Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Development of Thymol Microsponges Loaded in situ Gel for the Treatment of Periodontitis

Author(s): Vinita C. Patole* and Shilpa P. Chaudhari

Volume 18, Issue 1, 2021

Published on: 04 August, 2020

Page: [71 - 87] Pages: 17

DOI: 10.2174/1567201817666200804111614

Price: $65

conference banner
Abstract

Objective: Periodontitis is an oral disease categorized by disturbance of periodontal tissue and the creation of periodontal pockets. Thymol (TH) loaded microsponge in situ gelling systems was formulated for local action in the periodontal cavity for the management of periodontitis.

Methods: Solvent evaporation technique was utilized for the preparation of microsponges. A Fractional Factorial Design (FFD) was used to screen the high risk variables impacting the characteristics of the (TH) microsponges and further optimized using Box-Behnken design. The optimized microsponges were then characterized by DSC, SEM, antimicrobial activity, in-vitro release, and then incorporated in the in situ gelling system. A ligature model was used to induce periodontitis in Sprague Dawley rats.

Results: The microsponges showed good characteristics, such as particle size, entrapment efficiency, and mucoadhesiveness of 45 μm, 92.99 ± 0.2%, 96 ± 0.26%, respectively. SEM revealed the spherical morphology of the microsponges with sustained release of TH for 10h and antimicrobial activity against S. mutans and C. albicans. Treatment with Thymol Loaded in situ Gel (THLMG) showed a decrease in gingival inflammation and tooth mobility as well as in serum biochemical parameters like serum Creactive proteins, leucocyte count, alkaline phosphatase, and tartrate-resistant acid phosphatase, when compared to disease group. The histopathological study of the periodontium confirmed a significant reduction of inflammation and alveolar bone destruction (p<0.05) in rats.

Conclusion: THLMG decreased the infiltration of inflammatory cells and prevented osteoclastogenesis and osteoblast apoptosis, which further favored a decrease in inflammation and alveolar bone loss in periodontitis. Thus, THLMG could be a better alternative to synthetic antimicrobials and antibiotics to treat periodontitis.

Keywords: Thymol, microsponges, periodontitis, Fractional Factorial Design, Box-Behnken Design, in situ gel, experimental induced periodontitis.

« Previous
Graphical Abstract

[1]
Nazir, M.A. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int. J. Health Sci. (Qassim), 2017, 11(2), 72-80.
[PMID: 28539867]
[2]
Dhadse, P.; Gattani, D.; Mishra, R. The link between periodontal disease and cardiovascular disease: how far we have come in last two decades? J. Indian Soc. Periodontol., 2010, 14(3), 148-154.
[http://dx.doi.org/10.4103/0972-124X.75908] [PMID: 21760667]
[3]
McGaw, T. Periodontal disease and preterm delivery of low-birth-weight infants. J. Can. Dent. Assoc., 2002, 68(3), 165-169.
[PMID: 11911812]
[4]
Saini, R.; Saini, S.; Sharma, S. Periodontitis: a risk factor to respiratory diseases. Lung India, 2010, 27(3), 189.
[http://dx.doi.org/10.4103/0970-2113.68313] [PMID: 20931047]
[5]
Casanova, L.; Hughes, F.J.; Preshaw, P.M. Diabetes and periodontal disease: a two-way relationship. Br. Dent. J., 2014, 217(8), 433-437.
[http://dx.doi.org/10.1038/sj.bdj.2014.907] [PMID: 25342350]
[6]
Loesche, W.J. The antimicrobial treatment of periodontal disease: changing the treatment paradigm. Crit. Rev. Oral Biol. Med., 1999, 10(3), 245-275.
[http://dx.doi.org/10.1177/10454411990100030101] [PMID: 10759408]
[7]
Geraldo, B.M.C.; Oliveira, F.E.; Oliveira, L.D.; Anbinder, A.L. Probiotics and periodontal disease department of biosciences and oral diagnosis. Periodont. Dis; Wallace, E., Ed.; Nova Science Publishers Inc, 2016, pp. 1-22.
[8]
Abdollahzadeh, Sh.; Mashouf, R.; Mortazavi, H.; Moghaddam, M.; Roozbahani, N.; Vahedi, M. Antibacterial and antifungal activities of punica granatum peel extracts against oral pathogens. J. Dent. (Tehran), 2011, 8(1), 1-6.
[PMID: 21998800]
[9]
Badi, H.N.; Abdollahi, M.A.; Ghorbanpour, M.; Tolyat, M.; Qaderi, A.; Ghiaci, Y.M. An overview on two valuable natural and bioactive compounds thymol and carvacrol in medicinal plants. J. Medi. Plants, 2017, 16(63), 1-32..
[10]
Amiri, H. Essential oils composition and antioxidant properties of three thymus species. Evid. Based Complement. Alternat. Med., 2012, 2012728065
[http://dx.doi.org/10.1155/2012/728065] [PMID: 21876714]
[11]
Bairwa, R.; Sodha, R.S.; Rajawat, B.S. Trachyspermum ammi. Pharmacogn. Rev., 2012, 6(11), 56-60.
[http://dx.doi.org/10.4103/0973-7847.95871] [PMID: 22654405]
[12]
Ghosheh, O.A.; Houdi, A.A.; Crooks, P.A. High performance liquid chromatographic analysis of the pharmacologically active quinones and related compounds in the oil of the black seed (Nigella sativa L.). J. Pharm. Biomed. Anal., 1999, 19(5), 757-762.
[http://dx.doi.org/10.1016/S0731-7085(98)00300-8] [PMID: 10698539]
[13]
FAO/WHO. Microbiological hazards in fresh fruits and vegetables; Microbiol. Risk Assesment Series Rome: Italy, 2008, pp. 1-38.
[14]
Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel), 2013, 6(12), 1451-1474.
[http://dx.doi.org/10.3390/ph6121451] [PMID: 24287491]
[15]
Feifei, T.; Laura, E.H.; Yankun, P.; Carmen, L.G. Synthesis and characterization of β- cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications. Lebensm. Wiss. Technol., 2014, 59(1), 247-255.
[http://dx.doi.org/10.1016/j.lwt.2014.05.037]
[16]
Shoji, Y.; Nakashima, H. Nutraceutics and delivery systems. J. Drug Target., 2004, 12(6), 385-391.
[http://dx.doi.org/10.1080/10611860400003817] [PMID: 15545088]
[17]
Balagani, P.; Chandiran, I.; Bhavya, B.; Manubolu, S. Microparticulate drug delivery system: a review. Int. J. Pharmaceut Sci. Res., 2011, 19(1), 19-37.
[18]
Orlu, M.; Cevher, E.; Araman, A. Design and evaluation of colon specific drug delivery system containing flurbiprofen microsponges. Int. J. Pharm., 2006, 318(1-2), 103-117.
[http://dx.doi.org/10.1016/j.ijpharm.2006.03.025] [PMID: 16687222]
[19]
Srivastava, R.; Pathak, K. Microsponges: a futuristic approach for oral drug delivery. Expert Opin. Drug Deliv., 2012, 9(7), 863-878.
[http://dx.doi.org/10.1517/17425247.2012.693072] [PMID: 22663167]
[20]
Yadav, S.K.; Khan, G.; Bansal, M.; Vardhan, H.; Mishra, B. Screening of ionically crosslinked chitosan-tripolyphosphate microspheres using Plackett-Burman factorial design for the treatment of intrapocket infections. Drug Dev. Ind. Pharm., 2017, 43(11), 1801-1816.
[http://dx.doi.org/10.1080/03639045.2017.1349782] [PMID: 28673095]
[21]
Ofokansi, K.C.; Kenechukwu, F.C.; Ogwu, N.N. Design of novel miconazole nitrate transdermal films based on Eudragit RS100 and HPMC hybrids: preparation, physical characterization, in vitro and ex vivo studies. Drug Deliv., 2015, 22(8), 1078-1085.
[http://dx.doi.org/10.3109/10717544.2013.875604] [PMID: 24455998]
[22]
Botelho, M.A.; Barros, G.; Queiroz, D.B.; Carvalho, C.F.; Gouvea, J.; Patrus, L.; Bannet, M.; Patrus, D.; Rego, A.; Silva, I.; Campus, G.; Araújo-Filho, I. Nanotechnology in phytotherapy: antiinflammatory effect of a nanostructured thymol gel from lippia sidoides in acute periodontitis in rats. Phytother. Res., 2016, 30(1), 152-159.
[http://dx.doi.org/10.1002/ptr.5516] [PMID: 26553130]
[23]
Zaki Rizkalla, C.M. latif Aziz, R.; Soliman, I.I. In vitro and in vivo evaluation of hydroxyzine hydrochloride microsponges for topical delivery. AAPS PharmSciTech, 2011, 12(3), 989-1001.
[http://dx.doi.org/10.1208/s12249-011-9663-5] [PMID: 21800216]
[24]
Momoh, M.A.; Kenechukwu, F.C.; Nnamani, P.O.; Umetiti, J.C. Influence of magnesium stearate on the physicochemical and pharmacodynamic characteristics of insulin-loaded Eudragit entrapped mucoadhesive microspheres. Drug Deliv., 2015, 22(6), 837-848.
[http://dx.doi.org/10.3109/10717544.2014.898108] [PMID: 24670092]
[25]
Momoh, M.A.; Kenechukwu, F.C.; Adedokun, M.O.; Odo, C.E.; Attama, A.A. Pharmacodynamics of diclofenac from novel Eudragit entrapped microspheres. Drug Deliv., 2014, 21(3), 193-203.
[http://dx.doi.org/10.3109/10717544.2013.843608] [PMID: 24171400]
[26]
Amrutiya, N.; Bajaj, A.; Madan, M. Development of microsponges for topical delivery of mupirocin. AAPS PharmSciTech, 2009, 10(2), 402-409.
[http://dx.doi.org/10.1208/s12249-009-9220-7] [PMID: 19381834]
[27]
Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal., 2016, 6(2), 71-79.
[http://dx.doi.org/10.1016/j.jpha.2015.11.005] [PMID: 29403965]
[28]
Rodrõ Âguez-Tudela, J.L.; Barchiesi, F.; Bille, J.; Chryssanthou, E.; Cuenca-Estrella, M.; Denning, D.; Donnelly, J.P.; Dupont, B.; Fegeler, W.; Moore, C.; Richardson, M.; Verweij, P.E. Method for the determination of Minimum Inhibitory Concentration (MIC) by broth dilution of fermentative yeasts. Clin. Microbiol. Infect., 2003, 9(8), 1-7.
[29]
Esposito, E.; Cortesi, R.; Cervellati, F.; Menegatti, E.; Nastruzzi, C. Biodegradable microparticles for sustained delivery of tetracycline to the periodontal pocket: formulatory and drug release studies. J. Microencapsul., 1997, 14(2), 175-187.
[http://dx.doi.org/10.3109/02652049709015331] [PMID: 9132469]
[30]
Srivastava, M.; Kohli, K.; Ali, M. Formulation development of novel in situ Nanoemulgel (NEG) of ketoprofen for the treatment of periodontitis. Drug Deliv., 2016, 23(1), 154-166.
[http://dx.doi.org/10.3109/10717544.2014.907842] [PMID: 24786482]
[31]
Sherafudeen, S.P.; Vasantha, P.V. Development and evaluation of in situ nasal gel formulations of loratadine. Res. Pharm. Sci., 2015, 10(6), 466-476.
[PMID: 26779266]
[32]
Ahmad, N.; Ahmad, F.J.; Bedi, S.; Sharma, S.; Umar, S.; Ansari, M.A. A novel nanoformulation development of eugenol and their treatment in inflammation and periodontitis. Saudi Pharm. J., 2019, 27(6), 778-790.
[http://dx.doi.org/10.1016/j.jsps.2019.04.014] [PMID: 31516320]
[33]
Pandit, A.P.; Pol, V.V.; Kulkarni, V.S. Xyloglucan based in situ gel of lidocaine HCl for the treatment of periodontosis. J. Pharm. (Cairo), 2016, 20163054321
[http://dx.doi.org/10.1155/2016/3054321] [PMID: 27034908]
[34]
Graves, D.T.; Fine, D.; Teng, Y.T.; Van Dyke, T.E.; Hajishengallis, G. The use of rodent models to investigate host-bacteria interactions related to periodontal diseases. J. Clin. Periodontol., 2008, 35(2), 89-105.
[http://dx.doi.org/10.1111/j.1600-051X.2007.01172.x] [PMID: 18199146]
[35]
Klausen, B. Microbiological and immunological aspects of experimental periodontal disease in rats: a review article. J. Periodontol., 1991, 62(1), 59-73.
[http://dx.doi.org/10.1902/jop.1991.62.1.59] [PMID: 2002433]
[36]
Graves, D.T.; Kang, J.; Andriankaja, O.; Wada, K.; Rossa, C., Jr Animal models to study host-bacteria interactions involved in periodontitis. Front. Oral Biol., 2012, 15, 117-132.
[http://dx.doi.org/10.1159/000329675] [PMID: 22142960]
[37]
Srivastava, M.; Neupane, Y.R.; Kumar, P.; Kohli, K. Nanoemulgel (NEG) of ketoprofen with eugenol as oil phase for the treatment of ligature-induced experimental periodontitis in Wistar rats. Drug Deliv., 2016, 23(7), 2228-2234.
[PMID: 25259423]
[38]
Liu, R.; Li, N.; Liu, N.; Zhou, X.; Dong, Z.M.; Wen, X.J.; Liu, L.C. Effects of systemic ornidazole, systemic and local compound ornidazole and pefloxacin mesylate on experimental periodontitis in rats. Med. Sci. Monit., 2012, 18(3), BR95-BR102.
[http://dx.doi.org/10.12659/MSM.882514] [PMID: 22367122]
[39]
Ram, V.S. Parthiban; Sudhakar, U.; Mithradas, N.; Prabhakar, R. Bonebiomarkers in periodontal disease: a review article. J. Clin. Diagn. Res., 2015, 9(1), ZE07-ZE10.
[http://dx.doi.org/10.7860/JCDR/2015/11268.5438] [PMID: 25738099]
[40]
Brito, L.C.; DalBó, S.; Striechen, T.M.; Farias, J.M.; Olchanheski, L.R., Jr; Mendes, R.T.; Vellosa, J.C.; Fávero, G.M.; Sordi, R.; Assreuy, J.; Santos, F.A.; Fernandes, D. Experimental periodontitis promotes transient vascular inflammation and endothelial dysfunction. Arch. Oral Biol., 2013, 58(9), 1187-1198.
[http://dx.doi.org/10.1016/j.archoralbio.2013.03.009] [PMID: 23583017]
[41]
Kumar, B.P.; Khaitan, T.; Ramaswamy, P.; Sreenivasulu, P.; Uday, G.; Velugubantla, R.G. Association of chronic periodontitis with white blood cell and platelet count - a case control study. J. Clin. Exp. Dent., 2014, 6(3), e214-e217.
[http://dx.doi.org/10.4317/jced.51292] [PMID: 25136419]
[42]
Hienz, S.A.; Paliwal, S.; Ivanovski, S. Mechanisms of bone resorption in periodontitis. J. Immunol. Res., 2015, 2015615486
[http://dx.doi.org/10.1155/2015/615486] [PMID: 26065002]
[43]
Botelho, M.A.; Martins, J.G.; Ruela, R.S.; Queiroz, D.B.; Ruela, W.S. Nanotechnology in ligature-induced periodontitis: protective effect of a doxycycline gel with nanoparticules. J. Appl. Oral Sci., 2010, 18(4), 335-342.
[http://dx.doi.org/10.1590/S1678-77572010000400003] [PMID: 20835566]
[44]
Osmani, R.A.; Aloorkar, N.H.; Ingale, D.J.; Kulkarni, P.K.; Hani, U.; Bhosale, R.R.; Jayachandra Dev, D. Microsponges based novel drug delivery system for augmented arthritis therapy. Saudi Pharm. J., 2015, 23(5), 562-572.
[http://dx.doi.org/10.1016/j.jsps.2015.02.020] [PMID: 26594124]
[45]
Zhang, Y.; Wu, X.; Meng, L.; Zhang, Y.; Ai, R.; Qi, N.; He, H.; Xu, H.; Tang, X. Thiolated Eudragit nanoparticles for oral insulin delivery: preparation, characterization and in vivo evaluation. Int. J. Pharm., 2012, 436(1-2), 341-350. b
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.054] [PMID: 22766443]
[46]
Desai, S.R.; Dharwadkar, S.R. Study of polymorphic transformation of ornidazole drug by differential scanning calorimetry and other complementary techniques. Acta Pol. Pharm., 2008, 65(4), 409-413.
[PMID: 19051580]
[47]
Renvert, S.; Lessem, J.; Dahlén, G.; Lindahl, C.; Svensson, M. Topical minocycline microspheres versus topical chlorhexidine gel as an adjunct to mechanical debridement of incipient peri-implant infections: a randomized clinical trial. J. Clin. Periodontol., 2006, 33(5), 362-369.
[http://dx.doi.org/10.1111/j.1600-051X.2006.00919.x] [PMID: 16634959]
[48]
Cortesi, R.; Menegatti, E.; Esposito, N.C. Microparticles as drug delivery systems for local delivery to the oral cavity.Modified Release Drug Deliv.Technol., 1st Ed; Rathbone, M.J.; Hadgraft, J.; Roberts, M.S., Eds.; Marcel Dekker: New York, 2003, pp. 453-462..
[49]
Pichayakorn, W.; Boonme, P. Evaluation of cross-linked chitosan microparticles containing metronidazole for periodontitis treatment. Mater. Sci. Eng. C, 2013, 33(3), 1197-1202.
[http://dx.doi.org/10.1016/j.msec.2012.12.010] [PMID: 23827560]
[50]
Yue, I.C.; Poff, J.; Cortés, M.E.; Sinisterra, R.D.; Faris, C.B.; Hildgen, P.; Langer, R.; Shastri, V.P. A novel polymeric chlorhexidine delivery device for the treatment of periodontal disease. Biomaterials, 2004, 25(17), 3743-3750.
[http://dx.doi.org/10.1016/j.biomaterials.2003.09.113] [PMID: 15020150]
[51]
Rota, M.C.; Herrera, R.M.; Martinez, J.A. Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control, 2007, (19), 681-687.
[52]
Shapiro, S.; Guggenheim, B. The action of thymol on oral bacteria. Oral Microbiol. Immunol., 1995, 10(4), 241-246.
[http://dx.doi.org/10.1111/j.1399-302X.1995.tb00149.x] [PMID: 8602337]
[53]
de Lira Mota, K.S.; de Oliveira Pereira, F.; de Oliveira, W.A.; Lima, I.O.; de Oliveira Lima, E. Antifungal activity of Thymus vulgaris L. essential oil and its constituent phytochemicals against Rhizopus oryzae: interaction with ergosterol. Molecules, 2012, 17(12), 14418-14433.
[http://dx.doi.org/10.3390/molecules171214418] [PMID: 23519243]
[54]
Xu, J.; Zhou, F.; Ji, B.P.; Pei, R.S.; Xu, N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett. Appl. Microbiol., 2008, 47(3), 174-179.
[http://dx.doi.org/10.1111/j.1472-765X.2008.02407.x] [PMID: 19552781]
[55]
Davis, W.W.; Stout, T.R. Disc plate method of microbiological antibiotic assay. I. Factors influencing variability and error. Appl. Microbiol., 1971, 22(4), 659-665.
[http://dx.doi.org/10.1128/AEM.22.4.659-665.1971] [PMID: 5002143]
[56]
Duarte, P.M.; Tezolin, K.R.; Figueiredo, L.C.; Feres, M.; Bastos, M.F. Microbial profile of ligature-induced periodontitis in rats. Arch. Oral Biol., 2010, 55(2), 142-147.
[http://dx.doi.org/10.1016/j.archoralbio.2009.10.006] [PMID: 19931851]
[57]
Krzyściak, W.; Jurczak, A.; Kościelniak, D.; Bystrowska, B.; Skalniak, A. The virulence of Streptococcus mutans and the ability to form biofilms. Eur. J. Clin. Microbiol. Infect. Dis., 2014, 33(4), 499-515.
[http://dx.doi.org/10.1007/s10096-013-1993-7] [PMID: 24154653]
[58]
Metwalli, K.H.; Khan, S.A.; Krom, B.P.; Jabra-Rizk, M.A. Streptococcus mutans, Candida albicans, and the human mouth: a sticky situation. PLoS Pathog., 2013, 9(10)e1003616
[http://dx.doi.org/10.1371/journal.ppat.1003616] [PMID: 24146611]
[59]
Sapkota, M.; Li, L.; Kim, S.W.; Soh, Y. Thymol inhibits RANKL-induced osteoclastogenesis in RAW264.7 and BMM cells and LPS-induced bone loss in mice. Food Chem. Toxicol., 2018, 120, 418-429.
[http://dx.doi.org/10.1016/j.fct.2018.07.032] [PMID: 30048646]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy