Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Synthetic and Medicinal Perspective of Fused-Thiazoles as Anticancer Agents

Author(s): Swati Pawar, Kapil Kumar, Manish K. Gupta and Ravindra K. Rawal*

Volume 21, Issue 11, 2021

Published on: 28 July, 2020

Page: [1379 - 1402] Pages: 24

DOI: 10.2174/1871520620666200728133017

Price: $65

Abstract

Background: Cancer is second leading disease after cardiovascular disease. Presently, Chemotherapy, Radiotherapy and use of chemicals are some treatments available these days. Thiazole and its hybrid compounds extensively used scaffolds in drug designing and development of novel anticancer agents due to their wide pharmacological profiles. Fused thiazole scaffold containing drugs are available in market as a promising group of anticancer agents.

Methods: The detailed study has been done using different database that focused on potent thiazole hybrid compounds with anticancer activity. The literature included in this review is focused on novel fused thiazole derivatives exhibiting anticancer potency in last decade.

Results: Literature suggested that thiazoles and its fused and linked congener serve excellent pharmacological profile as an anticancer agent. Various synthetic strategies for fused thiazole are also summarized in this article. Novel thiazole and its fused congener showed anticancer activity against various cancer cell lines.

Interpretation: Thiazole is a promising scaffold reported in literature with broad range of biological activities. This article covers the thiazole compounds fused with other carbocyclic/heterocycle including benzene, imidazole, pyridine, pyrimidine, quinoline, phenothiazine, thiopyrano, steroids, pyrrole etc. with anticancer activity from last decades. Several inhibitors for breast cancer, colon cancer, melanoma cancer, ovarian cancer, tubulin cancer etc. were reported in this review. Thus, this review will definitely aid to develop a lead for the new selective anticancer agents in future.

Keywords: Fused thiazole, cancer, inhibitors, cancer cell lines, heterocycles, chemotherapy.

Graphical Abstract

[1]
Mohammadi-Farani, A.; Foroumadi, A.; Kashani, M.R.; Aliabadi, A. N-Phenyl-2-p-tolylthiazole-4-carboxamide derivatives: Synthesis and cytotoxicity evaluation as anticancer agents. Iran. J. Basic Med. Sci., 2014, 17(7), 502-508.
[PMID: 25429341]
[2]
Nussbaumer, S.; Bonnabry, P.; Veuthey, J.L.; Fleury-Souverain, S. Analysis of anticancer drugs: A review. Talanta, 2011, 85(5), 2265-2289.
[http://dx.doi.org/10.1016/j.talanta.2011.08.034] [PMID: 21962644]
[3]
Chiodi, I.; Belgiovine, C.; Donà, F.; Scovassi, A.I.; Mondello, C. Drug treatment of cancer cell lines: A way to select for cancer stem cells? Cancers (Basel), 2011, 3(1), 1111-1128.
[http://dx.doi.org/10.3390/cancers3011111] [PMID: 24212655]
[4]
Shewach, D.S.; Kuchta, R.D. Introduction to cancer chemotherapeutics. Chem. Rev., 2009, 109(7), 2859-2861.
[http://dx.doi.org/10.1021/cr900208x] [PMID: 19583428]
[5]
Sikes, R.A. Chemistry and pharmacology of anticancer drugs. Br. J. Cancer, 2007, 97, 1713.
[http://dx.doi.org/10.1038/sj.bjc.6604075]
[6]
Sharma, P.C.; Sinhmar, A.; Sharma, A.; Rajak, H.; Pathak, D.P. Medicinal significance of benzothiazole scaffold: An insight view. J. Enzyme Inhib. Med. Chem., 2013, 28(2), 240-266.
[http://dx.doi.org/10.3109/14756366.2012.720572] [PMID: 23030043]
[7]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[8]
Triozzi, P.L.; Eng, C.; Singh, A.D. Targeted therapy for uveal melanoma. Cancer Treat. Rev., 2008, 34(3), 247-258.
[http://dx.doi.org/10.1016/j.ctrv.2007.12.002] [PMID: 18226859]
[9]
Gavande, N.S.; VanderVere-Carozza, P.S.; Hinshaw, H.D.; Jalal, S.I.; Sears, C.R.; Pawelczak, K.S.; Turchi, J.J. DNA repair targeted therapy: The past or future of cancer treatment? Pharmacol. Ther., 2016, 160, 65-83.
[http://dx.doi.org/10.1016/j.pharmthera.2016.02.003] [PMID: 26896565]
[10]
Guo, Y.; Xu, F.; Lu, T.; Duan, Z.; Zhang, Z. Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat. Rev., 2012, 38(7), 904-910.
[http://dx.doi.org/10.1016/j.ctrv.2012.04.007] [PMID: 22651903]
[11]
Vargo-Gogola, T.; Rosen, J.M. Modelling breast cancer: One size does not fit all. Nat. Rev. Cancer, 2007, 7(9), 659-672.
[http://dx.doi.org/10.1038/nrc2193] [PMID: 17721431]
[12]
Tandon, R.; Singh, I.; Luxami, V.; Tandon, N.; Paul, K. Recent advances and developments of in vitro evaluation of heterocyclic moieties on cancer cell lines. Chem. Rec., 2019, 19(2-3), 362-393.
[http://dx.doi.org/10.1002/tcr.201800024] [PMID: 29943894]
[13]
Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd., 2012, 48, 7-10.
[http://dx.doi.org/10.1007/s10593-012-0960-z]
[14]
Lord, R.M.; Holmes, J.; Singer, F.N.; Frith, A.; Willans, C.E. Precious metal N-heterocyclic carbene-carbaboranyl complexes: Cytotoxic and selective compounds for the treatment of cancer. J. Organometal. Chem., 2019, 907, 121062-121075.
[15]
Wang, S.; Bao, L.; Song, D.; Wang, J.; Cao, X. Heterocyclic lactam derivatives containing piperonyl moiety as potential antifungal agents. Bioorg. Med. Chem. Lett., 2019, 29(20), 126661-126665.
[http://dx.doi.org/10.1016/j.bmcl.2019.126661] [PMID: 31515187]
[16]
Bari1, A.; Grenier, D.; Azelmat, J.; Syed, S.A.; Al‐Obaid, A.M.; Hosten, E.C. Synthesis and anti‐inflammatory activity of diversified heterocyclic systems. Chem. Biol. Drug Des., 2019, 94, 1750-1759.
[http://dx.doi.org/10.1111/cbdd.13576]
[17]
Rawat, P.; Verma, S.M.; Kumar, P. Novel chroman analogs as promising heterocyclic compounds: Their synthesis and antiepileptic activity. Ind. J. Pharma. Edu. Res., 2019, 53, 655-665.
[http://dx.doi.org/10.5530/ijper.53.4s.162]
[18]
Shakurova, E.R.; Parfenova, L.V. Synthesis of N-heterocyclic analogues of 28-O-methyl betulinate and their antibacterial and antifungal properties. Molbank, 2020, 2020, M1100.
[http://dx.doi.org/10.3390/M1100]
[19]
Rashid, M.; Husain, A.; Mishra, R. Synthesis of benzimidazoles bearing oxadiazole nucleus as anticancer agents. Eur. J. Med. Chem., 2012, 54, 855-866.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.027] [PMID: 22608854]
[20]
Banothu, J.; Vaarla, K.; Bavantula, R.; Crooks, P.A. Sodium fluoride as an efficient catalyst for the synthesis of 2,4-disubstituted-1,3-thiazoles and selenazoles at ambient temperature. Chin. Chem. Lett., 2014, 25, 172-175.
[http://dx.doi.org/10.1016/j.cclet.2013.10.001]
[21]
Mohamed, A.M.; El-Sayed, W.A.; Alsharari, M.A.; Al-Qalawi, H.R.M.; Germoush, M.O. Anticancer activities of some newly synthesized pyrazole and pyrimidine derivatives. Arch. Pharm. Res., 2013, 36(9), 1055-1065.
[http://dx.doi.org/10.1007/s12272-013-0163-x] [PMID: 23737106]
[22]
Ali, I.; Lone, M.N.; Aboul-Enein, H.Y. Imidazoles as potential anticancer agents. MedChemComm, 2017, 8(9), 1742-1773.
[http://dx.doi.org/10.1039/C7MD00067G] [PMID: 30108886]
[23]
Ayati, A.; Emami, S.; Asadipour, A.; Shafiee, A.; Foroumadi, A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem., 2015, 97, 699-718.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.015] [PMID: 25934508]
[24]
Pfaller, M.A.; Messer, S.A.; Rhomberg, P.R.; Jones, R.N.; Castanheira, M. In vitro activities of isavuconazole and comparator antifungal agents tested against a global collection of opportunistic yeasts and molds. J. Clin. Microbiol., 2013, 51(8), 2608-2616.
[http://dx.doi.org/10.1128/JCM.00863-13] [PMID: 23740727]
[25]
Chandwani, A.; Shuter, J. Lopinavir/ritonavir in the treatment of HIV-1 infection: A review. Ther. Clin. Risk Manag., 2008, 4(5), 1023-1033.
[PMID: 19209283]
[26]
Wozniak, T.J. Nizatidine.In: Analytical profile of drug substances; Elsevier: Netherlands, 1990, Vol. 19, pp. 397-427.
[27]
Sarangi, P.K.N.; Sahoo, J.; Paidesetty, S.K.; Mohanta, G.P. Thiazoles as potent anticancer agents: A review. Indian Drug, 2016, 53, 4-11.
[28]
Kamila, S.; Koh, B.; Biehl, E.R. Microwave-assisted “Green” synthesis of 2-alkyl/aryl benzothiazoles in one pot: A facile approach to anti-tumor drugs. J. Heterocycl. Chem., 2006, 43, 1609-1612.
[http://dx.doi.org/10.1002/jhet.5570430627]
[29]
Hawtin, R.E.; Stockett, D.E.; Byl, J.A.; McDowell, R.S.; Nguyen, T.; Arkin, M.R.; Conroy, A.; Yang, W.; Osheroff, N.; Fox, J.A.; Fox, J.A. Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II. PLoS One, 2010, 5(4), e10186.
[http://dx.doi.org/10.1371/journal.pone.0010186] [PMID: 20419121]
[30]
Das, D.; Sikdar, P.; Bairagi, M. Recent developments of 2-aminothiazoles in medicinal chemistry. Eur. J. Med. Chem., 2016, 109, 89-98.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.022] [PMID: 26771245]
[31]
Pathak, N.; Rathi, E.; Kumar, N.; Kini, S.G.; Rao, C.M. A review on anticancer potentials of benzothiazole derivatives. Mini Rev. Med. Chem., 2020, 20(1), 12-23.
[http://dx.doi.org/10.2174/1389557519666190617153213] [PMID: 31288719]
[32]
Abou El Ella, D.A.; Ghorab, M.M.; Heiba, H.I.; Soliman, A.M. Synthesis of some new thiazolopyrane and thiazolopyranopyrimidine derivatives bearing a sulfonamide moiety for evaluation as anticancer and radio sensitizing agents. Med. Chem. Res., 2012, 21, 2395-2407.
[http://dx.doi.org/10.1007/s00044-011-9751-9]
[33]
Kini, S.; Swain, S.P.; Gandhi, A.M. Synthesis and evaluation of novel benzothiazole derivatives against human cervical cancer cell lines. Indian J. Pharm. Sci., 2007, 69, 46-50.
[http://dx.doi.org/10.4103/0250-474X.32107]
[34]
Kryshchyshyn, A.; Roman, O.; Lozynskyi, A.; Lesyk, R. Thiopyrano[2,3-d]thiazoles as new efficient scaffolds in medicinal chemistry. Sci. Pharm., 2018, 86(2), 26-49.
[http://dx.doi.org/10.3390/scipharm86020026] [PMID: 29903979]
[35]
Azam, F.; Singh, S.; Khokhra, S.L.; Prakash, O. Synthesis of Schiff bases of naphtha[1,2-d]thiazol-2-amine and metal complexes of 2-(2′-hydroxy)benzylideneaminonaphthothiazole as potential antimicrobial agents. J. Zhejiang Univ. Sci. B, 2007, 8(6), 446-452.
[http://dx.doi.org/10.1631/jzus.2007.B0446] [PMID: 17565517]
[36]
Bhat, M.; Belagali, S.L.; Kumar, N.K.H.; Kumar, S.M. Synthesis and characterization of novel benzothiazole amide derivatives and screening as possible antimitotic and antimicrobial agents. Res. Chem. Intermed., 2017, 43, 361-378.
[http://dx.doi.org/10.1007/s11164-016-2627-3]
[37]
Cai, D.; Zhang, Z.H.; Chen, Y.; Yan, X.J.; Zhang, S.T.; Zou, L.J.; Meng, L.H.; Li, F.; Fu, B.J. Synthesis of some new thiazolo[3,2-a]pyrimidine derivatives and screening of their in vitro antibacterial and anti-tubercular activities. Med. Chem. Res., 2016, 25, 292-302.
[http://dx.doi.org/10.1007/s00044-015-1481-y]
[38]
Gill, R.K.; Singh, G.; Sharma, A.; Bedi, P.M.S.; Saxena, A.K. Synthesis, cytotoxic evaluation, and in silico studies of substituted N-alkylbromo-benzothiazoles. Med. Chem. Res., 2013, 22, 4211-4222.
[http://dx.doi.org/10.1007/s00044-012-0424-0]
[39]
Hamama, W.S.; Mohamed, A.; Ismail, M.A.; Shaaban, S.; Zoorob, H.H. Synthesis and biological evaluation of some new thiazolo[3,2-a][1,3,5]triazine derivative. Med. Chem. Res., 2012, 21, 2615-2623.
[http://dx.doi.org/10.1007/s00044-011-9783-1]
[40]
Khobragade, C.N.; Bodade, R.G.; Dawane, B.S.; Konda, S.G.; Khandare, N.T. Synthesis and biological activity of pyrazolo[3,4-d]thiazolo[3,2-a]pyrimidin-4-one derivatives: In silico approach. J. Enzyme Inhib. Med. Chem., 2010, 25(5), 615-621.
[http://dx.doi.org/10.3109/14756360903389849] [PMID: 20001274]
[41]
Nagarajaiah, H.; Khazi, I.M.; Begum, N.S. Synthesis, characterization and biological evaluation of thiazolopyrimidine derivatives. J. Chem. Sci., 2012, 124, 847-855.
[http://dx.doi.org/10.1007/s12039-012-0271-z]
[42]
Khokra, S.L.; Arora, K.; Khan, S.A.; Kaushik, P.; Saini, R.; Husain, A.; Husain, A. Synthesis, computational studies and anticonvulsant activity of novel benzothiazole coupled sulfonamide derivatives. Iran. J. Pharm. Res., 2019, 18(1), 1-15.
[PMID: 31089339]
[43]
Al-Hashimi, M.; Labram, J.G.; Watkins, S.; Motevalli, M.; Anthopoulos, T.D.; Heeney, M. Synthesis and characterization of fused pyrrolo[3,2-d:4,5-d’]bisthiazole-containing polymers. Org. Lett., 2010, 12(23), 5478-5481.
[http://dx.doi.org/10.1021/ol102344m] [PMID: 21067219]
[44]
Malladi, S.; Isloor, A.M.; Shetty, P.; Fun, H.K.; Telkar, S.; Mahmood, R.; Isloor, N. Synthesis and anti-inflammatory evaluation of some new 3,6-disubstituted-1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazoles bearing pyrazole moiety. Med. Chem. Res., 2012, 21, 3272-3280.
[http://dx.doi.org/10.1007/s00044-011-9865-0]
[45]
Dhepe, S.; Kumar, S.; Vinayakumar, R.; Ramareddy, S.A.; Subhas, S.; Karki, S.S. Microwave-assisted synthesis and antimicrobial activity of some imidazo[2,1-b][1,3,4]thiadiazole derivatives. Med. Chem. Res., 2012, 21, 1550-1556.
[http://dx.doi.org/10.1007/s00044-011-9671-8]
[46]
Gürsoy, E.; Güzeldemirci, N.U. Synthesis and primary cytotoxicity evaluation of new imidazo[2,1-b]thiazole derivatives. Eur. J. Med. Chem., 2007, 42(3), 320-326.
[http://dx.doi.org/10.1016/j.ejmech.2006.10.012] [PMID: 17145120]
[47]
Karaman, B.; Guzeldemirci, N.U. Synthesis and biological evaluation of new imidazo[2,1-b]thiazole derivatives as anticancer agents. Med. Chem. Res., 2016, 25, 2471-2484.
[http://dx.doi.org/10.1007/s00044-016-1684-x]
[48]
Knighton, R.C.; Hallett, A.J.; Kariuki, B.M.; Pope, S.J.A. A one-step synthesis towards new ligands based on aryl-functionalised thiazolo[5,4-d]thiazole chromophores. Tetrahedron Lett., 2010, 51, 5419-5422.
[http://dx.doi.org/10.1016/j.tetlet.2010.07.172]
[49]
Shen, Y.M.; Lv, P.C.; Zhang, M.Z.; Xiao, H.Q.; Deng, L.P.; Zhu, H.L.; Qi, C.Z. Synthesis and antiproliferative activity of multisubstituted N-fused heterocycles against the Hep-G2 cancer cell line. Monatsh. Chem., 2011, 142, 521-528.
[http://dx.doi.org/10.1007/s00706-011-0469-7]
[50]
Wang, N.Y.; Xu, Y.; Zuo, W.Q.; Xiao, K.J.; Liu, L.; Zeng, X.X.; You, X.Y.; Zhang, L.D.; Gao, C.; Liu, Z.H.; Ye, T.H.; Xia, Y.; Xiong, Y.; Song, X.J.; Lei, Q.; Peng, C.T.; Tang, H.; Yang, S.Y.; Wei, Y.Q.; Yu, L.T. Discovery of imidazo[2,1-b]thiazole HCV NS4B inhibitors exhibiting synergistic effect with other direct-acting antiviral agents. J. Med. Chem., 2015, 58(6), 2764-2778.
[http://dx.doi.org/10.1021/jm501934n] [PMID: 25710739]
[51]
Uzgören-Baran, A.; Tel, B.C.; Sarıgöl, D.; Oztürk, E.I.; Kazkayası, I.; Okay, G.; Ertan, M.; Tozkoparan, B. Thiazolo[3,2-b]-1,2,4-triazole-5(6H)-one substituted with ibuprofen: Novel non-steroidal anti-inflammatory agents with favorable gastrointestinal tolerance. Eur. J. Med. Chem., 2012, 57, 398-406.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.009] [PMID: 22840494]
[52]
Shokrollahi, S.; Amiri, A.; Tirani, F.F.; Joß, K. Promising anti-cancer potency of 4,5,6,7-tetrahydrobenzo[d]thiazole-based Schiff-bases. J. Mol. Liq., 2018, 300, 112262-112297.
[http://dx.doi.org/10.1016/j.molliq.2019.112262]
[53]
Reddy, V.G.; Reddy, T.S.; Jadala, C.; Reddy, M.S.; Sultana, F.; Akunuri, R.; Bhargava, S.K.; Wlodkowic, D.; Srihari, P.; Kamal, A. Pyrazolo-benzothiazole hybrids: Synthesis, anticancer properties and evaluation of antiangiogenic activity using in vitro VEGFR-2 kinase and in vivo transgenic zebrafish model. Eur. J. Med. Chem., 2019, 182, 111609-111623.
[http://dx.doi.org/10.1016/j.ejmech.2019.111609] [PMID: 31445229]
[54]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Chaudhari, H.K.; Sekar, N. Schiff base clubbed benzothiazole: Synthesis, potent antimicrobial and MCF-7 anticancer activity, DNA cleavage and computational study. J. Biomol. Struct. Dyn., 2019, 30, 1-20.
[http://dx.doi.org/10.1080/07391102.2019.1621213] [PMID: 31107179]
[55]
Hassan, A.Y.; Sarg, M.T.; Hussein, E.M. Design, synthesis, and anticancer activity of Nnovel benzothiazole analogues. J. Heterocycl. Chem., 2019, 56, 1437-1457.
[http://dx.doi.org/10.1002/jhet.3524]
[56]
Zehra, S.; Shavez Khan, M.; Ahmad, I.; Arjmand, F. New tailored substituted benzothiazole Schiff base Cu(II)/Zn(II) antitumor drug entities: Effect of substituents on DNA binding profile, antimicrobial and cytotoxic activity. J. Biomol. Struct. Dyn., 2019, 37(7), 1863-1879.
[http://dx.doi.org/10.1080/07391102.2018.1467794] [PMID: 29676660]
[57]
Shah, T.A.; Alam, U.; Alam, M.; Park, S.; Muneer, M. Single crystal X-ray structure, spectroscopic and DFT studies of Imidazo[2,1-b]thiazole: 2-(3-hydroxy-3-phenylimidazo[2,1-b]thiazol-2(3H)-ylidene)-1-phenylethanone. J. Mol. Struct., 2018, 1157, 638-653.
[http://dx.doi.org/10.1016/j.molstruc.2017.12.074]
[58]
Nagireddy, P.K.R.; Kommalapati, V.K.; Siva Krishna, V.; Sriram, D.; Tangutur, A.D.; Kantevari, S. Imidazo[2,1-b]thiazole-coupled natural noscapine derivatives as anticancer agents. ACS Omega, 2019, 4(21), 19382-19398.
[http://dx.doi.org/10.1021/acsomega.9b02789] [PMID: 31763563]
[59]
Kamal, A.; Balakrishna, M.; Nayak, V.L.; Shaik, T.B.; Faazil, S.; Nimbarte, V.D. Design and synthesis of imidazo[2,1-b]thiazole-chalcone conjugates: Microtubule-destabilizing agents. ChemMedChem, 2014, 9(12), 2766-2780.
[http://dx.doi.org/10.1002/cmdc.201402310] [PMID: 25313981]
[60]
Koppireddi, S.; Chilaka, D.R.K.; Avula, S.; Komsani, J.R.; Kotamraju, S.; Yadla, R. Synthesis and anticancer evaluation of 3-aryl-6-phenylimidazo [2,1-b]thiazoles. Bioorg. Med. Chem. Lett., 2014, 24(23), 5428-5431.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.030] [PMID: 25453802]
[61]
Ali, A.R.; El-Bendary, E.R.; Ghaly, M.A.; Shehata, I.A. Synthesis, in vitro anticancer evaluation and in silico studies of novel imidazo[2,1-b]thiazole derivatives bearing pyrazole moieties. Eur. J. Med. Chem., 2014, 75, 492-500.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.010] [PMID: 24576591]
[62]
Patel, H.M.; Sing, B.; Bhardwaj, V.; Palkar, M.; Shaikh, M.S.; Rane, R.; Alwan, W.S.; Gadad, A.K.; Noolvi, M.N.; Karpoormath, R. Design, synthesis and evaluation of small molecule imidazo[2,1-b][1,3,4]thiadiazoles as inhibitors of transforming growth factor-β type-I receptor kinase (ALK5). Eur. J. Med. Chem., 2015, 93, 599-613.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.002] [PMID: 25234355]
[63]
Romagnoli, R.; Baraldi, P.G.; Prencipe, F.; Balzarini, J.; Liekens, S.; Estévez, F. Design, synthesis and antiproliferative activity of novel heterobivalent hybrids based on imidazo[2,1-b][1,3,4] thiadiazole and imidazo[2,1-b][1,3]thiazole scaffolds. Eur. J. Med. Chem., 2015, 101, 205-217.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.042] [PMID: 26141911]
[64]
Gali, R.; Banothu, J.; Velpula, R.; Porika, M.; Bavantula, R.; Sadanandam, A.S. Synthesis and in vitro cytotoxic activity of novel coumarinylimidazo[2,1-b]thiazole derivatives. RSC Adv., 2014, 4, 53812-53819.
[http://dx.doi.org/10.1039/C4RA11428K]
[65]
Sangshetti, J.N.; Khan, F.A.K.; Chouthe, R.S.; Damale, M.G.; Shinde, D.B. Synthesis, docking and ADMET prediction of novel 5-((5-substituted- 1-H-1,2,4-triazol-3-yl) methyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine as antifungal agents. Chin. Chem. Lett., 2014, 25, 1033-1038.
[http://dx.doi.org/10.1016/j.cclet.2014.04.003]
[66]
Mohareb, R.M.; Fleita, D.H.; Sakka, O.K. Novel synthesis of hydrazide-hydrazone derivatives and their utilization in the synthesis of coumarin, pyridine, thiazole and thiophene derivatives with antitumor activity. Molecules, 2010, 16(1), 16-27.
[http://dx.doi.org/10.3390/molecules16010016] [PMID: 21187814]
[67]
Cai, D.; Zhang, Z.H.; Chen, Y.; Yan, X.J.; Zhang, S.T.; Zou, L.J.; Meng, L.H.; Li, F.; Fu, B.J. Synthesis of some new thiazolo[3,2-a]pyrimidine derivatives and screening of their in vitro antibacterial and antitubercular activities. Med. Chem. Res., 2015, 25, 292-302.
[http://dx.doi.org/10.1007/s00044-015-1481-y]
[68]
Tozkoparan, B.; Ertan, M.; Kelicen, P.; Demirdamar, R. Synthesis and anti-inflammatory activities of some thiazolo[3,2-a]pyrimidine derivatives. Farmaco, 1999, 54(9), 588-593.
[http://dx.doi.org/10.1016/S0014-827X(99)00068-3] [PMID: 10555260]
[69]
Cornish, J.W.; Maany, I.; Fudala, P.J.; Ehrman, R.N.; Robbins, S.J.; O’Brien, C.P. A randomized, double-blind, placebo-controlled study of ritanserin pharmacotherapy for cocaine dependence. Drug Alcohol Depend., 2001, 61(2), 183-189.
[http://dx.doi.org/10.1016/S0376-8716(00)00140-X] [PMID: 11137283]
[70]
Hassan, G.S.; El-Messery, S.M.; Abbas, A. Synthesis and anticancer activity of new thiazolo[3,2-a]pyrimidines: DNA binding and molecular modeling study. Bioorg. Chem., 2017, 74, 41-52.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.008] [PMID: 28750204]
[71]
Yousif, M.N.M.; El-Sayed, W.A.; Abbas, H.A.S.; Awad, H.M.; Yousif, N.M. Anticancer activity of new substituted pyrimidines, their thioglycosides and thiazolopyrimidine derivatives. J. Appl. Pharm. Sci., 2017, 7, 21-32.
[72]
Basiony, E.A.; Hassan, A.A.; Al-Amshany, Z.M.; Abd-Rabou, A.A.; Abdel-Rahman, A.A-H.; Hassan, N.A.; El-Sayed, W.A. Synthesis and cytotoxic activity of new thiazolopyrimidine sugar hydrazones and their derived acyclic nucleoside analogues. Molecules, 2020, 25(2), 399-414.
[http://dx.doi.org/10.3390/molecules25020399] [PMID: 31963649]
[73]
Abu-Hashem, A.A.; Youssef, M.M.; Hussein, H.A.R. Synthesis, antioxidant, antitumor activities of some new thiazolopyrimidine, pyrrolothiazolopyrimidines and triazolopyrrolothiazolopyrimidines derivatives. J. Chin. Chem. Soc. (Taipei), 2011, 58, 41-48.
[http://dx.doi.org/10.1002/jccs.201190056]
[74]
Al-Omary, F.A.M.; Hassan, G.S.; El-Messery, S.M.; El-Subbagh, H.I. Substituted thiazoles V. synthesis and antitumor activity of novel thiazolo[2,3-b]quinazoline and pyrido[4,3-d]thiazolo[3,2-a]pyrimidine analogues. Eur. J. Med. Chem., 2012, 47(1), 65-72.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.023] [PMID: 22056277]
[75]
Gali, R.; Banothu, J.; Porika, M.; Velpula, R.; Hnamte, S.; Bavantula, R.; Abbagani, S.; Busi, S. Indolylmethylene benzo[h]thiazolo [2,3-b]quinazolinones: Synthesis, characterization and evaluation of anticancer and antimicrobial activities. Bioorg. Med. Chem. Lett., 2014, 24(17), 4239-4242.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.030] [PMID: 25096298]
[76]
Brem, B.; Gal, E.; Gaina, L.; Dumitrescu, L.S.; Fodor, E.F.; Ionu, C.T.; Grozav, A.; Valentin Zaharia, V.; Filip, L.; Cristea, C. Novel thiazolo[5,4-b]phenothiazine derivatives: Synthesis, structural characterization, and in vitroe valuation of antiproliferative activity against human leukaemia. Int. J. Mol. Sci., 2017, 18, 1365.
[http://dx.doi.org/10.3390/ijms18071365]
[77]
Metwally, N.H.; Badawy, M.A.; Okpy, D.S. Synthesis and anticancer activity of some new thiopyrano[2,3-d]thiazoles incorporating pyrazole moiety. Chem. Pharm. Bull. (Tokyo), 2015, 63(7), 495-503.
[http://dx.doi.org/10.1248/cpb.c14-00885] [PMID: 26133066]
[78]
Lozynskyi, A.; Zimenkovsky, B.; Lesyk, R. Synthesis and anticancer activity of new thiopyrano[2,3-£/]thiazoles based on cinnamic acid amides. Sci. Pharm., 2014, 82(4), 723-733.
[http://dx.doi.org/10.3797/scipharm.1408-05] [PMID: 26171321]
[79]
Atamanyuk, D.; Zimenkovsky, B.; Atamanyuk, V.; Nektegayev, I.; Lesyk, R. Synthesis and biological activity of new thiopyrano[2,3-d]thiazoles containing a naphthoquinone moiety. Sci. Pharm., 2013, 81(2), 423-436.
[http://dx.doi.org/10.3797/scipharm.1301-13] [PMID: 23833711]
[80]
Ali, M.A.; Okolo, C.; Alsharif, Z.A.; Whitt, J.; Chambers, S.A.; Varma, R.S.; Alam, M.A. Benign synthesis of thiazolo-androstenone derivatives as potent anticancer agents. Org. Lett., 2018, 20(18), 5927-5932.
[http://dx.doi.org/10.1021/acs.orglett.8b02587] [PMID: 30204455]
[81]
Okolo, C.; Ali, M.A.; Newman, M.; Chambers, S.A.; Whitt, J.; Alsharif, Z.A.; Day, V.W.; Alam, M.A. Hexafluoroisopropanol-Mediated domino reaction for the synthesis of thiazolo-androstenones: Potent anticancer agents. ACS Omega, 2018, 3(12), 17991-18001.
[http://dx.doi.org/10.1021/acsomega.8b02840] [PMID: 30613817]
[82]
Cui, H.W.; Peng, S.; Gu, X-Z.; Chen, H.; He, Y.; Gao, W.; Lv, F.; Wang, J-H.; Wang, Y.; Xie, J.; Liu, M-Y.; Yi, Z.; Qiu, W.W. Synthesis and biological evaluation of D-ring fused 1,2,3-thiadiazole dehydroepiandrosterone derivatives as antitumor agents. Eur. J. Med. Chem., 2016, 111, 126-137.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.058] [PMID: 26866967]
[83]
Santos, K.; Laranjo, M.; Abrantes, A.M.; Brito, A.F.; Gonçalves, C.; Sarmento Ribeiro, A.B.; Botelho, M.F.; Soares, M.I.L.; Oliveira, A.S.; Pinho e Melo, T.M.; Pinho, M. Targeting triple-negative breast cancer cells with 6,7-bis(hydroxymethyl)-1H,3H-pyrrolo[1,2-c]thiazoles. Eur. J. Med. Chem., 2014, 79, 273-281.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.008] [PMID: 24747064]
[84]
Soares, M.I.L.; Brito, A.F.; Laranjo, M.; Paixão, J.A.; Botelho, M.F.; Pinho e Melo, T.M.; Pinho, M. Chiral 6,7-bis(hydroxymethyl)-1H,3H-pyrrolo[1,2-c]thiazoles with anti-breast cancer properties. Eur. J. Med. Chem., 2013, 60, 254-262.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.036] [PMID: 23313634]
[85]
Chaniyara, R.; Tala, S.; Chen, C.W.; Lee, P-C.; Kakadiya, R.; Dong, H.; Marvania, B.; Chen, C.H.; Chou, T.C.; Lee, T.C.; Shah, A.; Su, T.L. Synthesis and antitumor evaluation of novel benzo[d]pyrrolo[2,1-b]thiazole derivatives. Eur. J. Med. Chem., 2012, 53, 28-40.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.030] [PMID: 22507893]
[86]
Gu, L.; Jin, C. Synthesis and antitumor activity of α-aminophosphonates containing thiazole[5,4-b]pyridine moiety. Org. Biomol. Chem., 2012, 10(35), 7098-7102.
[http://dx.doi.org/10.1039/c2ob25875g] [PMID: 22850968]
[87]
El-Wakil, M.H.; El-Yazbi, A.F.; Ashour, H.M.A.; Khalil, M.A.; Ismail, K.A.; Labouta, I.M.; Labouta, I.M. Discovery of a novel DNA binding agent via design and synthesis of new thiazole hybrids and fused 1,2,4-triazines as potential antitumor agents: Computational, spectrometric and in silico studies. Bioorg. Chem., 2019, 90, 103089-103101.
[http://dx.doi.org/10.1016/j.bioorg.2019.103089] [PMID: 31271947]
[88]
Prashanth, T.; Avin, B.R.V.; Thirusangub, P.; Ranganath, V.L.; Prabhakar, B.T.; Chandra, J.N.N.S.; Khanum, S.A. Synthesis of coumarin analogs appended with quinoline and thiazole moiety and their apoptogenic role against murine ascetic carcinoma. 1,2,3-thiadiazole dehydroepiandrosterone. Biomed. Pharm., 2019, 112, 108707-108717.
[http://dx.doi.org/10.1016/j.biopha.2019.108707] [PMID: 30970513]
[89]
Keshari, A.K.; Singh, A.K.; Raj, V.; Rai, A.; Trivedi, P.; Ghosh, B.; Kumar, U.; Rawat, A.; Kumar, D.; Saha, S. p-TSA-promoted syntheses of 5H-benzo[h] thiazolo[2,3-b]quinazoline and indeno[1,2-d] thiazolo[3,2-a]pyrimidine analogs: molecular modeling and in vitro antitumor activity against hepatocellular carcinoma. Drug Des. Devel. Ther., 2017, 11, 1623-1642.
[http://dx.doi.org/10.2147/DDDT.S136692] [PMID: 28615927]
[90]
Al-Ghorbani, M.; Pavankumar, G.S.; Naveen, P.; Thirusangu, P.; Prabhakar, B.T.; Khanum, S.A. Synthesis and an angiolytic role of novel piperazine-benzothiazole analogues on neovascularization, a chief tumoral parameter in neoplastic development. Bioorg. Chem., 2016, 65, 110-117.
[http://dx.doi.org/10.1016/j.bioorg.2016.02.006] [PMID: 26918263]
[91]
Cai, J.; Sun, M.; Wu, X.; Chen, J.; Wang, P.; Zong, X.; Ji, M. Design and synthesis of novel 4-benzothiazole amino quinazolines Dasatinib derivatives as potential anti-tumor agents. Eur. J. Med. Chem., 2013, 63, 702-712.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.013] [PMID: 23567960]
[92]
Xie, X.X.; Li, H.; Wang, J.; Mao, S.; Xin, M.H.; Lu, S.M.; Mei, Q.B.; Zhang, S.Q. Synthesis and anticancer effects evaluation of 1-alkyl-3-(6-(2-methoxy-3-sulfonylaminopyridin-5-yl)benzo[d]thiazol-2-yl)urea as anticancer agents with low toxicity. Bioorg. Med. Chem., 2015, 23(19), 6477-6485.
[http://dx.doi.org/10.1016/j.bmc.2015.08.013] [PMID: 26321603]
[93]
Sultana, F.; Reddy Bonam, S.; Reddy, V.G.; Nayak, V.L.; Akunuri, R.; Rani Routhu, S.; Alarifi, A.; Halmuthur, M.S.K.; Kamal, A. Synthesis of benzo[d]imidazo[2,1-b]thiazole-chalcone conjugates as microtubule targeting and apoptosis inducing agents. Bioorg. Chem., 2018, 76, 1-12.
[http://dx.doi.org/10.1016/j.bioorg.2017.10.019] [PMID: 29102724]
[94]
Kumbhare, R.M.; Dadmal, T.L.; Ramaiah, M.J.; Kishore, K.S.V.; Pushpa Valli, S.N.; Tiwari, S.K.; Appalanaidu, K.; Rao, Y.K.; Bhadra, M.P. Synthesis and anticancer evaluation of novel triazole linked N-(pyrimidin-2-yl)benzo[d]thiazol-2-amine derivatives as inhibitors of cell survival proteins and inducers of apoptosis in MCF-7 breast cancer cells. Bioorg. Med. Chem. Lett., 2015, 25(3), 654-658.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.083] [PMID: 25563891]
[95]
Mahmoud, H.K.; Gomha, S.M.; Farghaly, T.A.; Awad, H.M. Synthesis of thiazole linked imidazo[2,1-b]thiazoles as anticancer agents. Polycycl. Aromat. Compd., 2019, 3, 1-15.
[http://dx.doi.org/10.1080/10406638.2019.1689514]
[96]
Sultana, F.; Saifi, M.A.; Riyaz, S.; Mani, G.S.; Shaik, S.P.; Godugu, C.; Kamal, A. Synthesis of 2-anilinopyridyl linked benzothiazole hydrazones as apoptosis inducing cytotoxic agents. New J. Chem., 2019, 43, 7150-7161.
[http://dx.doi.org/10.1039/C8NJ06517A]
[97]
(a)Kaur, R.; Manjal, S.K.; Rawal, R.K.; Kumar, K. Recent synthetic and medicinal perspectives of tryptanthrin. Bioorg. Med. Chem., 2017, 25(17), 4533-4552.
[http://dx.doi.org/10.1016/j.bmc.2017.07.003] [PMID: 28720329]
(b)Kaur Manjal, S.; Kaur, R.; Bhatia, R.; Kumar, K.; Singh, V.; Shankar, R.; Kaur, R.; Rawal, R.K. Synthetic and medicinal perspective of thiazolidinones: A review. Bioorg. Chem., 2017, 75, 406-423.
[http://dx.doi.org/10.1016/j.bioorg.2017.10.014] [PMID: 29102723]
(c)Kaur, R.; Chaudhary, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review. Eur. J. Med. Chem., 2017, 132, 108-134.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.025] [PMID: 28342939]
(d)Kumar, B.; Singh, V.; Shankar, R.; Kumar, K.; Rawal, R.K. Synthetic and medicinal prospective of structurally modified curcumins. Curr. Top. Med. Chem., 2017, 17(2), 148-161.
[http://dx.doi.org/10.2174/1568026616666160605050052] [PMID: 27280465]
(e)Mittal, M.; Kumar, K.; Anghore, D.; Rawal, R.K. ICP-MS: Analytical method for identification and detection of elemental impurities. Curr. Drug Discov. Technol., 2017, 14(2), 106-120.
[http://dx.doi.org/10.2174/1570163813666161221141402] [PMID: 28003007]
(f)Talwan, P.; Choudhary, S.; Kumar, K.; Rawal, R.K. Chemical and medicinal versatility of substituted 1, 4-dihydropyridines. Curr. Bioact. Compd., 2017, 13, 109-120.
[http://dx.doi.org/10.2174/1573407212666160607090202]
(g)Kaur, R.; Kapoor, Y.; Manjal, S.K.; Rawal, R.K.; Kumar, K. Diversity oriented synthetic approaches for furoindoline: A review. Curr. Org. Synth., 2019, 16(3), 342-368.
[http://dx.doi.org/10.2174/1570179416666190328211509] [PMID: 31984898]
(h)Kaur, R.; Kumar, K. One-pot synthesis of [4-(tert-butyl)-1H-pyrrol-3-yl] (phenyl) methanone from tosylmethyl isocyanide and carbonyl compound. Chem. Heterocycl. Compd., 2018, 54, 700-702.
[http://dx.doi.org/10.1007/s10593-018-2335-6]
(i)Kapoor, Y.; Kumar, K. Structural and clinical impact of anti-allergy agents: An overview. Bioorg. Chem., 2020, 94, 103351-103375.
[http://dx.doi.org/10.1016/j.bioorg.2019.103351] [PMID: 31668464]
[98]
(a)Kumar, K.; More, S.S.; Goyal, S.; Gangar, M.; Khatik, G.L.; Rawal, R.K.; Nair, V.A. A convenient synthesis of 4-alkyl-3-benzyolpyrroles from α, β-unsaturated ketone and tosylmethylisocyanide. Tetrahedron Lett., 2016, 57, 2315-2319.
[http://dx.doi.org/10.1016/j.tetlet.2016.04.056]
(b)Kumar, K.; Siddique, J.; Gangar, M.; Goyal, S.; Rawal, R.K.; Nair, V.A. ZrCl4 catalysed diastereoselective synthesis of spirocarbocyclic oxindoles via [4+2] cycloaddition. ChemistrySelect, 2016, 1, 2409-2412.
[http://dx.doi.org/10.1002/slct.201600447]
(c)Kumar, K.; Konar, D.; Goyal, S.; Gangar, M.; Chouhan, M.; Rawal, R.K.; Nair, V.A. AlCl3/Cyclohexane mediated electrophilic activation of isothiocyanates: An efficient synthesis of thioamides. ChemistrySelect, 2016, 1, 3228-3231.
[http://dx.doi.org/10.1002/slct.201600601]
(d)Kumar, K.; Konar, D.; Goyal, S.; Gangar, M.; Chouhan, M.; Rawal, R.K.; Nair, V.A. Water-promoted regiospecific azidolysis and copper-catalyzed azide-alkyne cycloaddition: One-pot synthesis of 3-hydroxy-1-alkyl-3-[(4-aryl/alkyl-1H-1,2,3-triazol-1-yl)methyl]indolin-2-ones. J. Org. Chem., 2016, 81(20), 9757-9764.
[http://dx.doi.org/10.1021/acs.joc.6b01819] [PMID: 27657181]
(e)Kumar, K.; More, S.S.; Khatik, G.L.; Rawal, R.K.; Nair, V.A. A highly stereoselective chiral auxiliary-assisted reductive cyclization to furoindoline. J. Heterocycl. Chem., 2017, 54, 2696-2702.
[http://dx.doi.org/10.1002/jhet.2870]
(f)Manjal, S.K.; Pathania, S.; Bhatia, R.; Kaur, R.; Kumar, K.; Rawal, R.K. Diversified synthetic strategies for pyrroloindoles: An overview. J. Heterocycl. Chem., 2019, 56, 2318-2332.
[http://dx.doi.org/10.1002/jhet.3661]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy