Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Exploration of the Potential Mechanism of Calculus Bovis in Treatment of Primary Liver Cancer by Network Pharmacology

Author(s): Zhen Zhang, Puhua Zeng, Wenhui Gao, Ruoxia Wu, Tianhao Deng, Siqin Chen and Xuefei Tian*

Volume 24, Issue 1, 2021

Published on: 08 August, 2020

Page: [129 - 138] Pages: 10

DOI: 10.2174/1386207323666200808172051

Price: $65

Abstract

Aim and Objective: Calculus Bovis (CB) has been employed to treat diseases for a long time. It has been identified to play significant anti-inflammatory and anti-tumor roles. However, the mechanism of treating primary liver cancer (PLC) remains to be revealed. This study aims to clarify the molecules and mechanisms of CB in treating PLC.

Materials and Methods: After oral bioavailability (OB) and drug-likeness (DL) screening, 15 small molecules were identified as the potential ingredients against PLC. Following this, related targets network constructions and pathways were applied to clarify the mechanism of CB in treating PLC. An in vitro experiment was carried out to identify the function of CB in treating PLC.

Results: Eleven compounds of CB were identified that play an anti-PLC role, including oleanolic acid, ergosterol, ursolic acid, etc. The potential targets which were observed include IL6, MAPK-8, VEGFA, Caspase-3, etc. Further analysis showed that the mechanism of CB in the treatment of PLC involved apoptosis-related pathways and immune-related pathways.

Conclusion: In summary, the current study combines network pharmacology and in vitro experiments to reveal the mechanism of CB against PLC. We concluded that 11 ingredients of CB have an anti-PLC effect. Furthermore, CB plays a key role in treating PLC mainly by apoptosisrelated pathways and immune-related pathways. Our experiment verifies that CB promotes the apoptosis of SMMC-7721.

Keywords: Network pharmacology, calculus bovis, primary liver cancer, Chinese medicine, chemotherapy, antitumor activity.

[1]
Ali, I.; Lone, M.N.; Al-Othman, Z.A.; Al-Warthan, A.; Sanagi, M.M. Heterocyclic Scaffolds: Centrality in Anticancer Drug Development. Curr. Drug Targets, 2015, 16(7), 711-734.
[http://dx.doi.org/10.2174/1389450116666150309115922] [PMID: 25751009]
[2]
Ali, I.; Wani, W.A.; Saleem, K.; Hseih, M. Design and synthesis of thalidomide based dithiocarbamate Cu(II), Ni(II) and Ru(III) complexes as anticancer agents. Polyhedron, 2013, 56, 134-143.
[http://dx.doi.org/10.1016/j.poly.2013.03.056]
[3]
Ali, I.; Haque, A.; Saleem, K.; Hsieh, M.F. Curcumin-I Knoevenagel’s condensates and their Schiff’s bases as anticancer agents: synthesis, pharmacological and simulation studies. Bioorg. Med. Chem., 2013, 21(13), 3808-3820.
[http://dx.doi.org/10.1016/j.bmc.2013.04.018] [PMID: 23643901]
[4]
Ali, I.; Alharbi, O.M.L.; Tkachev, A.; Galunin, E.; Burakov, A.; Grachev, V.A. Water treatment by new-generation graphene materials: hope for bright future. Environ. Sci. Pollut. Res. Int., 2018, 25(8), 7315-7329.
[http://dx.doi.org/10.1007/s11356-018-1315-9] [PMID: 29359248]
[5]
Ali, I.; Mukhtar, S.D.; Hsieh, M.F.; Alothman, Z.A.; Alwarthan, A. Facile synthesis of indole heterocyclic compounds based micellar nano anti-cancer drugs. RSC Advances, 2018, 8(66), 37905-37914.
[http://dx.doi.org/10.1039/C8RA07060A]
[6]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[7]
Kudo, M. Chronic Liver Diseases and Liver Cancer: An Update in 2015. Dig. Dis., 2015, 33(6), 705-707.
[http://dx.doi.org/10.1159/000439074] [PMID: 26488292]
[8]
Ali, I.; Saleem, K.; Wesselinova, D.; Haque, A. Synthesis, DNA binding, hemolytic, and anti-cancer assays of curcumin I-based ligands and their ruthenium(III) complexes. Med. Chem. Res., 2013, 22(3), 1386-1398.
[http://dx.doi.org/10.1007/s00044-012-0133-8]
[9]
Ali, I.; Wani, W.A.; Saleem, K.; Hsieh, M. Anticancer metallodrugs of glutamic acid sulphonamides: in silico, DNA binding, hemolysis and anticancer studies. RSC Advances, 2014, 4(56), 29629-29641.
[http://dx.doi.org/10.1039/C4RA02570A]
[10]
Ali, I.; Lone, M.N.; Alothman, Z.A.; Badjah, A.Y.; Alanazi, A.G. Spectroscopic and In Silico DNA Binding Studies on the Interaction of Some New N-Substituted Rhodanines with Calf-thymus DNA: In vitro Anticancer Activities. Anticancer. Agents Med. Chem., 2019, 19(3), 425-433.
[http://dx.doi.org/10.2174/1871520618666181002131125] [PMID: 30277166]
[11]
Ali, I. Nano drugs: novel agents for cancer chemo-therapy. Curr. Cancer Drug Targets, 2011, 11(2), 130.
[http://dx.doi.org/10.2174/156800911794328466] [PMID: 21247391]
[12]
Ali, I. Nano anti-cancer drugs: pros and cons and future perspectives. Curr. Cancer Drug Targets, 2011, 11(2), 131-134.
[http://dx.doi.org/10.2174/156800911794328457] [PMID: 21062238]
[13]
Gupta, P.; Sharma, U.; Gupta, P.; Siripurapu, K.B.; Maurya, R. Evolvosides C–E, flavonol-4′-O-triglycosides from evolvulus alsinoides and their anti-stress activity.[corrected] Bioorg. Med. Chem., 2013, 21(5), 1116-1122.
[http://dx.doi.org/10.1016/j.bmc.2012.12.040] [PMID: 23357036]
[14]
Ali, I. Rahis-Uddin; Salim, K.; Rather, M.A.; Wani, W.A.; Haque, A. Advances in nano drugs for cancer chemotherapy. Curr. Cancer Drug Targets, 2011, 11(2), 135-146.
[http://dx.doi.org/10.2174/156800911794328493] [PMID: 21158724]
[15]
Ali, I.; Lone, M.N.; Suhail, M.; Mukhtar, S.D.; Asnin, L. Advances in nanocarriers for anticancer drugs delivery. Curr. Med. Chem., 2016, 23(20), 2159-2187.
[http://dx.doi.org/10.2174/0929867323666160405111152] [PMID: 27048343]
[16]
Ali, I.; Haque, A.; Wani, W.A.; Saleem, K.; Al Za’abi, M. Analyses of anticancer drugs by capillary electrophoresis: a review. Biomed. Chromatogr., 2013, 27(10), 1296-1311.
[http://dx.doi.org/10.1002/bmc.2953] [PMID: 23843248]
[17]
Ali, I.; Wani, W.A.; Haque, A.; Saleem, K. Glutamic acid and its derivatives: Candidates for rational design of anticancer drugs. Future Med. Chem., 2013, 5(8), 961-978.
[http://dx.doi.org/10.4155/fmc.13.62] [PMID: 23682571]
[18]
Ali, I.; Wani, W.A.; Saleem, K.; Wesselinova, D. Syntheses, DNA binding and anticancer profiles of L-glutamic acid ligand and its copper(II) and ruthenium(III) complexes. Med. Chem., 2013, 9(1), 11-21.
[http://dx.doi.org/10.2174/157340613804488297] [PMID: 22741786]
[19]
Ali, I.; Wani, W.A.; Khan, A.; Haque, A.; Ahmad, A.; Saleem, K.; Manzoor, N. Synthesis and synergistic antifungal activities of a pyrazoline based ligand and its copper(II) and nickel(II) complexes with conventional antifungals. Microb. Pathog., 2012, 53(2), 66-73.
[http://dx.doi.org/10.1016/j.micpath.2012.04.005] [PMID: 22575887]
[20]
Ali, I.; Aboul-Enein, H.Y.; Ghanem, A. Enantioselective toxicity and carcinogenesis. Curr. Pharm. Anal., 2005, 1(1), 109-125.
[http://dx.doi.org/10.2174/1573412052953328]
[21]
Chang, L.C.; Huang, N.; Chou, Y.J.; Lee, C.H.; Kao, F.Y.; Huang, Y.T. Utilization patterns of Chinese medicine and Western medicine under the National Health Insurance Program in Taiwan, a population-based study from 1997 to 2003. BMC Health Serv. Res., 2008, 8, 170.
[http://dx.doi.org/10.1186/1472-6963-8-170] [PMID: 18691428]
[22]
Gao, X.; Wang, Y.; Li, Y.; Wang, Y.; Yan, M.; Sun, H.; Chen, S.; Pan, X. Huganpian, a traditional chinese medicine, inhibits liver cancer growth in vitro and in vivo by inducing autophagy and cell cycle arrest. Biomed. Pharmacother., 2019, 120109469
[http://dx.doi.org/10.1016/j.biopha.2019.109469] [PMID: 31698319]
[23]
Li, H. Microcirculation of liver cancer, microenvironment of liver regeneration, and the strategy of Chinese medicine. Chinese Association of Traditional and Western Medicine, 2016, 22, 3.
[http://dx.doi.org/10.1007/s11655-016-2460-y]
[24]
Yu, Z.J.; Xu, Y.; Peng, W.; Liu, Y.J.; Zhang, J.M.; Li, J.S.; Sun, T.; Wang, P. Calculus bovis: A review of the traditional usages, origin, chemistry, pharmacological activities and toxicology. J. Ethnopharmacol., 2020, 254112649
[http://dx.doi.org/10.1016/j.jep.2020.112649] [PMID: 32068140]
[25]
The effect of herbal complex prescription “Niuhuangtianlong Capsule” on human endometrial cancer cell line HEC-B and its action mechanism. Study on prevention and treatment of tumor 2006, 06, 417-421-475.
[26]
Xia, F.; Li, A.; Chai, Y.; Xiao, X.; Wan, J.; Li, P.; Wang, Y. UPLC/Q-TOFMS-Based metabolomics approach to reveal the protective role of other herbs in an-gong-niu-huang wan against the hepatorenal toxicity of cinnabar and realgar. front. Pharmacol., 2018, 9, 618.
[http://dx.doi.org/10.3389/fphar.2018.00618] [PMID: 29950994]
[27]
Ma, C.; Xu, T.; Sun, X.; Zhang, S.; Liu, S.; Fan, S.; Lei, C.; Tang, F.; Zhai, C.; Li, C.; Luo, J.; Wang, Q.; Wei, W.; Wang, X.; Cheng, F. Network pharmacology and bioinformatics approach reveals the therapeutic mechanism of action of baicalein in hepatocellular carcinoma. Evid. Based Complement. Alternat. Med., 2019, 20197518374
[http://dx.doi.org/10.1155/2019/7518374] [PMID: 30891079]
[28]
Liu, T.H.; Chen, W.H.; Chen, X.D.; Liang, Q.E.; Tao, W.C.; Jin, Z.; Xiao, Y.; Chen, L.G. Network Pharmacology Identifies the Mechanisms of Action of TaohongSiwu Decoction Against Essential Hypertension. Med. Sci. Monit., 2020, 26e920682
[http://dx.doi.org/10.12659/MSM.920682] [PMID: 32187175]
[29]
Liu, H.; Wang, J.; Zhou, W.; Wang, Y.; Yang, L. Systems approaches and polypharmacology for drug discovery from herbal medicines: an example using licorice. J. Ethnopharmacol., 2013, 146(3), 773-793.
[http://dx.doi.org/10.1016/j.jep.2013.02.004] [PMID: 23415946]
[30]
Tian, S.; Wang, J.; Li, Y.; Li, D.; Xu, L.; Hou, T. The application of in silico drug-likeness predictions in pharmaceutical research. Adv. Drug Deliv. Rev., 2015, 86, 2-10.
[http://dx.doi.org/10.1016/j.addr.2015.01.009] [PMID: 25666163]
[31]
Wishart, D.S.; Knox, C.; Guo, A.C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res., 2008, 36(Database issue), D901-D906.
[http://dx.doi.org/10.1093/nar/gkm958] [PMID: 18048412]
[32]
Yu, H.; Chen, J.; Xu, X.; Li, Y.; Zhao, H.; Fang, Y.; Li, X.; Zhou, W.; Wang, W.; Wang, Y. A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One, 2012, 7(5)e37608
[http://dx.doi.org/10.1371/journal.pone.0037608] [PMID: 22666371]
[33]
Franz, M.; Lopes, C.T.; Huck, G.; Dong, Y.; Sumer, O.; Bader, G.D. Cytoscape.js: a graph theory library for visualisation and analysis. Bioinformatics, 2016, 32(2), 309-311.
[PMID: 26415722]
[34]
Huber, W.; Carey, V.J.; Gentleman, R.; Anders, S.; Carlson, M.; Carvalho, B.S.; Bravo, H.C.; Davis, S.; Gatto, L.; Girke, T.; Gottardo, R.; Hahne, F.; Hansen, K.D.; Irizarry, R.A.; Lawrence, M.; Love, M.I.; MacDonald, J.; Obenchain, V.; Oleś, A.K.; Pagès, H.; Reyes, A.; Shannon, P.; Smyth, G.K.; Tenenbaum, D.; Waldron, L.; Morgan, M. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods, 2015, 12(2), 115-121.
[http://dx.doi.org/10.1038/nmeth.3252] [PMID: 25633503]
[35]
The Gene Ontology Consortium Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res., 2017, 45(D1), D331-D338.
[http://dx.doi.org/10.1093/nar/gkw1108] [PMID: 27899567]
[36]
Du, J.; Yuan, Z.; Ma, Z.; Song, J.; Xie, X.; Chen, Y. KEGG-PATH: Kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model. Mol. Biosyst., 2014, 10(9), 2441-2447.
[http://dx.doi.org/10.1039/C4MB00287C] [PMID: 24994036]
[37]
Ling, C.Q.; Fan, J.; Lin, H.S.; Shen, F.; Xu, Z.Y.; Lin, L.Z.; Qin, S.K.; Zhou, W.P.; Zhai, X.F.; Li, B.; Zhou, Q.H. Chinese Integrative Therapy of Primary Liver Cancer Working Group. Clinical practice guidelines for the treatment of primary liver cancer with integrative traditional Chinese and Western medicine. J. Integr. Med., 2018, 16(4), 236-248.
[http://dx.doi.org/10.1016/j.joim.2018.05.002] [PMID: 29891180]
[38]
Liao, Y.H.; Lin, C.C.; Lai, H.C.; Chiang, J.H.; Lin, J.G.; Li, T.C. Adjunctive traditional Chinese medicine therapy improves survival of liver cancer patients. Liver Int., 2015, 35(12), 2595-2602.
[http://dx.doi.org/10.1111/liv.12847] [PMID: 25875878]
[39]
Li, M.; Qiao, C.; Qin, L.; Zhang, J.; Ling, C. Application of traditional Chinese medicine injection in treatment of primary liver cancer: a review. J. Tradit. Chin. Med., 2012, 32(3), 299-307.
[http://dx.doi.org/10.1016/S0254-6272(13)60029-1] [PMID: 23297547]
[40]
Neves, S.P.; de Carvalho, N.C.; da Silva, M.M.; Rodrigues, A.C.B.C.; Bomfim, L.M.; Dias, R.B.; Sales, C.B.S.; Rocha, C.A.G.; Soares, M.B.P.; Batista, A.A.; Bezerra, D.P. Ruthenium Complexes Containing Heterocyclic Thioamidates Trigger Caspase-Mediated Apoptosis Through MAPK Signaling in Human Hepatocellular Carcinoma Cells. Front. Oncol., 2019, 9, 562.
[http://dx.doi.org/10.3389/fonc.2019.00562] [PMID: 31338323]
[41]
Yan, P.H.; Wang, L.; Chen, H.; Yu, F.Q.; Guo, L.; Liu, Y.; Zhang, W.J.; Bai, Y.L. LncRNA RUNX1-IT1 inhibits proliferation and promotes apoptosis of hepatocellular carcinoma by regulating MAPK pathways. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(19), 8287-8294.
[PMID: 31646558]
[42]
Shibuya, M. Structure and function of VEGF/VEGF-receptor system involved in angiogenesis. Cell Struct. Funct., 2001, 26(1), 25-35.
[http://dx.doi.org/10.1247/csf.26.25] [PMID: 11345501]
[43]
Huang, B.; Huang, M.; Li, Q. Cancer-associated fibroblasts promote angiogenesis of hepatocellular carcinoma by VEGF-mediated EZH2/VASH1 pathway. Technol. Cancer Res. Treat., 2019.181533033819879905
[http://dx.doi.org/10.1177/1533033819879905] [PMID: 31757187]
[44]
Raskopf, E.; Vogt, A.; Decker, G.; Hirt, S.; Daskalow, K.; Cramer, T.; Standop, J.; Gonzalez-Carmona, M.A.; Sauerbruch, T.; Schmitz, V. Combination of hypoxia and RNA-interference targeting VEGF induces apoptosis in hepatoma cells via autocrine mechanisms. Curr. Pharm. Biotechnol., 2012, 13(11), 2290-2298.
[http://dx.doi.org/10.2174/138920112802502088] [PMID: 21605070]
[45]
Newton, K.; Wickliffe, K.E.; Maltzman, A.; Dugger, D.L.; Reja, R.; Zhang, Y.; Roose-Girma, M.; Modrusan, Z.; Sagolla, M.S.; Webster, J.D.; Dixit, V.M. Activity of caspase-8 determines plasticity between cell death pathways. Nature, 2019, 575(7784), 679-682.
[http://dx.doi.org/10.1038/s41586-019-1752-8] [PMID: 31723262]
[46]
Aral, K.; Aral, C.A.; Kapila, Y. The role of caspase-8, caspase-9, and apoptosis inducing factor in periodontal disease. J. Periodontol., 2019, 90(3), 288-294.
[http://dx.doi.org/10.1002/JPER.17-0716] [PMID: 30311940]
[47]
Solania, A.; González-Páez, G.E.; Wolan, D.W. Selective and rapid cell-permeable inhibitor of human caspase-3. ACS Chem. Biol., 2019, 14(11), 2463-2470.
[http://dx.doi.org/10.1021/acschembio.9b00564] [PMID: 31334631]
[48]
Huang, M.; Kozlowski, P.; Collins, M.; Wang, Y.; Haystead, T.A.; Graves, L.M. Caspase-dependent cleavage of carbamoyl phosphate synthetase II during apoptosis. Mol. Pharmacol., 2002, 61(3), 569-577.
[http://dx.doi.org/10.1124/mol.61.3.569] [PMID: 11854437]
[49]
Wang, N.; Wang, X.; Tan, H.Y.; Li, S.; Tsang, C.M.; Tsao, S.W.; Feng, Y. Berberine suppresses cyclin D1 expression through proteasomal degradation in human hepatoma cells. Int. J. Mol. Sci., 2016, 17(11)E1899
[http://dx.doi.org/10.3390/ijms17111899] [PMID: 27854312]
[50]
Parkin, D.M. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer, 2006, 118(12), 3030-3044.
[http://dx.doi.org/10.1002/ijc.21731] [PMID: 16404738]
[51]
Wang, Y.H.; Chuang, Y.H.; Wu, C.F.; Jan, M.C.; Wu, W.J.; Lin, C.L.; Liu, C.J.; Yang, Y.C.; Chen, P.J.; Lin, S.M.; Tsai, M.H.; Huang, Y.W.; Yu, M.W. Smoking and hepatitis B virus-related hepatocellular carcinoma risk: The mediating roles of viral load and alanine aminotransferase. Hepatology, 2019, 69(4), 1412-1425.
[http://dx.doi.org/10.1002/hep.30339] [PMID: 30382583]
[52]
Josephs, S.F.; Ichim, T.E.; Prince, S.M.; Kesari, S.; Marincola, F.M.; Escobedo, A.R.; Jafri, A. Unleashing endogenous TNF-alpha as a cancer immunotherapeutic. J. Transl. Med., 2018, 16(1), 242.
[http://dx.doi.org/10.1186/s12967-018-1611-7] [PMID: 30170620]
[53]
Spahn, T.W.; Eugster, H.P.; Fontana, A.; Domschke, W.; Kucharzik, T. Role of lymphotoxin in experimental models of infectious diseases: potential benefits and risks of a therapeutic inhibition of the lymphotoxin-beta receptor pathway. Infect. Immun., 2005, 73(11), 7077-7088.
[http://dx.doi.org/10.1128/IAI.73.11.7077-7088.2005] [PMID: 16239501]
[54]
Meng, F.; Henson, R.; Patel, T. Chemotherapeutic stress selectively activates NF-kappa B-dependent AKT and VEGF expression in liver cancer-derived endothelial cells. Am. J. Physiol. Cell Physiol., 2007, 293(2), C749-C760.
[http://dx.doi.org/10.1152/ajpcell.00537.2006] [PMID: 17537803]
[55]
Wu, L.F.; Li, G.P.; Su, J.D.; Pu, Z.J.; Feng, J.L.; Ye, Y.Q.; Wei, B.L. Involvement of NF-kappaB activation in the apoptosis induced by extracellular adenosine in human hepatocellular carcinoma HepG2 cells. Biochem. Cell Biol., 2010, 88(4), 705-714.
[http://dx.doi.org/10.1139/O10-008] [PMID: 20651843]
[56]
Kim, M.O.; Moon, D.O.; Kang, C.H.; Kwon, T.K.; Choi, Y.H.; Kim, G.Y. beta-Ionone enhances TRAIL-induced apoptosis in hepatocellular carcinoma cells through Sp1-dependent upregulation of DR5 and downregulation of NF-kappaB activity. Mol. Cancer Ther., 2010, 9(4), 833-843.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0610] [PMID: 20354117]
[57]
Kanmani, P.; Kim, H. Protective effects of lactic acid bacteria against TLR4 induced inflammatory response in hepatoma HepG2 cells through modulation of Toll-Like receptor negative regulators of mitogen-activated protein kinase and NF-κB signaling. Front. Immunol., 2018, 9, 1537.
[http://dx.doi.org/10.3389/fimmu.2018.01537] [PMID: 30022981]
[58]
Malaguarnera, G.; Giordano, M.; Nunnari, G.; Bertino, G.; Malaguarnera, M. Gut microbiota in alcoholic liver disease: pathogenetic role and therapeutic perspectives. World J. Gastroenterol., 2014, 20(44), 16639-16648.
[http://dx.doi.org/10.3748/wjg.v20.i44.16639] [PMID: 25469033]
[59]
Lupi, L.A.; Cucielo, M.S.; Silveira, H.S.; Gaiotte, L.B.; Cesário, R.C.; Seiva, F.R.F.; de Almeida Chuffa, L.G. The role of Toll-like receptor 4 signaling pathway in ovarian, cervical, and endometrial cancers. Life Sci., 2020, 247117435
[http://dx.doi.org/10.1016/j.lfs.2020.117435] [PMID: 32081661]
[60]
Seki, E.; De Minicis, S.; Osterreicher, C.H.; Kluwe, J.; Osawa, Y.; Brenner, D.A.; Schwabe, R.F. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat. Med., 2007, 13(11), 1324-1332.
[http://dx.doi.org/10.1038/nm1663] [PMID: 17952090]
[61]
Pimentel-Nunes, P.; Soares, J.B.; Roncon-Albuquerque, R., Jr; Dinis-Ribeiro, M.; Leite-Moreira, A.F. Toll-like receptors as therapeutic targets in gastrointestinal diseases. Expert Opin. Ther. Targets, 2010, 14(4), 347-368.
[http://dx.doi.org/10.1517/14728221003642027] [PMID: 20146632]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy