Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

In Vivo Biological Evaluation of Ethyl 4-(7-hydroxy-4-methyl-2-oxoquinolin-1- ylamino)-coumarin-3-carboxylate as an Antitumor Agent

Author(s): Faten Z. Mohammed, Youstina W. Rizzk*, Moustafa S. Abdelhamid and Ibrahim M. El-Deen

Volume 20, Issue 18, 2020

Page: [2246 - 2266] Pages: 21

DOI: 10.2174/1871520620666200728131219

Price: $65

Abstract

Background: Hybridization of coumarin moiety with additional antitumor pharmacophores is an auspicious stratagem to afford precious therapeutic interference for the medication of cancer.

Objective: The present study aimed to evaluate the antitumor activity of ethyl 4-(7-hydroxy-4-methyl-2- oxoquinolin-1-ylamino)-coumarin-3-carboxylate against Ehrlich Ascites Carcinoma (EAC) cells in the peritoneal cavity of female mice.

Methodology: Molecular docking was used to predict the binding between the test compound and the receptor of breast cancer mutant 3HB5-oxidoreductase, as well as the viability of tumor cells and life span prolongation. The total anti-oxidant capacity was evaluated in the liver and kidneys. Serum alanine transaminase, aspartate transaminase, albumin, total protein, creatinine, and urea were estimated. The concentrations of Bcl-2 and Bax were measured in the liver and kidney tissues. Histopathological examination of the liver and kidney tissues was also carried out.

Results: EAC-bearing mice injected with the test compound showed a highly significant decrease in tumor cell viability by 100%, compared to the EAC control. Also, it exhibited significant anti-oxidant and apoptotic agents through the results of total anti-oxidant capacity and apoptosis assays. Confirmed by histological examination, the results of the liver and kidney function tests revealed that the test compound had no harmful effect on either of the organs.

The docking investigation disclosed an auspicious interaction between the test compound and the receptor (3HB5). To confirm these results, correlations between different parameters were carried out. It was found that there were significant positive and negative correlations between the parameters.

Conclusion: Hybrid molecules containing coumarin and quinolinone exhibited a potential antitumor effect against EAC cells by the induction of apoptosis and anti-oxidant activities. Results of liver and kidney function tests and the histopathological study revealed that the administration of the test compound nullified most of the pathological alterations induced by EAC cells in mice. Based on these findings, the test compound can be developed as an effective chemotherapeutic agent.

Keywords: Coumarin, quinolinone, ehrlich ascites carcinoma, antitumor, antioxidant, apoptosis.

Graphical Abstract

[1]
Rizzk, Y.W.; El-Deen, I.M.; Mohammed, F.Z.; Abdelhamid, M.S.; Khedr, A.I.M. In vitro antitumor evaluation of some hybrid molecules containing coumarin and quinolinone moieties. Anticancer. Agents Med. Chem., 2019, 19(16), 2010-2018.
[http://dx.doi.org/10.2174/1871520619666190930143856] [PMID: 31566140]
[2]
Kurt, B.Z.; Ozten Kandas, N.; Dag, A.; Sonmez, F.; Kucukislamoglu, M. Synthesis and biological evaluation of novel coumarin-chalcone derivatives containing urea moiety as potential anticancer agents. Arab. J. Chem., 2020, 13, 1120-1129.
[http://dx.doi.org/10.1016/j.arabjc.2017.10.001]
[3]
Gaspar, A.; Mohabbati, M.; Cagide, F.; Razzaghi-Asl, N.; Miri, R.; Firuzi, O.; Borges, F. Searching for new cytotoxic agents based on chromen-4-one and chromane-2,4-dione scaffolds. Res. Pharm. Sci., 2019, 14(1), 74-83.
[http://dx.doi.org/10.4103/1735-5362.251855] [PMID: 30936935]
[4]
Pushkar, S.; Tejas, P.; Suhas, P. Applications of coumarins as cardiovascular and anti-cancer agents: A short review. J. Cardiol.Cardiovasc. Ther, 2017, 8, 555749-555755.
[5]
Jalhan, S.; Singh, S.; Saini, R.; Sethi, N.S.K.; Jain, U. Various biological activities of coumarin and oxadiazole derivatives. Asian J. Pharm. Clin. Res, 2017, 10, 38-43.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i7.18461]
[6]
Ibrahim, D.; Jumal, J.; Harun, F. Cytotoxic activity of coumarin derivatives and their complexes. Int. J. Res, 2015, 2, 132-151.
[7]
Morris, G.; Goodsell, D.; Halliday, R.; Huey, R.; Hart, W.; Belew, R.; Olson, A. Automated docking using Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19, 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639: AID-JCC10>3.0.CO;2-B]
[8]
Solis, F.J.; Wets, R.J-B. Minimization by random search techniques. Math. Oper. Res., 1981, 6, 19-30.
[http://dx.doi.org/10.1287/moor.6.1.19]
[9]
Bikadi, Z.; Hazai, E. Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. J. Cheminform., 2009, 1, 15-31.
[http://dx.doi.org/10.1186/1758-2946-1-15] [PMID: 20150996]
[10]
Mohammed, F.Z.; Elsayed, E.H.; Elbaky, A.E.A.; Shalaby, H.M. In vivo study on organometallic compounds as anticancer agents. Asian J. Res. Biochem, 2019, 5, 1-8.
[http://dx.doi.org/10.9734/ajrb/2019/v5i130082]
[11]
Meier, J.; Theakston, R.D.G. Approximate LD50 determinations of snake venoms using eight to ten experimental animals. Toxicon, 1986, 24(4), 395-401.
[http://dx.doi.org/10.1016/0041-0101(86)90199-6] [PMID: 3715904]
[12]
Crump, K.S.; Hoel, D.G.; Langley, C.H.; Peto, R. Fundamental carcinogenic processes and their implications for low dose risk assessment. Cancer Res., 1976, 36(9 pt.1), 2973-2979.
[PMID: 975067]
[13]
McLimans, W.F.; Davis, E.V.; Glover, F.L.; Rake, G.W. The submerged culture of mammalian cells; the spinner culture. J. Immunol., 1957, 79(5), 428-433.
[PMID: 13491853]
[14]
Saad, R.A.; El-Bab, M.F.; Shalaby, A.A. Attenuation of acute and chronic liver injury by melatonin in rats. J. Taibah Univ. Sci., 2013, 7, 88-96.
[http://dx.doi.org/10.1016/j.jtusci.2013.04.008]
[15]
Abdel Salam, N.G. Some Biochemical Studies on Neem (Azadirachtaindica). Master Degree Thesis, Cairo University, Cairo, Egypt, 2016.
[16]
Mazumdar, U.K.; Gupta, M.; Maiti, S.; Mukherjee, D. Antitumor activity of Hygrophila spinosa on Ehrlich ascites carcinoma and sarcoma-180 induced mice. Indian J. Exp. Biol., 1997, 35(5), 473-477.
[PMID: 9378516]
[17]
Koracevic, D.; Koracevic, G.; Djordjevic, V.; Andrejevic, S.; Cosic, V. Method for the measurement of antioxidant activity in human fluids. J. Clin. Pathol., 2001, 54(5), 356-361.
[http://dx.doi.org/10.1136/jcp.54.5.356] [PMID: 11328833]
[18]
Doumas, B.T.; Watson, W.A.; Biggs, H.G. Albumin standards and the measurement of serum albumin with bromcresol green. Clin. Chim. Acta, 1971, 31(1), 87-96.
[http://dx.doi.org/10.1016/0009-8981(71)90365-2] [PMID: 5544065]
[19]
Doumas, B.T.; Bayse, D.D.; Carter, R.J.J. Peters, T.; Schaffer, R. A candidate reference method for determination of total proteins in serum. I. Development and validation, II. Tests for transferability. Clin. Chem., 1981, 27, 1642-1654.
[http://dx.doi.org/10.1093/clinchem/27.10.1642] [PMID: 6169466]
[20]
Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol., 1957, 28(1), 56-63.
[http://dx.doi.org/10.1093/ajcp/28.1.56] [PMID: 13458125]
[21]
Murray, R.L. Creatinine. In:Clinical Chemistry; Theory, Analysis and Correlation; Kaplan, L.A.; Pesce, A.J., Eds.; CV Mosby Co: St. Louis, 1984, pp. 1247-1253.
[22]
Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem., 1962, 8, 130-132.
[http://dx.doi.org/10.1093/clinchem/8.2.130] [PMID: 13878063]
[23]
Bancroft, J.D.; Suvarna, K.; Layton, C. Bancroft’s Theory and Practice of Histological Techniques, 7th ed; Elsevier: Netherlands, 2012.
[24]
Garber, C. MedCalc Software for Statistics in Medicine. MedCalc Software, Broekstraat 52, 9030 Mariakerke, Belgium, $399.00. Clin. Chem., 1998, 44, 1370-1370.
[http://dx.doi.org/10.1093/clinchem/44.6.1370]
[25]
Pan-cancer analysis of whole genomes. Nature, 2020, 578, 82-93.
[http://dx.doi.org/10.1038/s41586-020-1969-6]
[26]
Islam, M.S.; Rahi, M.S.; Jahangir, C.A.; Rahman, M.H.; Jerin, I.; Amin, R.; Hoque, K.M.F.; Reza, M.A. In vivo anticancer activity of Basella alba leaf and seed extracts against Ehrlich’s Ascites Carcinoma (EAC) cell line. Evid. Based Complement. Alternat. Med., 2018, 20181537896
[http://dx.doi.org/10.1155/2018/1537896] [PMID: 30581479]
[27]
Ramos-Inza, S.; Aydillo, C.; Sanmartín, C.; Plano, D. Thiazole Moiety: An Interesting Scaffold for Developing New Antitumoral Compounds. In:Heterocycles - Synthesis and Biological Activities; Nandeshwarappa, B.P.; Sadashiv, S.O., Eds.; InTech Open: UK, 2019.
[28]
Salem, M.A.; Marzouk, M.I.; El-Kazak, A.M. Synthesis and characterization of some new coumarins with in vitro antitumor and antioxidant activity and high protective effects against DNA damage. Molecules, 2016, 21(2), 249-269.
[http://dx.doi.org/10.3390/molecules21020249] [PMID: 26907244]
[29]
Ahmed, E.Y.; Abdel Latif, N.A.; El-Mansy, M.F.; Elserwy, W.S.; Abdelhafez, O.M. VEGFR-2 inhibiting effect and molecular modeling of newly synthesized coumarin derivatives as anti-breast cancer agents. Bioorg. Med. Chem., 2020, 28(5), 115328-115358.
[http://dx.doi.org/10.1016/j.bmc.2020.115328] [PMID: 31992477]
[30]
Dandriyal, J.; Singla, R.; Kumar, M.; Jaitak, V. Recent developments of C-4 substituted coumarin derivatives as anticancer agents. Eur. J. Med. Chem., 2016, 119, 141-168.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.087] [PMID: 27155469]
[31]
Pangal, A.A.; Gazge, M.; Mane, V.; Shaikh, J.A. Various pharmacological aspects of coumarin derivatives: A review. Int. J. Pharm. Res. Biol. Sci., 2017, 2, 168-194.
[32]
Yerer, M.B.; Dayan, S.; Han, M.I.; Sharma, A.; Tuli, H.S.; Sak, K. Nanoformulations of coumarins and the hybrid molecules of coumarins with anticancer effects. Anticancer. Agents Med. Chem., 2020, 20, 1.
[http://dx.doi.org/10.2174/1871520620666200310094646] [PMID: 32156246]
[33]
Prashanth, T.; Avin, B.R.V.; Thirusangu, P.; Ranganatha, V.L.; Prabhakar, B.T.; Sharath Chandra, J.N.N.; Khanum, S.A. Synthesis of coumarin analogs appended with quinoline and thiazole moiety and their apoptogenic role against murine ascitic carcinoma. Biomed. Pharmacother., 2019, 112108707
[http://dx.doi.org/10.1016/j.biopha.2019.108707] [PMID: 30970513]
[34]
Saidu, N.E.; Valente, S.; Bana, E.; Kirsch, G.; Bagrel, D.; Montenarh, M. Coumarin polysulfides inhibit cell growth and induce apoptosis in HCT116 colon cancer cells. Bioorg. Med. Chem., 2012, 20(4), 1584-1593.
[http://dx.doi.org/10.1016/j.bmc.2011.12.032] [PMID: 22264758]
[35]
Rubio, C.P.; Hernández-Ruiz, J.; Martinez-Subiela, S.; Tvarijonaviciute, A.; Ceron, J.J. Spectrophotometric assays for Total Antioxidant Capacity (TAC) in dog serum: An update. BMC Vet. Res., 2016, 12(1), 166-166.
[http://dx.doi.org/10.1186/s12917-016-0792-7] [PMID: 27526688]
[36]
Pisoschi, A.; Negulescu, G. Methods for total antioxidant activity determination: A review. Biochem. Anal. Biochem., 2012, 1, 106-116.
[http://dx.doi.org/10.4172/2161-1009.1000106]
[37]
Saad, E.A.; Hassanien, M.M.; El-Mezayen, H.A. ELmenawy, N.M. Regression of murine Ehrlich ascites carcinoma using synthesized cobalt complex. MedChemComm, 2017, 8(5), 1103-1111.
[http://dx.doi.org/10.1039/C6MD00618C] [PMID: 30108821]
[38]
Al-Amiery, A.A.; Al-Majedy, Y.K.; Kadhum, A.A.H.; Mohamad, A.B. Hydrogen peroxide scavenging activity of novel coumarins synthesized using different approaches. PLoS One, 2015, 10(7)e0132175
[http://dx.doi.org/10.1371/journal.pone.0132175] [PMID: 26147722]
[39]
Khalil, R.R.; Mustafa, Y.F. Phytochemical, antioxidant and antitumor studies of coumarins extracted from Granny Smith Apple seeds by different methods. Syst. Rev. Pharm, 2020, 11, 57-63.
[40]
Nafis, S.; Kalaiarasan, P.; Brojen Singh, R.K.; Husain, M.; Bamezai, R.N.K. Apoptosis regulatory protein-protein interaction demonstrates hierarchical scale-free fractal network. Brief. Bioinform., 2015, 16(4), 675-699.
[http://dx.doi.org/10.1093/bib/bbu036] [PMID: 25256288]
[41]
Vázquez, R.; Riveiro, M.E.; Vermeulen, M.; Mondillo, C.; Coombes, P.H.; Crouch, N.R.; Ismail, F.; Mulholland, D.A.; Baldi, A.; Shayo, C.; Davio, C. Toddaculin, a natural coumarin from Toddalia asiatica, induces differentiation and apoptosis in U-937 leukemic cells. Phytomedicine, 2012, 19(8-9), 737-746.
[http://dx.doi.org/10.1016/j.phymed.2012.03.008] [PMID: 22537907]
[42]
Kaur, M.; Kohli, S.; Sandhu, S.; Bansal, Y.; Bansal, G. Coumarin: A promising scaffold for anticancer agents. Anticancer. Agents Med. Chem., 2015, 15(8), 1032-1048.
[http://dx.doi.org/10.2174/1871520615666150101125503] [PMID: 25553437]
[43]
Cheraghi, O.; Dehghan, G.; Mahdavi, M.; Rahbarghazi, R.; Rezabakhsh, A.; Charoudeh, H.N.; Iranshahi, M.; Montazersaheb, S. Potent anti-angiogenic and cytotoxic effect of conferone on human colorectal adenocarcinoma HT-29 cells. Phytomedicine, 2016, 23(4), 398-405.
[http://dx.doi.org/10.1016/j.phymed.2016.01.015] [PMID: 27002410]
[44]
Abdel Moneim, A. Antioxidant activities of Punica granatum (pomegranate) peel extract on brain of rats. J. Med. Plants Res., 2012, 6, 195-199.
[http://dx.doi.org/10.5897/JMPR11.500]
[45]
Sunil, D.; Isloor, A.M.; Shetty, P.; Nayak, P.G.; Pai, K.S.R. In vivo anticancer and histopathology studies of Schiff bases on Ehrlich ascitic carcinoma cells: 1st Cancer Update. Arab. J. Chem., 2013, 6, 25-33.
[http://dx.doi.org/10.1016/j.arabjc.2010.12.016]
[46]
Aldubayan, M.A.; Elgharabawy, R.M.; Ahmed, A.S.; Tousson, E. Antineoplastic activity and curative role of avenanthramides against the growth of ehrlich solid tumors in mice. Oxid. Med. Cell. Longev., 2019, 20195162687
[http://dx.doi.org/10.1155/2019/5162687] [PMID: 30755785]
[47]
Smith, G.S.; Walter, G.L.; Walker, R.M. Chapter 18 - Clinical Pathology in Non-Clinical Toxicology Testing. In: Haschek and Rousseaux's Handbook of Toxicologic Pathology (Third Edition). Haschek, W.M.; Rousseaux, C.G.; In: Wallig. M.A. Academic Press: Boston; , 2013; pp. 565-594.
[48]
Okoro, R.N.; Farate, V.T. The use of nephrotoxic drugs in patients with chronic kidney disease. Int. J. Clin. Pharm., 2019, 41(3), 767-775.
[http://dx.doi.org/10.1007/s11096-019-00811-9] [PMID: 30900109]
[49]
Adeshina, A.; Solomon, J. Urea and Creatinine of clarias gariepinus in three commercial ponds. Nat. Sci., 2014, 12, 124-138.
[50]
Salazar, J.H. Overview of urea and creatinine. Lab. Med., 2014, 45, 19-20.
[http://dx.doi.org/10.1309/LM920SBNZPJRJGUT]
[51]
Abd Eldaim, M.A.; Tousson, E.; El Sayed, I.E.T.; Awd, W.M. Ameliorative effects of Saussurea lappa root aqueous extract against Ethephon-induced reproductive toxicity in male rats. Environ. Toxicol., 2019, 34(2), 150-159.
[http://dx.doi.org/10.1002/tox.22669] [PMID: 30315693]
[52]
Mutar, T.F.; Tousson, E.; Hafez, E.; Abo Gazia, M.; Salem, S.B. Ameliorative effects of vitamin B17 on the kidney against Ehrlich ascites carcinoma induced renal toxicity in mice. Environ. Toxicol., 2020, 35(4), 528-537.
[http://dx.doi.org/10.1002/tox.22888] [PMID: 31821727]
[53]
Sethi, A.; Joshi, K.; Sasikala, K.; Alvala, M. Molecular docking in modern drug discovery: Principles and Recent Applications. In:Drug Discovery and Development - New Advances; Gaitonde, V.; Karmakar, P.; Trivedi, A., Eds.; InTech Open: UK, 2019.
[54]
El-Bindary, A.; El-Sonbati, A.; Diab, M.; El-Ghamaz, N.; Shoair, A.; Nozha, S. Potentiometric studies and molecular docking of quinoline Schiff base and its metal complexes. J. Chem., 2016, 7, 1934-1947.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy