shepherd, J.; Bailey, H.; Williams, N.; Hatz, M.; Campos Tapias, I.; Catterick, D.; Worth, G. Real-world treatment patterns of PCSK9 inhibitors among patients with dyslipidemia in Germany, Spain, and the United Kingdom. Curr. Med. Res. Opin., 2019, 35(5), 829-835.
[http://dx.doi.org/10.1080/03007995.2018.1532885] [PMID: 30289004]
[69]
[70]
Agrawal, N.; Freitas Corradi, P.; Gumaste, N.; Goldberg, I.J. Triglyceride Treatment in the Age of Cholesterol Reduction. Prog. Cardiovasc. Dis., 2016, 59(2), 107-118.
[http://dx.doi.org/10.1016/j.pcad.2016.08.003] [PMID: 27544319]
[71]
Ansell, B.J. Rationale for Combination Therapy with Statin Drugs in the Treatment of Dyslipidemia. Curr. Atheroscler. Rep., 2005, 7(1), 29-33.
[http://dx.doi.org/10.1007/s11883-005-0072-7]
[72]
Garg, A. Treatment of Diabetic Dyslipidemia.American Journal of Cardiology; Elsevier Inc., 1998, Vol. 81, pp. 47B-51B.
[73]
Ginsberg, H.N. REVIEW: Efficacy and mechanisms of action of statins in the treatment of diabetic dyslipidemia. J. Clin. Endocrinol. Metab., 2006, 91(2), 383-392.
[http://dx.doi.org/10.1210/jc.2005-2084] [PMID: 16291700]
[74]
Bonfim, M.R.; Oliveira, A.S.B.; do Amaral, S.L.; Monteiro, H.L. Treatment of dyslipidemia with statins and physical exercises: recent findings of skeletal muscle responses. Arq. Bras. Cardiol., 2015, 104(4), 324-331.
[http://dx.doi.org/10.5935/abc.20150005] [PMID: 25993596]
[75]
Fazio, S. The Role of Statin Therapy in Primary Hyperlipidemia and Mixed Dyslipidemia. US Endocrinol., 2011, 7(1), 23-29.
[http://dx.doi.org/10.17925/USE.2011.07.01.23]
[76]
Gau, G.T.; Wright, R.S. Pathophysiology, diagnosis, and management of dyslipidemia. Curr. Probl. Cardiol., 2006, 31(7), 445-486.
[http://dx.doi.org/10.1016/j.cpcardiol.2006.03.001] [PMID: 16824902]
[77]
Clark, L.T. Treating dyslipidemia with statins: the risk-benefit profile. Am. Heart J., 2003, 145(3), 387-396.
[http://dx.doi.org/10.1067/mhj.2003.70] [PMID: 12660659]
[78]
Stancu, C.; Sima, A. Statins: mechanism of action and effects. J. Cell. Mol. Med., 2001, 5(4), 378-387.
[http://dx.doi.org/10.1111/j.1582-4934.2001.tb00172.x] [PMID: 12067471]
[79]
Korani, S.; Bahrami, S.; Korani, M.; Banach, M.; Johnston, T.P.; Sahebkar, A. Parenteral systems for statin delivery: a review. Lipids Health Dis., 2019, 18(1), 193.
[http://dx.doi.org/10.1186/s12944-019-1139-8] [PMID: 31690335]
[80]
Zidan, A.S.; Hosny, K.M.; Ahmed, O.A.A.; Fahmy, U.A. Assessment of simvastatin niosomes for pediatric transdermal drug delivery. Drug Deliv., 2016, 23(5), 1536-1549.
[PMID: 25386740]
[81]
Tatham, L.M.; Liptrott, N.J.; Rannard, S.P.; Owen, A. Long-Acting Injectable Statins-Is It Time for a Paradigm Shift? Molecules, 2019, 24(15), 2685.
[http://dx.doi.org/10.3390/molecules24152685] [PMID: 31344834]
[82]
Shidhaye, S.S.; Thakkar, P.V.; Dand, N.M.; Kadam, V.J. Buccal drug delivery of pravastatin sodium. AAPS PharmSciTech, 2010, 11(1), 416-424.
[http://dx.doi.org/10.1208/s12249-010-9381-4] [PMID: 20300898]
[83]
Phan, B.A.; Dayspring, T.D.; Toth, P.P. Ezetimibe therapy: mechanism of action and clinical update. Vasc. Health Risk Manag., 2012, 8, 415-427.
[http://dx.doi.org/10.2147/VHRM.S33664] [PMID: 22910633]
[84]
Din, F. ud; Zeb, A.; Shah, K. U.; Zia-ur-Rehman. Development, in-Vitro and in-Vivo Evaluation of Ezetimibe-Loaded Solid Lipid Nanoparticles and Their Comparison with Marketed Product. J. Drug Deliv. Sci. Technol., 2019, 51, 583-590.
[http://dx.doi.org/10.1016/j.jddst.2019.02.026]
[85]
Shukr, M.H.; Ismail, S.; Ahmed, S.M. Development and Optimization of Ezetimibe Nanoparticles with Improved Antihyperlipidemic Activity. J. Drug Deliv. Sci. Technol., 2019, 49, 383-395.
[http://dx.doi.org/10.1016/j.jddst.2018.12.001]
[86]
Everett, B.M.; Smith, R.J.; Hiatt, W.R. Reducing LDL with PCSK9 Inhibitors--The Clinical Benefit of Lipid Drugs. N. Engl. J. Med., 2015, 373(17), 1588-1591.
[http://dx.doi.org/10.1056/NEJMp1508120] [PMID: 26444323]
[87]
Page, M.M.; Watts, G.F. PCSK9 inhibitors - mechanisms of action. Aust. Prescr., 2016, 39(5), 164-167.
[http://dx.doi.org/10.18773/austprescr.2016.060] [PMID: 27789927]
[88]
Chaudhary, R.; Garg, J.; Shah, N.; Sumner, A. PCSK9 inhibitors: A new era of lipid lowering therapy. World J. Cardiol., 2017, 9(2), 76-91.
[http://dx.doi.org/10.4330/wjc.v9.i2.76] [PMID: 28289523]
[89]
Porez, G.; Prawitt, J.; Gross, B.; Staels, B. Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J. Lipid Res., 2012, 53(9), 1723-1737.
[http://dx.doi.org/10.1194/jlr.R024794] [PMID: 22550135]
[90]
William, I., Jr Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: a scientific review. South. Med. J., 2006, 99(3), 257-273.
[http://dx.doi.org/10.1097/01.smj.0000208120.73327.db] [PMID: 16553100]
[91]
Staels, B.; Handelsman, Y.; Fonseca, V. Bile acid sequestrants for lipid and glucose control. Curr. Diab. Rep., 2010, 10(1), 70-77.
[http://dx.doi.org/10.1007/s11892-009-0087-5] [PMID: 20425070]
[92]
Pavlović, N.; Goločorbin-Kon, S.; Ðanić, M.; Stanimirov, B.; Al-Salami, H.; Stankov, K.; Mikov, M. Bile Acids and Their Derivatives as Potential Modifiers of Drug Release and Pharmacokinetic Profiles. Front. Pharmacol., 2018, 9, 1283.
[http://dx.doi.org/10.3389/fphar.2018.01283] [PMID: 30467479]
[93]
Sahebkar, A.; Simental-Mendía, L.E.; Watts, G.F.; Serban, M-C.; Banach, M. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. Comparison of the effects of fibrates versus statins on plasma lipoprotein(a) concentrations: a systematic review and meta-analysis of head-to-head randomized controlled trials. BMC Med., 2017, 15(1), 22.
[http://dx.doi.org/10.1186/s12916-017-0787-7] [PMID: 28153024]
[94]
Ling, H.; Luoma, J.T.; Hilleman, D. A Review of Currently Available Fenofibrate and Fenofibric Acid Formulations. Cardiol. Res., 2013, 4(2), 47-55.
[http://dx.doi.org/10.4021/cr270w] [PMID: 28352420]
[95]
Fernández-Martínez, E.; Lira-Islas, I.G.; Cariño-Cortés, R.; Soria-Jasso, L.E.; Pérez-Hernández, E.; Pérez-Hernández, N. Dietary chia seeds (Salvia hispanica) improve acute dyslipidemia and steatohepatitis in rats. J. Food Biochem., 2019, 43(9)e12986
[http://dx.doi.org/10.1111/jfbc.12986] [PMID: 31489674]
[96]
IMPROVE-IT: Examining Outcomes in Subjects With Acute Coronary Syndrome: Vytorin (Ezetimibe/Simvastatin) vs Simvastatin (P04103).
[97]
Chen, Q.; Liu, M.; Zhang, P.; Fan, S.; Huang, J.; Yu, S.; Zhang, C.; Li, H. Fucoidan and galactooligosaccharides ameliorate high-fat diet-induced dyslipidemia in rats by modulating the gut microbiota and bile acid metabolism. Nutrition, 2019, 65, 50-59.
[http://dx.doi.org/10.1016/j.nut.2019.03.001] [PMID: 31029922]
[98]
Chávez-Talavera, O.; Tailleux, A.; Lefebvre, P.; Staels, B. Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology, 2017, 152(7), 1679-1694.e3.
[http://dx.doi.org/10.1053/j.gastro.2017.01.055] [PMID: 28214524]
[99]
Fiorucci, S.; Cipriani, S.; Baldelli, F.; Mencarelli, A. Bile acid-activated receptors in the treatment of dyslipidemia and related disorders. Prog. Lipid Res., 2010, 49(2), 171-185.
[http://dx.doi.org/10.1016/j.plipres.2009.11.001] [PMID: 19932133]
[100]
Aldridge, M.A.; Ito, M.K. Colesevelam hydrochloride: a novel bile acid-binding resin. Ann. Pharmacother., 2001, 35(7-8), 898-907.
[http://dx.doi.org/10.1345/aph.10263] [PMID: 11485143]
[101]
Acharya, P.; Nanjaiah, L.; Singh, S.A.; Talahalli, R.R. Hyperglycemia Exacerbates Dyslipidemia-Induced Changes in Uptake, Synthesis, and Transporters of Bile Acids in Rats: Assessment of Restorative Potentials of ALA and EPA + DHA. J. Funct. Foods, 2019, 54(January), 329-336.
[http://dx.doi.org/10.1016/j.jff.2019.01.038]
[102]
Huijgen, R.; Abbink, E.J.; Bruckert, E.; Stalenhoef, A.F.H.; Imholz, B.P.M.; Durrington, P.N.; Trip, M.D.; Eriksson, M.; Visseren, F.L.J.; Schaefer, J.R.; Kastelein, J.J.P. Triple Study Group. Colesevelam added to combination therapy with a statin and ezetimibe in patients with familial hypercholesterolemia: a 12-week, multicenter, randomized, double-blind, controlled trial. Clin. Ther., 2010, 32(4), 615-625.
[http://dx.doi.org/10.1016/j.clinthera.2010.04.014] [PMID: 20435231]
[103]
Ishibashi, S.; Arai, H.; Yokote, K.; Araki, E.; Suganami, H.; Yamashita, S. K-877 Study Group. Efficacy and safety of pemafibrate (K-877), a selective peroxisome proliferator-activated receptor α modulator, in patients with dyslipidemia: Results from a 24-week, randomized, double blind, active-controlled, phase 3 trial. J. Clin. Lipidol., 2018, 12(1), 173-184.
[http://dx.doi.org/10.1016/j.jacl.2017.10.006] [PMID: 29203092]
[104]
Jones, P.H. Fibrates. In:Clinical Lipidology; Elsevier, 2009, pp. 315-325.
[http://dx.doi.org/10.1016/B978-141605469-6.50030-5]
[105]
Jackevicius, C.A.; Tu, J.V.; Ross, J.S.; Ko, D.T.; Carreon, D.; Krumholz, H.M. Use of fibrates in the United States and Canada. JAMA, 2011, 305(12), 1217-1224.
[http://dx.doi.org/10.1001/jama.2011.353] [PMID: 21427374]
[106]
Nordmann, A.J.; Ferreira-González, I.; Kasenda, B.; Saccilotto, R.; Bassler, D.; Bhatnagar, N.; Briel, M. Fibrates for primary prevention of cardiovascular disease events. Cochrane Database Syst. Rev., 2012, 3(3)CD009753
[http://dx.doi.org/10.1002/14651858.CD009753] [PMID: 25267898]
[107]
Zimetbaum, P.; Frishman, W.H.; Kahn, S. Effects of gemfibrozil and other fibric acid derivatives on blood lipids and lipoproteins. J. Clin. Pharmacol., 1991, 31(1), 25-37.
[http://dx.doi.org/10.1002/j.1552-4604.1991.tb01883.x] [PMID: 2045526]
[108]
Cavallero, E.; Piolot, A.; Jacotot, B. Postprandial lipoprotein clearance in type 2 diabetes: fenofibrate effects. Diabete Metab., 1995, 21(2), 118-120.
[PMID: 7621971]
[109]
Mosca, L.; Banka, C.L.; Benjamin, E.J.; Berra, K.; Bushnell, C.; Dolor, R.J.; Ganiats, T.G.; Gomes, A.S.; Gornik, H.L.; Gracia, C.; Gulati, M.; Haan, C.K.; Judelson, D.R.; Keenan, N.; Kelepouris, E.; Michos, E.D.; Newby, L.K.; Oparil, S.; Ouyang, P.; Oz, M.C.; Petitti, D.; Pinn, V.W.; Redberg, R.F.; Scott, R.; Sherif, K.; Smith, S.C., Jr; Sopko, G.; Steinhorn, R.H.; Stone, N.J.; Taubert, K.A.; Todd, B.A.; Urbina, E.; Wenger, N.K. Evidence-based guidelines for cardiovascular disease prevention in women: 2007 update. Circulation, 2007, 115(11), 1481-1501.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.181546] [PMID: 17309915]
[110]
Miller, M.; Bachorik, P.S.; McCrindle, B.W.; Kwiterovich, P.O., Jr Effect of gemfibrozil in men with primary isolated low high-density lipoprotein cholesterol: a randomized, double-blind, placebo-controlled, crossover study. Am. J. Med., 1993, 94(1), 7-12.
[http://dx.doi.org/10.1016/0002-9343(93)90113-4] [PMID: 8420303]
[111]
Grundy, S.M. Non-high-density lipoprotein cholesterol level as potential risk predictor and therapy target. Arch. Intern. Med., 2001, 161(11), 1379-1380.
[http://dx.doi.org/10.1001/archinte.161.11.1379] [PMID: 11386886]
[112]
Blaha, M.J.; Blumenthal, R.S.; Brinton, E.A.; Jacobson, T.A. National Lipid Association Taskforce on Non-HDL Cholesterol. The importance of non-HDL cholesterol reporting in lipid management. J. Clin. Lipidol., 2008, 2(4), 267-273.
[http://dx.doi.org/10.1016/j.jacl.2008.06.013] [PMID: 21291742]
[113]
Remick, J.; Weintraub, H.; Setton, R.; Offenbacher, J.; Fisher, E.; Schwartzbard, A. Fibrate therapy: an update. Cardiol. Rev., 2008, 16(3), 129-141.
[http://dx.doi.org/10.1097/CRD.0b013e31816b43d3] [PMID: 18414184]
[114]
Elisaf, M. Effects of fibrates on serum metabolic parameters. Curr. Med. Res. Opin., 2002, 18(5), 269-276.
[http://dx.doi.org/10.1185/030079902125000516] [PMID: 12240789]
[115]
Tavori, H.; Fan, D.; Blakemore, J.L.; Yancey, P.G.; Ding, L.; Linton, M.F.; Fazio, S. Serum proprotein convertase subtilisin/kexin type 9 and cell surface low-density lipoprotein receptor: evidence for a reciprocal regulation. Circulation, 2013, 127(24), 2403-2413.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.001592] [PMID: 23690465]
[116]
Ooi, T.C.; Krysa, J.A.; Chaker, S.; Abujrad, H.; Mayne, J.; Henry, K.; Cousins, M.; Raymond, A.; Favreau, C.; Taljaard, M.; Chrétien, M.; Mbikay, M.; Proctor, S.D.; Vine, D.F. The Effect of PCSK9 Loss-of-Function Variants on the Postprandial Lipid and ApoB-Lipoprotein Response. J. Clin. Endocrinol. Metab., 2017, 102(9), 3452-3460.
[http://dx.doi.org/10.1210/jc.2017-00684] [PMID: 28673045]
[117]
Reyes-Soffer, G.; Pavlyha, M.; Ngai, C.; Thomas, T.; Holleran, S.; Ramakrishnan, R.; Karmally, W.; Nandakumar, R.; Fontanez, N.; Obunike, J.; Marcovina, S.M.; Lichtenstein, A.H.; Matthan, N.R.; Matta, J.; Maroccia, M.; Becue, F.; Poitiers, F.; Swanson, B.; Cowan, L.; Sasiela, W.J.; Surks, H.K.; Ginsberg, H.N. Effects of PCSK9 Inhibition With Alirocumab on Lipoprotein Metabolism in Healthy Humans. Circulation, 2017, 135(4), 352-362.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.025253] [PMID: 27986651]
[118]
Watts, G.F.; Chan, D.C.; Somaratne, R.; Wasserman, S.M.; Scott, R.; Marcovina, S.M.; Barrett, P.H.R. Controlled study of the effect of proprotein convertase subtilisin-kexin type 9 inhibition with evolocumab on lipoprotein(a) particle kinetics. Eur. Heart J., 2018, 39(27), 2577-2585.
[http://dx.doi.org/10.1093/eurheartj/ehy122] [PMID: 29566128]
[119]
Skulas-Ray, A.C.; Wilson, P.W.F.; Harris, W.S.; Brinton, E.A.; Kris-Etherton, P.M.; Richter, C.K.; Jacobson, T.A.; Engler, M.B.; Miller, M.; Robinson, J.G.; Blum, C.B.; Rodriguez-Leyva, D.; de Ferranti, S.D.; Welty, F.K. American Heart Association Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; and Council on Clinical Cardiology. Omega-3 Fatty Acids for the Management of Hypertriglyceridemia: A Science Advisory From the American Heart Association. Circulation, 2019, 140(12), e673-e691.
[http://dx.doi.org/10.1161/CIR.0000000000000709] [PMID: 31422671]
[120]
Vecka, M.; Dušejovská, M.; Stankova, B.; Zeman, M.; Vavrova, L.; Kodydkova, J.; Slaby, A.; Zak, A. N-3 polyunsaturated fatty acids in the treatment of atherogenic dyslipidemia. Neuroendocrinol. Lett., 2012, 33(Suppl. 2), 87-92.
[PMID: 23183517]
[121]
Kastelein, J.J.P.; Maki, K.C.; Susekov, A.; Ezhov, M.; Nordestgaard, B.G.; Machielse, B.N.; Kling, D.; Davidson, M.H. Omega-3 free fatty acids for the treatment of severe hypertriglyceridemia: the EpanoVa fOr Lowering Very high triglyceridEs (EVOLVE) trial. J. Clin. Lipidol., 2014, 8(1), 94-106.
[http://dx.doi.org/10.1016/j.jacl.2013.10.003] [PMID: 24528690]
[122]
Nicholls, S.J.; Lincoff, A.M.; Bash, D.; Ballantyne, C.M.; Barter, P.J.; Davidson, M.H.; Kastelein, J.J.P.; Koenig, W.; McGuire, D.K.; Mozaffarian, D.; Pedersen, T.R.; Ridker, P.M.; Ray, K.; Karlson, B.W.; Lundström, T.; Wolski, K.; Nissen, S.E. Assessment of omega-3 carboxylic acids in statin-treated patients with high levels of triglycerides and low levels of high-density lipoprotein cholesterol: Rationale and design of the STRENGTH trial. Clin. Cardiol., 2018, 41(10), 1281-1288.
[http://dx.doi.org/10.1002/clc.23055] [PMID: 30125052]
[123]
Ooi, E.M.M.; Watts, G.F.; Ng, T.W.K.; Barrett, P.H.R. Effect of dietary Fatty acids on human lipoprotein metabolism: a comprehensive update. Nutrients, 2015, 7(6), 4416-4425.
[http://dx.doi.org/10.3390/nu7064416] [PMID: 26043038]
[124]
Desmarchelier, C.; Borel, P.; Lairon, D.; Maraninchi, M.; Valéro, R. Effect of Nutrient and Micronutrient Intake on Chylomicron Production and Postprandial Lipemia. Nutrients, 2019, 11(6), 1299.
[http://dx.doi.org/10.3390/nu11061299] [PMID: 31181761]
[125]
Rizos, E.; Markozannes, G.; Tsapas, A.; Ntzani, E. Omega-3 Supplementation And Cardiovascular Disease: Meta-Analysis With Trial Sequential Analysis. Atherosclerosis, 2019, 287e284
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.06.880]
[126]
Brasky, T.M.; Darke, A.K.; Song, X.; Tangen, C.M.; Goodman, P.J.; Thompson, I.M.; Meyskens, F.L., Jr; Goodman, G.E.; Minasian, L.M.; Parnes, H.L.; Klein, E.A.; Kristal, A.R. Plasma phospholipid fatty acids and prostate cancer risk in the SELECT trial. J. Natl. Cancer Inst., 2013, 105(15), 1132-1141.
[http://dx.doi.org/10.1093/jnci/djt174] [PMID: 23843441]
[127]
Abdelhamid, A.S.; Brown, T.J.; Brainard, J.S.; Biswas, P.; Thorpe, G.C.; Moore, H.J.; Deane, K.H.; AlAbdulghafoor, F.K.; Summerbell, C.D.; Worthington, H.V.; Song, F.; Hooper, L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev., 2018, 7(7)CD003177
[PMID: 30019766]
[128]
Kamanna, V.S.; Kashyap, M.L. Mechanism of action of niacin. Am. J. Cardiol., 2008, 101(8A), 20B-26B.
[http://dx.doi.org/10.1016/j.amjcard.2008.02.029] [PMID: 18375237]
[129]
Keenan, M. J. The Role of Niacin in the Management of Dyslipidemia.Dyslipidemia; McFarlane, S.I., Ed.; IntechOpen, 2019.
[http://dx.doi.org/10.5772/intechopen.81725]
[130]
Goldberg, R.B.; Bittner, V.A.; Dunbar, R.L.; Fleg, J.L.; Grunberger, G.; Guyton, J.R.; Leiter, L.A.; McBride, R.; Robinson, J.G.; Simmons, D.L.; Wysham, C.; Xu, P.; Boden, W.E. Effects of Extended-Release Niacin Added to Simvastatin/Ezetimibe on Glucose and Insulin Values in AIM-HIGH. Am. J. Med., 2016, 129(7), 753.e13-753.e22.
[http://dx.doi.org/10.1016/j.amjmed.2016.02.039] [PMID: 27036394]
[131]
Li, C.; Zhang, W.; Zhou, F.; Chen, C.; Zhou, L.; Li, Y.; Liu, L.; Pei, F.; Luo, H.; Hu, Z.; Cai, J.; Zeng, C. Cholesteryl ester transfer protein inhibitors in the treatment of dyslipidemia: a systematic review and meta-analysis. PLoS One, 2013, 8(10)e77049
[http://dx.doi.org/10.1371/journal.pone.0077049] [PMID: 24204732]
[132]
Ference, B.A.; Kastelein, J.J.P.; Ginsberg, H.N.; Chapman, M.J.; Nicholls, S.J.; Ray, K.K.; Packard, C.J.; Laufs, U.; Brook, R.D.; Oliver-Williams, C.; Butterworth, A.S.; Danesh, J.; Smith, G.D.; Catapano, A.L.; Sabatine, M.S. Association of Genetic Variants Related to CETP Inhibitors and Statins With Lipoprotein Levels and Cardiovascular Risk. JAMA, 2017, 318(10), 947-956.
[http://dx.doi.org/10.1001/jama.2017.11467] [PMID: 28846118]
[133]
Bowman, L.; Hopewell, J.C.; Chen, F.; Wallendszus, K.; Stevens, W.; Collins, R.; Wiviott, S.D.; Cannon, C.P.; Braunwald, E.; Sammons, E.; Landray, M.J. HPS3/TIMI55–REVEAL Collaborative Group. Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease. N. Engl. J. Med., 2017, 377(13), 1217-1227.
[http://dx.doi.org/10.1056/NEJMoa1706444] [PMID: 28847206]
[134]
Armitage, J.; Holmes, M.V.; Preiss, D. Cholesteryl Ester Transfer Protein Inhibition for Preventing Cardiovascular Events: JACC Review Topic of the Week. J. Am. Coll. Cardiol., 2019, 73(4), 477-487.
[http://dx.doi.org/10.1016/j.jacc.2018.10.072] [PMID: 30704580]
[135]
Majmudar, M.D.; Yoo, J.; Keliher, E.J.; Truelove, J.J.; Iwamoto, Y.; Sena, B.; Dutta, P.; Borodovsky, A.; Fitzgerald, K.; Di Carli, M.F.; Libby, P.; Anderson, D.G.; Swirski, F.K.; Weissleder, R.; Nahrendorf, M. Polymeric nanoparticle PET/MR imaging allows macrophage detection in atherosclerotic plaques. Circ. Res., 2013, 112(5), 755-761.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.300576] [PMID: 23300273]
[136]
Palekar, R.U.; Jallouk, A.P.; Lanza, G.M.; Pan, H.; Wickline, S.A. Molecular imaging of atherosclerosis with nanoparticle-based fluorinated MRI contrast agents. Nanomedicine (Lond.), 2015, 10(11), 1817-1832.
[http://dx.doi.org/10.2217/nnm.15.26] [PMID: 26080701]
[137]
Bejarano, J.; Navarro-Marquez, M.; Morales-Zavala, F.; Morales, J.O.; Garcia-Carvajal, I.; Araya-Fuentes, E.; Flores, Y.; Verdejo, H.E.; Castro, P.F.; Lavandero, S.; Kogan, M.J. Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial infarction: evolution toward prospective theranostic approaches. Theranostics, 2018, 8(17), 4710-4732.
[http://dx.doi.org/10.7150/thno.26284] [PMID: 30279733]
[138]
Alkhalil, M.; Biasiolli, L.; Chai, J.T.; Galassi, F.; Li, L.; Darby, C.; Halliday, A.; Hands, L.; Magee, T.; Perkins, J.; Sideso, E.; Jezzard, P.; Robson, M.D.; Handa, A.; Choudhury, R.P. Quantification of carotid plaque lipid content with magnetic resonance T2 mapping in patients undergoing carotid endarterectomy. PLoS One, 2017, 12(7)e0181668
[http://dx.doi.org/10.1371/journal.pone.0181668] [PMID: 28746385]
[139]
Yang, S.; Moon, Y-A. Current Drugs, Targets, and Drug Delivery Systems for the Treatment of Dyslipidemia. J. Pharm. Investig., 2018, 48(3), 233-241.
[http://dx.doi.org/10.1007/s40005-017-0353-5]
[140]
Kosmas, C.E.; Muñoz Estrella, A.; Sourlas, A.; Silverio, D.; Hilario, E.; Montan, P.D.; Guzman, E. Inclisiran: A New Promising Agent in the Management of Hypercholesterolemia. Diseases, 2018, 6(3), 63.
[http://dx.doi.org/10.3390/diseases6030063] [PMID: 30011788]
[141]
Ray, K.K.; Landmesser, U.; Leiter, L.A.; Kallend, D.; Dufour, R.; Karakas, M.; Hall, T.; Troquay, R.P.T.; Turner, T.; Visseren, F.L.J.; Wijngaard, P.; Wright, R.S.; Kastelein, J.J.P. Inclisiran in Patients at High Cardiovascular Risk with Elevated LDL Cholesterol. N. Engl. J. Med., 2017, 376(15), 1430-1440.
[http://dx.doi.org/10.1056/NEJMoa1615758] [PMID: 28306389]
[142]
Iacobucci, G. Inclisiran: UK to roll out new cholesterol lowering drug from next year. BMJ, 2020, 368, m139.
[http://dx.doi.org/10.1136/bmj.m139] [PMID: 31932283]
[143]
Bandyopadhyay, D.; Hajra, A.; Ashish, K.; Qureshi, A.; Ball, S. New hope for hyperlipidemia management: Inclisiran. J. Cardiol., 2018, 71(5), 523-524.
[http://dx.doi.org/10.1016/j.jjcc.2017.10.017] [PMID: 29174841]
[144]
Fitzgerald, K.; White, S.; Borodovsky, A.; Bettencourt, B.R.; Strahs, A.; Clausen, V.; Wijngaard, P.; Horton, J.D.; Taubel, J.; Brooks, A.; Fernando, C.; Kauffman, R.S.; Kallend, D.; Vaishnaw, A.; Simon, A. A Highly Durable RNAi Therapeutic Inhibitor of PCSK9. N. Engl. J. Med., 2017, 376(1), 41-51.
[http://dx.doi.org/10.1056/NEJMoa1609243] [PMID: 27959715]
[145]
NCT03399370. Inclisiran for Participants With Atherosclerotic Cardiovascular Disease and Elevated Low-density Lipoprotein Cholesterol (ORION-10), Available at: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01521995/full
[146]
NCT03400800. Inclisiran for Subjects With ACSVD or ACSVD-Risk Equivalents and Elevated Low-density Lipoprotein Cholesterol (ORION-11), Available at: https://clinicaltrials.gov/ct2/show/NCT03400800
[147]
Simental-Mendía, L.E.; Guerrero-Romero, F. Effect of resveratrol supplementation on lipid profile in subjects with dyslipidemia: A randomized double-blind, placebo-controlled trial. Nutrition, 2019, 58, 7-10.
[http://dx.doi.org/10.1016/j.nut.2018.06.015] [PMID: 30278430]
[148]
Gomes, A.P.O.; Ferreira, M.A.; Camargo, J.M.; Araújo, M.O.; Mortoza, A.S.; Mota, J.F.; Coelho, A.S.G.; Capitani, C.D.; Coltro, W.K.T.; Botelho, P.B. Organic beet leaves and stalk juice attenuates HDL-C reduction induced by high-fat meal in dyslipidemic patients: A pilot randomized controlled trial. Nutrition, 2019, 65, 68-73.
[http://dx.doi.org/10.1016/j.nut.2019.03.004] [PMID: 31029925]
[149]
Barcelos de Castro, A.P.R.; Antunes de Moraes, A.E.; Simabuco, F.M.; Massa, G.O.; Corona, L.P.; Bezerra, R.M.N. Beetroot Leaves (Beta Vulgaris L.) Assist in Cholesterol Reduction in Dyslipidemic Obese Adults. Free Radic. Biol. Med., 2018, 120((Suppl. 1)), S123.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.04.406]
[150]
Caro-Gómez, E.; Sierra, J.A.; Escobar, J.S.; Álvarez-Quintero, R.; Naranjo, M.; Medina, S.; Velásquez-Mejía, E.P.; Tabares-Guevara, J.H.; Jaramillo, J.C.; León-Varela, Y.M.; Muñoz-Durango, K.; Ramírez-Pineda, J.R. Green Coffee Extract Improves Cardiometabolic Parameters and Modulates Gut Microbiota in High-Fat-Diet-Fed ApoE-/- Mice. Nutrients, 2019, 11(3), 497.
[http://dx.doi.org/10.3390/nu11030497] [PMID: 30818779]
[151]
Salamat, S.; Sharif, S.S.; Nazary-Vanani, A.; Kord-Varkaneh, H.; Clark, C.C.T.; Mohammadshahi, M. The Effect of Green Coffee Extract Supplementation on Serum Oxidized LDL Cholesterol and Total Antioxidant Capacity in Patients with Dyslipidemia: A Randomized, Double-Blind, Placebo-Controlled Trial. Eur. J. Integr. Med., 2019, 28, 109-113.
[http://dx.doi.org/10.1016/j.eujim.2019.05.001]
[152]
Askarpour, M.; Hadi, A.; Symonds, M.E.; Miraghajani, M.; Sadeghi, O.; Sheikhi, A.; Ghaedi, E. Efficacy of l-carnitine supplementation for management of blood lipids: A systematic review and dose-response meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis., 2019, 29(11), 1151-1167.
[http://dx.doi.org/10.1016/j.numecd.2019.07.012] [PMID: 31561944]
[153]
Youssef, D.A.; El-Fayoumi, H.M.; Mahmoud, M.F. Beta-caryophyllene protects against diet-induced dyslipidemia and vascular inflammation in rats: Involvement of CB2 and PPAR-γ receptors. Chem. Biol. Interact., 2019, 297, 16-24.
[http://dx.doi.org/10.1016/j.cbi.2018.10.010] [PMID: 30343038]
[154]
Mendoza-Sánchez, M.; Pérez-Ramírez, I.F.; Wall-Medrano, A.; Martinez-Gonzalez, A.I.; Gallegos-Corona, M.A.; Reynoso-Camacho, R. Chemically Induced Common Bean (Phaseolus Vulgaris L.) Sprouts Ameliorate Dyslipidemia by Lipid Intestinal Absorption Inhibition. J. Funct. Foods, 2019, 52, 54-62.
[http://dx.doi.org/10.1016/j.jff.2018.10.032]
[155]
Bertuccioli, A.; Moricoli, S.; Amatori, S.; Rocchi, M.B.L.; Vici, G.; Sisti, D. Berberine and Dyslipidemia: Different Applications and Biopharmaceutical Formulations Without Statin-Like Molecules-A Meta-Analysis. J. Med. Food, 2020, 23(2), 101-113.
[http://dx.doi.org/10.1089/jmf.2019.0088] [PMID: 31441678]
[156]
Hu, M.; Zeng, W.; Tomlinson, B. Evaluation of a Crataegus -Based Multiherb Formula for Dyslipidemia: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Evidence-Based Complement. Altern. Med., 2014, 2014, 365742-365742.
[http://dx.doi.org/10.1155/2014/365742]
[157]
Romo-araiza, A.; Ríos-hoyo, A.; Ibarra, A.; Hernández-ortega, M.; Meneses-mayo, M. Effect of a Formulation with Nopal (Opuntia Ficus Indica), Amaranth (Amaranthus Cruentus) and Mushroom (Pleurotus Ostreatus) in a Murine Model of Diet-Induced Cardiometabolic Disruptions. Insights Nutr. Metab., 2018, 2(1), 1-13.
[158]
Ishibashi, S.; Yamashita, S.; Arai, H.; Araki, E.; Yokote, K.; Suganami, H.; Fruchart, J-C.; Kodama, T. K-877-04 Study Group. Effects of K-877, a novel selective PPARα modulator (SPPARMα), in dyslipidaemic patients: A randomized, double blind, active- and placebo-controlled, phase 2 trial. Atherosclerosis, 2016, 249, 36-43.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.02.029] [PMID: 27062408]
[159]
Yokoyama, M.; Origasa, H.; Matsuzaki, M.; Matsuzawa, Y.; Saito, Y.; Ishikawa, Y.; Oikawa, S.; Sasaki, J.; Hishida, H.; Itakura, H.; Kita, T.; Kitabatake, A.; Nakaya, N.; Sakata, T.; Shimada, K.; Shirato, K. Japan EPA lipid intervention study (JELIS) Investigators. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet, 2007, 369(9567), 1090-1098.
[http://dx.doi.org/10.1016/S0140-6736(07)60527-3] [PMID: 17398308]
[160]
NCT01492361. A Study of AMR101 to Evaluate Its Ability to Reduce Cardiovascular Events in High Risk Patients With Hypertriglyceridemia and on Statin The Primary Objective is to Evaluate the Effect of 4 g/Day AMR101 for Preventing the Occurrence of a First Major cardiovascular event,
[161]
Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T., Jr; Juliano, R.A.; Jiao, L.; Granowitz, C.; Tardif, J-C.; Ballantyne, C.M. REDUCE-IT Investigators. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med., 2019, 380(1), 11-22.
[http://dx.doi.org/10.1056/NEJMoa1812792] [PMID: 30415628]
[162]
Bosch, J.; Gerstein, H.C.; Dagenais, G.R.; Díaz, R.; Dyal, L.; Jung, H.; Maggiono, A.P.; Probstfield, J.; Ramachandran, A.; Riddle, M.C.; Rydén, L.E.; Yusuf, S. ORIGIN Trial Investigators. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N. Engl. J. Med., 2012, 367(4), 309-318.
[http://dx.doi.org/10.1056/NEJMoa1203859] [PMID: 22686415]
[163]
NCT00069784. The ORIGIN Trial (Outcome Reduction With Initial Glargine Intervention) (ORIGIN) Available at: https://www.clinicaltrials.gov/ct2/show/NCT00069784
[164]
Leslie, M.A.; Cohen, D.J.A.; Liddle, D.M.; Robinson, L.E.; Ma, D.W.L. A review of the effect of omega-3 polyunsaturated fatty acids on blood triacylglycerol levels in normolipidemic and borderline hyperlipidemic individuals. Lipids Health Dis., 2015, 14(1), 53.
[http://dx.doi.org/10.1186/s12944-015-0049-7] [PMID: 26048287]
[165]
Saraswathi, V.; Heineman, R.; Alnouti, Y.; Shivaswamy, V.; Desouza, C.V. A combination of Omega-3 PUFAs and COX inhibitors: A novel strategy to manage obesity-linked dyslipidemia and adipose tissue inflammation. J. Diabetes Complications, 2020, 34(2)107494
[http://dx.doi.org/10.1016/j.jdiacomp.2019.107494] [PMID: 31787562]
[166]
Schettler, V.J.J.; Neumann, C.L.; Peter, C.; Zimmermann, T.; Julius, U.; Roeseler, E.; Heigl, F.; Grützmacher, P.; Blume, H.; Vogt, A. Scientific Board of GLAR for the German Apheresis Working Group. The German Lipoprotein Apheresis Registry (GLAR) - almost 5 years on. Clin. Res. Cardiol. Suppl., 2017, 12(S1)(Suppl. 1), 44-49.
[http://dx.doi.org/10.1007/s11789-017-0089-9] [PMID: 28233268]
[167]
Viney, N.J.; van Capelleveen, J.C.; Geary, R.S.; Xia, S.; Tami, J.A.; Yu, R.Z.; Marcovina, S.M.; Hughes, S.G.; Graham, M.J.; Crooke, R.M.; Crooke, S.T.; Witztum, J.L.; Stroes, E.S.; Tsimikas, S. Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials. Lancet, 2016, 388(10057), 2239-2253.
[http://dx.doi.org/10.1016/S0140-6736(16)31009-1] [PMID: 27665230]
[168]
NCT03070782. Phase 2 Study of ISIS 681257 (AKCEA-APO(a)-LRx) in Patients With Hyperlipoproteinemia(a) and Cardiovascular Disease Available at: https://www.clinicaltrials.gov/ct2/show/NCT03070782
[169]
Vogt, A. Lipoprotein(a)-antisense therapy. Clin. Res. Cardiol. Suppl., 2019, 14(S1)(Suppl. 1), 51-56.
[http://dx.doi.org/10.1007/s11789-019-00096-2] [PMID: 30859384]
[170]
Ray, K.K.; Bays, H.E.; Catapano, A.L.; Lalwani, N.D.; Bloedon, L.T.; Sterling, L.R.; Robinson, P.L.; Ballantyne, C.M. CLEAR Harmony Trial. Safety and Efficacy of Bempedoic Acid to Reduce LDL Cholesterol. N. Engl. J. Med., 2019, 380(11), 1022-1032.
[http://dx.doi.org/10.1056/NEJMoa1803917] [PMID: 30865796]
[171]
Goldberg, A.C.; Leiter, L.A.; Stroes, E.S.G.; Baum, S.J.; Hanselman, J.C.; Bloedon, L.T.; Lalwani, N.D.; Patel, P.M.; Zhao, X.; Duell, P.B. Effect of Bempedoic Acid vs Placebo Added to Maximally Tolerated Statins on Low-Density Lipoprotein Cholesterol in Patients at High Risk for Cardiovascular Disease: The CLEAR Wisdom Randomized Clinical Trial. JAMA, 2019, 322(18), 1780-1788.
[http://dx.doi.org/10.1001/jama.2019.16585] [PMID: 31714986]
[172]
Siafaka, P.I.; Üstündağ Okur, N.; Karavas, E.; Bikiaris, D.N. Surface Modified Multifunctional and Stimuli Responsive Nanoparticles for Drug Targeting: Current Status and Uses. Int. J. Mol. Sci., 2016, 17(9), 1440.
[http://dx.doi.org/10.3390/ijms17091440] [PMID: 27589733]
[173]
Sarangi, B.; Mishra, K.; Mohanta, G.P.; Manna, P.K. In Vitroin Vivo Correlation (IVIVC) of Solid Lipid Nanoparticles Loaded with Poorly Water-Soluble Drug Lovastatin. Eur. Polym. J., 2020, 122(1), 109366.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.109366]
[174]
Siafaka, P.I.; Barmbalexis, P.; Bikiaris, D.N. Novel electrospun nanofibrous matrices prepared from poly(lactic acid)/poly(butylene adipate) blends for controlled release formulations of an anti-rheumatoid agent. Eur. J. Pharm. Sci., 2016, 88, 12-25.
[http://dx.doi.org/10.1016/j.ejps.2016.03.021] [PMID: 27039136]
[175]
Siafaka, P.I.; Üstündağ Okur, N.; Mone, M.; Giannakopoulou, S.; Er, S.; Pavlidou, E.; Karavas, E.; Bikiaris, D.N. Two Different Approaches for Oral Administration of Voriconazole Loaded Formulations: Electrospun Fibers versus β-Cyclodextrin Complexes. Int. J. Mol. Sci., 2016, 17(3), 282.
[http://dx.doi.org/10.3390/ijms17030282] [PMID: 26927072]
[176]
Kajdič, S.; Zupančič, Š.; Roškar, R.; Kocbek, P. The potential of nanofibers to increase solubility and dissolution rate of the poorly soluble and chemically unstable drug lovastatin. Int. J. Pharm., 2020, 573118809
[http://dx.doi.org/10.1016/j.ijpharm.2019.118809] [PMID: 31678525]
[177]
Al-Shdefat, R.; Anwer, M.K.; Fayed, M.H.; Alsulays, B.B.; Tawfeek, H.M.; Abdel-Rahman, R.F.; Soliman, G.A. Preparation and Evaluation of Spray Dried Rosuvastatin Calcium-PVP Microparticles for the Improvement of Serum Lipid Profile. J. Drug Deliv. Sci. Technol., 2020, 55101342
[http://dx.doi.org/10.1016/j.jddst.2019.101342]
[178]
Rizvi, S.Z.H.; Shah, F.A.; Khan, N.; Muhammad, I.; Ali, K.H.; Ansari, M.M.; Din, F.U.; Qureshi, O.S.; Kim, K.W.; Choe, Y.H.; Kim, J.K.; Zeb, A. Simvastatin-loaded solid lipid nanoparticles for enhanced anti-hyperlipidemic activity in hyperlipidemia animal model. Int. J. Pharm., 2019, 560, 136-143.
[http://dx.doi.org/10.1016/j.ijpharm.2019.02.002] [PMID: 30753932]
[179]
Sayadi, K.; Rahdar, A.; Hajinezhad, M.R.; Nikazar, S.; Susan, M.A.B.H. Atorvastatin-Loaded SBA-16 Nanostructures: Synthesis, Physical Characterization, and Biochemical Alterations in Hyperlipidemic Rats. J. Mol. Struct., 2020, 1202127296
[http://dx.doi.org/10.1016/j.molstruc.2019.127296]
[180]
Shaker, M.A.; Elbadawy, H.M.; Shaker, M.A. Improved solubility, dissolution, and oral bioavailability for atorvastatin-Pluronic® solid dispersions. Int. J. Pharm., 2020, 574118891
[http://dx.doi.org/10.1016/j.ijpharm.2019.118891] [PMID: 31786357]
[181]
Zhang, Y.; Zhang, X.; Zeng, C.; Li, B.; Zhang, C.; Li, W.; Hou, X.; Dong, Y. Targeted delivery of atorvastatin via asialoglycoprotein receptor (ASGPR). Bioorg. Med. Chem., 2019, 27(11), 2187-2191.
[http://dx.doi.org/10.1016/j.bmc.2019.04.019] [PMID: 31005367]
[182]
Katsiki, N.; Theocharidou, E.; Karagiannis, A.; Athyros, V.G.; Mikhailidis, D.P. Ezetimibe therapy for dyslipidemia: an update. Curr. Pharm. Des., 2013, 19(17), 3107-3114.
[http://dx.doi.org/10.2174/13816128113199990314] [PMID: 23317398]
[183]
Alshamsan, A.; Kazi, M.; Badran, M.M.; Alanazi, F.K. Role of Alternative Lipid Excipients in the Design of Self-Nanoemulsifying Formulations for Fenofibrate: Characterization, in vitro Dispersion, Digestion and ex vivo Gut Permeation Studies. Front. Pharmacol., 2018, 9, 1219.
[http://dx.doi.org/10.3389/fphar.2018.01219] [PMID: 30455642]
[184]
Kevadiya, B.D.; Chen, L.; Zhang, L.; Thomas, M.B.; Davé, R.N. Fenofibrate Nanocrystal Composite Microparticles for Intestine-Specific Oral Drug Delivery System. Pharmaceuticals (Basel), 2019, 12(3), 109.
[http://dx.doi.org/10.3390/ph12030109] [PMID: 31315263]
[185]
Shelake, S. Patil, S. V; Sangave, P. Formulation and Evaluation of Fenofibrate-Loaded Nanoparticles by Precipitation Method. Indian J. Pharm. Sci., 2018, 80(3), 420-427.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000374]
[186]
Yuan, C.; Zhang, X.; Long, X.; Jin, J.; Jin, R. Effect of β-sitosterol self-microemulsion and β-sitosterol ester with linoleic acid on lipid-lowering in hyperlipidemic mice. Lipids Health Dis., 2019, 18(1), 157.
[http://dx.doi.org/10.1186/s12944-019-1096-2] [PMID: 31351498]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy