Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Potential of Gold Candidates against Human Colon Cancer

Author(s): Mahvish Abbasi, Munazzah Yaqoob, Rosenani A. Haque and Muhammad Adnan Iqbal*

Volume 21, Issue 1, 2021

Published on: 07 August, 2020

Page: [69 - 78] Pages: 10

DOI: 10.2174/1389557520666200807130721

Price: $65

Abstract

Development of novel metallodrugs with pharmacological profile plays a significant role in modern medicinal chemistry and drug design. Metal complexes have shown remarkable clinical results in current cancer therapy. Gold complexes have attained attention due to their high antiproliferative potential. Gold-based drugs are used for the treatment of rheumatoid arthritis. Gold-containing compounds with selective and specific targets are capable to assuage the symptoms of a range of human diseases. Gold (I) species with labile ligands (such as Cl in TEPAuCl) interact with isolated DNA; therefore, this biomolecule has been considered as a target for gold drugs. Gold (I) has a high affinity towards sulfur and selenium. Due to this, gold (I) drugs readily interact with cysteine or selenocysteine residue of the enzyme to form protein-gold(I) thiolate or protein-gold (I) selenolate complexes that lead to inhibition of the enzyme activity. Au(III) compounds due to their square-planner geometriesthe same as found in cisplatin, represent a good source for the development of anti-tumor agents. This article aims to review the most important applications of gold products in the treatment of human colon cancer and to analyze the complex interplay between gold and the human body.

Keywords: Medicinal application of gold, phosphane complexes, auranofin, NHCs, colon cancer, cancer therapy.

Graphical Abstract

[1]
Bertrand, B.; Casini, A. A golden future in medicinal inorganic chemistry: the promise of anticancer gold organometallic compounds. Dalton Trans., 2014, 43(11), 4209-4219.
[http://dx.doi.org/10.1039/C3DT52524D] [PMID: 24225667]
[2]
Nardon, C.; Pettenuzzo, N.; Fregona, D. Gold complexes for therapeutic purposes: An updated patent review (2010-2015). Curr. Med. Chem., 2016, 23(29), 3374-3403.
[http://dx.doi.org/10.2174/0929867323666160504103843 ] [PMID: 27142288]
[3]
Maia, P.I.; Deflon, V.M.; Abram, U. Gold(III) complexes in medicinal chemistry. Future Med. Chem., 2014, 6(13), 1515-1536.
[http://dx.doi.org/10.4155/fmc.14.87] [PMID: 25365235]
[4]
Navarro, M. Gold complexes as potential anti-parasitic agents. Coord. Chem. Rev., 2009, 253(11-12), 1619-1626.
[http://dx.doi.org/10.1016/j.ccr.2008.12.003]
[5]
Faa, G.; Gerosa, C.; Fanni, D.; Lachowicz, J.I.; Nurchi, V.M. Gold-old drug with new potentials. Curr. Med. Chem., 2018, 25(1), 75-84.
[http://dx.doi.org/10.2174/0929867324666170330091438 ] [PMID: 28359231]
[6]
Chaves, J.D.S.; Tunes, L.G. de J Franco, C.H.; Francisco, T.M.; Corrêa, C.C.; Murta, S.M.F.; Monte-Neto, R.L.; Silva, H.; Fontes, A.P.S.; de Almeida, M.V. Novel gold(I) complexes with 5-phenyl-1,3,4-oxadiazole-2-thione and phosphine as potential anticancer and antileishmanial agents. Eur. J. Med. Chem., 2017, 127, 727-739.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.052] [PMID: 27823888]
[7]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[8]
Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(3), 145-164.
[http://dx.doi.org/10.3322/caac.21601] [PMID: 32133645]
[9]
Tu, S.; Wai-Yin, Sun R.; Lin, M.C.; Tao Cui, J.; Zou, B.; Gu, Q.; Kung, H.F.; Che, C.M.; Wong, B.C. Gold (III) porphyrin complexes induce apoptosis and cell cycle arrest and inhibit tumor growth in colon cancer. Cancer, 2009, 115(19), 4459-4469.
[http://dx.doi.org/10.1002/cncr.24514] [PMID: 19572413]
[10]
Dandash, F.; Léger, D.Y.; Fidanzi-Dugas, C.; Nasri, S.; Brégier, F.; Granet, R.; Karam, W.; Diab-Assaf, M.; Sol, V.; Liagre, B. In vitro anticancer activity of new gold(III) porphyrin complexes in colon cancer cells. J. Inorg. Biochem., 2017, 177, 27-38.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.08.024] [PMID: 28923355]
[11]
Todaro, M.; Alea, M.P.; Di Stefano, A.B.; Cammareri, P.; Vermeulen, L.; Iovino, F.; Tripodo, C.; Russo, A.; Gulotta, G.; Medema, J.P.; Stassi, G. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell, 2007, 1(4), 389-402.
[http://dx.doi.org/10.1016/j.stem.2007.08.001] [PMID: 18371377]
[12]
Porchia, M.; Pellei, M.; Marinelli, M.; Tisato, F.; Del Bello, F.; Santini, C. New insights in Au-NHCs complexes as anticancer agents. Eur. J. Med. Chem., 2018, 146, 709-746.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.065] [PMID: 29407992]
[13]
García-Moreno, E.; Gascón, S.; Atrián-Blasco, E.; Rodriguez-Yoldi, M.J.; Cerrada, E.; Laguna, M. Gold(I) complexes with alkylated PTA (1,3,5-triaza-7-phosphaadamantane) phosphanes as anticancer metallodrugs. Eur. J. Med. Chem., 2014, 79, 164-172.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.001] [PMID: 24732792]
[14]
Demkowicz, S.; Kozak, W.; Daśko, M.; Rachon, J. Phosphoroorganic metal complexes in therapeutics. Mini Rev. Med. Chem., 2016, 16(17), 1359-1373.
[http://dx.doi.org/10.2174/1389557516666160505120005 ] [PMID: 27145849]
[15]
Bertrand, B.; Citta, A.; Franken, I.L.; Picquet, M.; Folda, A.; Scalcon, V.; Rigobello, M.P.; Le Gendre, P.; Casini, A.; Bodio, E. Gold(I) NHC-based homo- and heterobimetallic complexes: synthesis, characterization and evaluation as potential anticancer agents. J. Biol. Inorg. Chem., 2015, 20(6), 1005-1020.
[http://dx.doi.org/10.1007/s00775-015-1283-1] [PMID: 26202908]
[16]
Yeo, C.I.; Ooi, K.K.; Tiekink, E.R.T. Gold-based medicine: A paradigm shift in anti-cancer therapy? Molecules, 2018, 23(6), 1410.
[http://dx.doi.org/10.3390/molecules23061410] [PMID: 29891764]
[17]
Garcia, A.; Machado, R.C.; Grazul, R.M.; Lopes, M.T.; Corrêa, C.C.; Dos Santos, H.F.; de Almeida, M.V.; Silva, H. Novel antitumor adamantane-azole gold(I) complexes as potential inhibitors of thioredoxin reductase. J. Biol. Inorg. Chem., 2016, 21(2), 275-292.
[http://dx.doi.org/10.1007/s00775-016-1338-y] [PMID: 26841791]
[18]
Nagy, E.M.; Ronconi, L.; Nardon, C.; Fregona, D. Noble metal-dithiocarbamates precious allies in the fight against cancer. Mini Rev. Med. Chem., 2012, 12(12), 1216-1229.
[http://dx.doi.org/10.2174/138955712802762004] [PMID: 22931593]
[19]
Zou, T.; Lum, C.T.; Lok, C.N.; Zhang, J.J.; Che, C.M. Chemical biology of anticancer gold(III) and gold(I) complexes. Chem. Soc. Rev., 2015, 44(24), 8786-8801.
[http://dx.doi.org/10.1039/C5CS00132C] [PMID: 25868756]
[20]
Mora, M.; Gimeno, M.C.; Visbal, R. Recent advances in gold-NHC complexes with biological properties. Chem. Soc. Rev., 2019, 48(2), 447-462.
[http://dx.doi.org/10.1039/C8CS00570B] [PMID: 30474097]
[21]
Mármol, I.; Quero, J.; Rodríguez-Yoldi, M.J.; Cerrada, E. Gold as a possible alternative to platinum-Based chemotherapy for colon cancer treatment. Cancers (Basel), 2019, 11(6), 780.
[http://dx.doi.org/10.3390/cancers11060780] [PMID: 31195711]
[22]
Han, X.; Jiang, X.; Guo, L.; Wang, Y.; Veeraraghavan, V.P.; Krishna Mohan, S.; Wang, Z.; Cao, D. Anticarcinogenic potential of gold nanoparticles synthesized from Trichosanthes kirilowii in colon cancer cells through the induction of apoptotic pathway. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3577-3584.
[http://dx.doi.org/10.1080/21691401.2019.1626412 PMID: 31456423]
[23]
Mármol, I.; Jiménez-Moreno, N.; Ancín-Azpilicueta, C.; Osada, J.; Cerrada, E.; Rodríguez-Yoldi, M.J. A Combination of Rosa Canina extracts and gold complex favors apoptosis of Caco-2 cells by increasing oxidative stress and mitochondrial dysfunction. Antioxidants, 2019, 9(1), 17.
[http://dx.doi.org/10.3390/antiox9010017] [PMID: 31878141]
[24]
Liu, F.; Wang, X.D.; Du, S.Y. Production of gold/silver doped carbon nanocomposites for effective photothermal therapy of colon cancer. Sci. Rep., 2020, 10(1), 7618.
[http://dx.doi.org/10.1038/s41598-020-64225-8] [PMID: 32376883]
[25]
Huang, X.; El-Sayed, I.H.; Qian, W.; El-Sayed, M.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc., 2006, 128(6), 2115-2120.
[http://dx.doi.org/10.1021/ja057254a] [PMID: 16464114]
[26]
Daraee, H.; Eatemadi, A.; Abbasi, E.; Fekri Aval, S.; Kouhi, M.; Akbarzadeh, A. Application of gold nanoparticles in biomedical and drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 410-422.
[http://dx.doi.org/10.3109/21691401.2014.955107] [PMID: 25229833]
[27]
Ovais, M.; Raza, A.; Naz, S.; Islam, N.U.; Khalil, A.T.; Ali, S.; Khan, M.A.; Shinwari, Z.K. Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Appl. Microbiol. Biotechnol., 2017, 101(9), 3551-3565.
[http://dx.doi.org/10.1007/s00253-017-8250-4] [PMID: 28382454]
[28]
Depciuch, J.; Stec, M.; Klebowski, B.; Baran, J.; Parlinska-Wojtan, M. Platinum-gold nanoraspberries as effective photosensitizer in anticancer photothermal therapy. J. Nanobiotechnology, 2019, 17(1), 107.
[http://dx.doi.org/10.1186/s12951-019-0539-2] [PMID: 31615520]
[29]
Wu, Y-N.; Chen, D.H.; Shi, X.Y.; Lian, C.C.; Wang, T.Y.; Yeh, C.S.; Ratinac, K.R.; Thordarson, P.; Braet, F.; Shieh, D.B. Cancer-cell-specific cytotoxicity of non-oxidized iron elements in iron core-gold shell NPs. Nanomed. (Lond.), 2011, 7(4), 420-427.
[http://dx.doi.org/10.1016/j.nano.2011.01.002] [PMID: 21272668]
[30]
Singh, M.; Harris-Birtill, D.C.; Markar, S.R.; Hanna, G.B.; Elson, D.S. Application of gold nanoparticles for gastrointestinal cancer theranostics: A systematic review. Nanomed. (Lond.), 2015, 11(8), 2083-2098.
[http://dx.doi.org/10.1016/j.nano.2015.05.010] [PMID: 26115635]
[31]
Berners‐Price, S.J. Gold‐based therapeutic agents: A new perspective In: Bioinorganic Medicinal Chemistry, 2011, pp. 197-222.
[32]
Chen, X.; Yang, Q.; Xiao, L.; Tang, D.; Dou, Q.P.; Liu, J. Metal-based proteasomal deubiquitinase inhibitors as potential anticancer agents. Cancer Metastasis Rev., 2017, 36(4), 655-668.
[http://dx.doi.org/10.1007/s10555-017-9701-1] [PMID: 29039082]
[33]
Glennås, A.; Kvien, T.K.; Andrup, O.; Clarke-Jenssen, O.; Karstensen, B.; Brodin, U. Auranofin is safe and superior to placebo in elderly-onset rheumatoid arthritis. Br. J. Rheumatol., 1997, 36(8), 870-877.
[http://dx.doi.org/10.1093/rheumatology/36.8.870] [PMID: 9291856]
[34]
Roder, C.; Thomson, M.J. Auranofin: Repurposing an old drug for a golden new age. Drugs R D., 2015, 15(1), 13-20.
[http://dx.doi.org/10.1007/s40268-015-0083-y] [PMID: 25698589]
[35]
Liu, N.; Huang, H.; Dou, Q.P.; Liu, J. Inhibition of 19S proteasome-associated deubiquitinases by metal-containing compounds. Oncoscience, 2015, 2(5), 457-466.
[http://dx.doi.org/10.18632/oncoscience.167] [PMID: 26097878]
[36]
Santini, C.; Pellei, M.; Papini, G.; Morresi, B.; Galassi, R.; Ricci, S.; Tisato, F.; Porchia, M.; Rigobello, M.P.; Gandin, V.; Marzano, C. In vitro antitumour activity of water soluble Cu(I), Ag(I) and Au(I) complexes supported by hydrophilic alkyl phosphine ligands. J. Inorg. Biochem., 2011, 105(2), 232-240.
[http://dx.doi.org/10.1016/j.jinorgbio.2010.10.016 ] [PMID: 21194623]
[37]
Lupidi, G.; Avenali, L.; Bramucci, M.; Quassinti, L.; Pettinari, R.; Khalife, H.K.; Gali-Muhtasib, H.; Marchetti, F.; Pettinari, C. Synthesis, properties, and antitumor effects of a new mixed phosphine gold(I) compound in human colon cancer cells. J. Inorg. Biochem., 2013, 124, 78-87.
[http://dx.doi.org/10.1016/j.jinorgbio.2013.03.014 PMID: 23632460]
[38]
Liu, W.; Gust, R. Update on metal N-heterocyclic carbene complexes as potential anti-tumor metallodrugs. Coord. Chem. Rev., 2016, 329, 191-213.
[http://dx.doi.org/10.1016/j.ccr.2016.09.004]
[39]
Liu, W.; Chen, X.; Gust, R. Synthesis, antitumor, and antibacterial activity of bis[4,5-diarylimidazol-2-ylidene]methane derivatives. Arch. Pharm. (Weinheim), 2012, 345(7), 557-564.
[http://dx.doi.org/10.1002/ardp.201100474] [PMID: 22467535]
[40]
Curran, D.; Dada, O.; Müller-Bunz, H.; Rothemund, M.; Sánchez-Sanz, G.; Schobert, R.; Zhu, X.; Tacke, M. Synthesis and cytotoxicity studies of novel NHC*-Gold(I) Complexes derived from lepidiline A. Molecules, 2018, 23(8), 2031.
[http://dx.doi.org/10.3390/molecules23082031] [PMID: 30110951]
[41]
Muenzner, J.K.; Biersack, B.; Kalie, H.; Andronache, I.C.; Kaps, L.; Schuppan, D.; Sasse, F.; Schobert, R. Gold(I) biscarbene complexes derived from vascular-disrupting combretastatin A-4 address different targets and show antimetastatic potential. ChemMedChem, 2014, 9(6), 1195-1204.
[http://dx.doi.org/10.1002/cmdc.201400049] [PMID: 24648184]
[42]
Feldman, M.; Friedman, L.S.; Brandt, L.J. Sleisenger and Fordtran’s gastrointestinal and liver disease E-book: pathophysiology, diagnosis, management; Elsevier Health Sciences, 2015.
[43]
Boland, C.R.; Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology, 2010, 138(6), 2073-2087.
[http://dx.doi.org/10.1053/j.gastro.2009.12.064]
[44]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[45]
Potten, C.S.; Booth, C.; Pritchard, D.M. The intestinal epithelial stem cell: the mucosal governor. Int. J. Exp. Pathol., 1997, 78(4), 219-243.
[http://dx.doi.org/10.1046/j.1365-2613.1997.280362.x PMID: 9505935]
[46]
Gustavsson, B.; Carlsson, G.; Machover, D.; Petrelli, N.; Roth, A.; Schmoll, H.J.; Tveit, K.M.; Gibson, F. A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin. Colorectal Cancer, 2015, 14(1), 1-10.
[http://dx.doi.org/10.1016/j.clcc.2014.11.002] [PMID: 25579803]
[47]
Rubbiani, R.; Wahrig, B.; Ott, I. Historical and biochemical aspects of a seventeenth century gold-based aurum vitae recipe. J. Biol. Inorg. Chem., 2014, 19(6), 961-965.
[http://dx.doi.org/10.1007/s00775-014-1135-4] [PMID: 24748221]
[48]
Traut-Johnstone, T.; Kanyanda, S.; Kriel, F.H.; Viljoen, T.; Kotze, P.D.; van Zyl, W.E.; Coates, J.; Rees, D.J.; Meyer, M.; Hewer, R.; Williams, D.B.; Heteroditopic, P. N ligands in gold(I) complexes: synthesis, structure and cytotoxicity. J. Inorg. Biochem., 2015, 145, 108-120.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.01.014] [PMID: 25660670]
[49]
Vergara, E.; Casini, A.; Sorrentino, F.; Zava, O.; Cerrada, E.; Rigobello, M.P.; Bindoli, A.; Laguna, M.; Dyson, P.J. Anticancer therapeutics that target selenoenzymes: synthesis, characterization, in vitro cytotoxicity, and thioredoxin reductase inhibition of a series of gold(I) complexes containing hydrophilic phosphine ligands. ChemMedChem, 2010, 5(1), 96-102.
[http://dx.doi.org/10.1002/cmdc.200900370] [PMID: 19937669]
[50]
Abás, E.; Pena-Martinez, R.; Aguirre-Ramírez, D.; Rodriguez-Dieguez, A.; Laguna, M.; Grasa, L. New selective thiolate gold(i) complexes inhibit the proliferation of different human cancer cells and induce apoptosis in primary cultures of mouse colon tumors. Dalton Trans., 2020, 49(6), 1915-1927.
[http://dx.doi.org/10.1039/C9DT04423J] [PMID: 31971194]
[51]
Atrián-Blasco, E.; Gascón, S.; Rodrı Guez-Yoldi, M.J.; Laguna, M.; Cerrada, E. Novel gold (I) thiolate derivatives synergistic with 5-fluorouracil as potential selective anticancer agents in colon cancer. Inorg. Chem., 2017, 56(14), 8562-8579.
[http://dx.doi.org/10.1021/acs.inorgchem.7b01370] [PMID: 28682069]
[52]
Pelletier, F.; Comte, V.; Massard, A.; Wenzel, M.; Toulot, S.; Richard, P.; Picquet, M.; Le Gendre, P.; Zava, O.; Edafe, F.; Casini, A.; Dyson, P.J. Development of bimetallic titanocene-ruthenium-arene complexes as anticancer agents: Relationships between structural and biological properties. J. Med. Chem., 2010, 53(19), 6923-6933.
[http://dx.doi.org/10.1021/jm1004804] [PMID: 20822096]
[53]
González-Pantoja, J.F.; Stern, M.; Jarzecki, A.A.; Royo, E.; Robles-Escajeda, E.; Varela-Ramírez, A.; Aguilera, R.J.; Contel, M. Titanocene-phosphine derivatives as precursors to cytotoxic heterometallic TiAu2 and TiM (M = Pd, Pt) compounds. Studies of their interactions with DNA. Inorg. Chem., 2011, 50(21), 11099-11110.
[http://dx.doi.org/10.1021/ic201647h] [PMID: 21958150]
[54]
Tripathy, S.K.; De, U.; Dehury, N.; Pal, S.; Kim, H.S.; Patra, S. Dinuclear [(p-cym)RuCl2(μ-phpy)](PF6)2 and heterodinuclear [(ppy)2Ir(μ-phpy)Ru(p-cym)Cl](PF6)2 complexes: Synthesis, structure and anticancer activity. Dalton Trans., 2014, 43(39), 14546-14549.
[http://dx.doi.org/10.1039/C4DT01033G] [PMID: 25160655]
[55]
Massai, L.; Fernández-Gallardo, J.; Guerri, A.; Arcangeli, A.; Pillozzi, S.; Contel, M.; Messori, L. Design, synthesis and characterisation of new chimeric ruthenium(II)-gold(I) complexes as improved cytotoxic agents. Dalton Trans., 2015, 44(24), 11067-11076.
[http://dx.doi.org/10.1039/C5DT01614B] [PMID: 25996553]
[56]
de la Cueva-Alique, I.; Muñoz-Moreno, L.; Benabdelouahab, Y.; Elie, B.T.; El Amrani, M.A.; Mosquera, M.E.; Contel, M.; Bajo, A.M.; Cuenca, T.; Royo, E. Novel enantiopure cyclopentadienyl Ti(IV) oximato compounds as potential anticancer agents. J. Inorg. Biochem., 2016, 156, 22-34.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.12.002 PMID: 26717259]
[57]
Mui, Y.F.; Fernández-Gallardo, J.; Elie, B.T.; Gubran, A.; Maluenda, I.; Sanaú, M.; Navarro, O.; Contel, M. Titanocene–gold complexes containing N-heterocyclic carbene ligands inhibit growth of prostate, renal, and colon cancers in vitro. Organometallics, 2016, 35(9), 1218-1227.
[http://dx.doi.org/10.1021/acs.organomet.6b00051] [PMID: 27182101]
[58]
Regad, T. Targeting RTK signaling pathways in cancer. Cancers (Basel), 2015, 7(3), 1758-1784.
[http://dx.doi.org/10.3390/cancers7030860] [PMID: 26404379]
[59]
Yao, Y.; Dai, W. Genomic instability and cancer. J. Carcinog. Mutagen., 2014, 5, 5.
[PMID: 25541596]
[60]
Meikrantz, W.; Schlegel, R. Apoptosis and the cell cycle. J. Cell. Biochem., 1995, 58(2), 160-174.
[http://dx.doi.org/10.1002/jcb.240580205] [PMID: 7673324]
[61]
Martin, G.S. Cell signaling and cancer. Cancer Cell, 2003, 4(3), 167-174.
[http://dx.doi.org/10.1016/S1535-6108(03)00216-2 ] [PMID: 14522250]
[62]
Wang, D.; Dubois, R.N. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene, 2010, 29(6), 781-788.
[http://dx.doi.org/10.1038/onc.2009.421] [PMID: 19946329]
[63]
Greenhough, A.; Smartt, H.J.; Moore, A.E.; Roberts, H.R.; Williams, A.C.; Paraskeva, C.; Kaidi, A. The COX-2/PGE2 pathway: Key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 2009, 30(3), 377-386.
[http://dx.doi.org/10.1093/carcin/bgp014] [PMID: 19136477]
[64]
Mauriello-Jimenez, C.; Croissant, J.; Maynadier, M.; Cattoën, X.; Wong Chi Man, M.; Vergnaud, J.; Chaleix, V.; Sol, V.; Garcia, M.; Gary-Bobo, M.; Raehm, L.; Durand, J.O. Porphyrin-functionalized mesoporous organosilica nanoparticles for two-photon imaging of cancer cells and drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(18), 3681-3684.
[http://dx.doi.org/10.1039/C5TB00315F] [PMID: 32262842]
[65]
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release, 2000, 65(1-2), 271-284.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5 ] [PMID: 10699287]
[66]
Izumi, S.; Urano, Y.; Hanaoka, K.; Terai, T.; Nagano, T. A simple and effective strategy to increase the sensitivity of fluorescence probes in living cells. J. Am. Chem. Soc., 2009, 131(29), 10189-10200.
[http://dx.doi.org/10.1021/ja902511p] [PMID: 19572714]
[67]
Kim, D.; Lee, E.S.; Oh, K.T.; Gao, Z.G.; Bae, Y.H. Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small, 2008, 4(11), 2043-2050.
[http://dx.doi.org/10.1002/smll.200701275] [PMID: 18949788]
[68]
Abid, M.; Shamsi, F.; Azam, A. Ruthenium complexes: an emerging ground to the development of metallopharmaceuticals for cancer therapy. Mini Rev. Med. Chem., 2016, 16(10), 772-786.
[http://dx.doi.org/10.2174/1389557515666151001142012 ] [PMID: 26423699]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy