Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Current Strategies and Novel Drug Approaches for Alzheimer Disease

Author(s): Roma Ghai*, Kandasamy Nagarajan, Meenakshi Arora, Parul Grover, Nazakat Ali and Garima Kapoor

Volume 19, Issue 9, 2020

Page: [676 - 690] Pages: 15

DOI: 10.2174/1871527319666200717091513

Price: $65

Abstract

Alzheimer’s Disease (AD) is a chronic, devastating dysfunction of neurons in the brain leading to dementia. It mainly arises due to neuronal injury in the cerebral cortex and hippocampus area of the brain and is clinically manifested as a progressive mental failure, disordered cognitive functions, personality changes, reduced verbal fluency and impairment of speech. The pathology behind AD is the formation of intraneuronal fibrillary tangles, deposition of amyloid plaque and decline in choline acetyltransferase and loss of cholinergic neurons. Tragically, the disease cannot be cured, but its progression can be halted. Various cholinesterase inhibitors available in the market like Tacrine, Donepezil, Galantamine, Rivastigmine, etc. are being used to manage the symptoms of Alzheimer’s disease. The paper’s objective is to throw light not only on the cellular/genetic basis of the disease, but also on the current trends and various strategies of treatment including the use of phytopharmaceuticals and nutraceuticals. Enormous literature survey was conducted and published articles of PubMed, Scifinder, Google Scholar, Clinical Trials.org and Alzheimer Association reports were studied intensively to consolidate the information on the strategies available to combat Alzheimer’s disease. Currently, several strategies are being investigated for the treatment of Alzheimer’s disease. Immunotherapies targeting amyloid-beta plaques, tau protein and neural pathways are undergoing clinical trials. Moreover, antisense oligonucleotide methodologies are being approached as therapies for its management. Phytopharmaceuticals and nutraceuticals are also gaining attention in overcoming the symptoms related to AD. The present review article concludes that novel and traditional therapies simultaneously promise future hope for AD treatment.

Keywords: Amyloid plaque, antisense oligonucleotides, neurofibrillary tangles, nutraceuticals, phytopharmaceuticals, tau protein.

Graphical Abstract

[1]
Hippius H, Neundörfer G. The discovery of Alzheimer’s disease. Dialogues Clin Neurosci 2003; 5(1): 101-8.
[PMID: 22034141]
[2]
Terracciano A, Sutin AR. Personality and Alzheimer’s disease: an integrative review. Pers Disord 2019; 10(1): 4-12.
[http://dx.doi.org/10.1037/per0000268 ] [PMID: 30604979]
[3]
Paulson JB, Ramsden M, Forster C, Sherman MA, McGowan E, Ashe KH. Amyloid plaque and neurofibrillary tangle pathology in a regulatable mouse model of Alzheimer’s disease. Am J Pathol 2008; 173(3): 762-72.
[http://dx.doi.org/10.2353/ajpath.2008.080175 ] [PMID: 18669616]
[4]
Ballinger EC, Ananth M, Talmage DA, Role LW. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 2016; 91(6): 1199-218.
[http://dx.doi.org/10.1016/j.neuron.2016.09.006 ] [PMID: 27657448]
[5]
Bakkour A, Morris JC, Wolk DA, Dickerson BC. The effects of aging and Alzheimer’s disease on cerebral cortical anatomy: specificity and differential relationships with cognition. Neuroimage 2013; 76: 332-44.
[http://dx.doi.org/10.1016/j.neuroimage.2013.02.059 ] [PMID: 23507382]
[6]
Todd S, Barr S, Passmore AP. Cause of death in Alzheimer’s disease: a cohort study. QJM 2013; 106(8): 747-53.
[http://dx.doi.org/10.1093/qjmed/hct103 ] [PMID: 23653484]
[7]
Prince M. World Alzheimer Report 2016 Improving healthcare for people living with dementia Coverage, quality costs now and in the future Available from: https://www.alz.co.uk/research/world-report-2016
[8]
2019.Alzheimer’s Statistics Available from: https://www.alzheimers.net/resources/alzheimers-statistics
[9]
Scharfman HE, Chao MV. The entorhinal cortex and neurotrophin signaling in Alzheimer’s disease and other disorders. Cogn Neurosci 2013; 4(3-4): 123-35.
[http://dx.doi.org/10.1080/17588928.2013.826184 ] [PMID: 24168199]
[10]
Stages of Alzheimer's Available from Alzheimer Association https://www.alz.org/alzheimers-dementia/stages
[11]
Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 270-9.
[http://dx.doi.org/10.1016/j.jalz.2011.03.008 ] [PMID: 21514249]
[12]
Aisen PS, Cummings J, Jack CR Jr, et al. On the path to 2025: understanding the Alzheimer’s disease continuum. Alzheimers Res Ther 2017; 9(1): 60.
[http://dx.doi.org/10.1186/s13195-017-0283-5 ] [PMID: 28793924]
[13]
Petersen RC, Roberts RO, Knopman DS, et al. Mild cognitive impairment: ten years later. Arch Neurol 2009; 66(12): 1447-55.
[http://dx.doi.org/10.1001/archneurol.2009.266 ] [PMID: 20008648]
[14]
Sochocka M, Zwolińska K, Leszek J. The infectious etiology of Alzheimer’s disease. Curr Neuropharmacol 2017; 15(7): 996-1009.
[http://dx.doi.org/10.2174/1570159X15666170313122937 ] [PMID: 28294067]
[15]
Heyman A, Wilkinson WE, Hurwitz BJ, et al. Alzheimer’s disease: genetic aspects and associated clinical disorders. Ann Neurol 1983; 14(5): 507-15.
[http://dx.doi.org/10.1002/ana.410140503 ] [PMID: 6228188]
[16]
Goate A, Chartier-Harlin MC, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 1991; 349(6311): 704-6.
[http://dx.doi.org/10.1038/349704a0 ] [PMID: 1671712]
[17]
Sherrington R, Rogaev EI, Liang Y, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995; 375(6534): 754-60.
[http://dx.doi.org/10.1038/375754a0 ] [PMID: 7596406]
[18]
O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 2011; 34: 185-204.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113613 ] [PMID: 21456963]
[19]
Teunissen CE, Chiu MJ, Yang CC, et al. Plasma amyloid-β (Aβ42) correlates with cerebrospinal fluid Aβ42 in Alzheimer’s disease. J Alzheimers Dis 2018; 62(4): 1857-63.
[http://dx.doi.org/10.3233/JAD-170784 ] [PMID: 29614646]
[20]
Castro P, Zaman S, Holland A. Alzheimer’s disease in people with Down’s syndrome: the prospects for and the challenges of developing preventative treatments. J Neurol 2017; 264(4): 804-13.
[http://dx.doi.org/10.1007/s00415-016-8308-8 ] [PMID: 27778163]
[21]
Wiseman FK, Al-Janabi T, Hardy J, et al. A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat Rev Neurosci 2015; 16(9): 564-74.
[http://dx.doi.org/10.1038/nrn3983 ] [PMID: 26243569]
[22]
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98(2): 813-80.
[http://dx.doi.org/10.1152/physrev.00011.2017 ] [PMID: 29488822]
[23]
Kolarova M, García-Sierra F, Bartos A, Ricny J, Ripova D. Structure and pathology of tau protein in Alzheimer disease. Int J Alzheimers Dis 2012; 2012(731526)731526
[http://dx.doi.org/10.1155/2012/731526 ] [PMID: 22690349]
[24]
Brion JP. Neurofibrillary tangles and Alzheimer’s disease. Eur Neurol 1998; 40(3): 130-40.
[http://dx.doi.org/10.1159/000007969 ] [PMID: 9748670]
[25]
Roses AD. On the discovery of the genetic association of Apolipoprotein E genotypes and common late-onset Alzheimer disease. J Alzheimers Dis 2006; 9(3)(Suppl.): 361-6.
[http://dx.doi.org/10.3233/JAD-2006-9S340 ] [PMID: 16914873]
[26]
Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993; 261(5123): 921-3.
[http://dx.doi.org/10.1126/science.8346443 ] [PMID: 8346443]
[27]
Corder EH, Saunders AM, Risch NJ, et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 1994; 7(2): 180-4.
[http://dx.doi.org/10.1038/ng0694-180 ] [PMID: 7920638]
[28]
Farrer LA, Cupples LA, Haines JL, et al. APOE and Alzheimer Disease Meta Analysis Consortium. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. JAMA 1997; 278(16): 1349-56.
[http://dx.doi.org/10.1001/jama.1997.03550160069041 ] [PMID: 9343467]
[29]
Bellou V, Belbasis L, Tzoulaki I, Middleton LT, Ioannidis JPA, Evangelou E. Systematic evaluation of the associations between environmental risk factors and dementia: an umbrella review of systematic reviews and meta-analyses. Alzheimers Dement 2017; 13(4): 406-18.
[http://dx.doi.org/10.1016/j.jalz.2016.07.152 ] [PMID: 27599208]
[30]
Gu Y, Scarmeas N. Dietary patterns in Alzheimer’s disease and cognitive aging. Curr Alzheimer Res 2011; 8(5): 510-9.
[http://dx.doi.org/10.2174/156720511796391836 ] [PMID: 21605048]
[31]
Reitz C, Mayeux R. Genetics of Alzheimer’s disease in Caribbean Hispanic and African American populations. Biol Psychiatry 2014; 75(7): 534-41.
[http://dx.doi.org/10.1016/j.biopsych.2013.06.003 ] [PMID: 23890735]
[32]
Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am J Public Health 1998; 88(9): 1337-42.
[http://dx.doi.org/10.2105/AJPH.88.9.1337 ] [PMID: 9736873]
[33]
Mayor S. Twin study shows that genetic factors influence the development and timing of Alzheimer’s disease. BMJ 2006; 332(7537): 324.
[http://dx.doi.org/10.1136/bmj.332.7537.324-b ] [PMID: 16470039]
[34]
Visscher PM, Wray NR, Zhang Q, et al. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet 2017; 101(1): 5-22.
[http://dx.doi.org/10.1016/j.ajhg.2017.06.005 ] [PMID: 28686856]
[35]
Barral S, Cheng R, Reitz C, et al. Linkage analyses in Caribbean Hispanic families identify novel loci associated with familial late-onset Alzheimer’s disease. Alzheimers Dement 2015; 11(12): 1397-406.
[http://dx.doi.org/10.1016/j.jalz.2015.07.487 ] [PMID: 26433351]
[36]
Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol 2016; 14(1): 101-15.
[http://dx.doi.org/10.2174/1570159X13666150716165726 ] [PMID: 26813123]
[37]
Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol Med Rep 2019; 20(2): 1479-87.
[http://dx.doi.org/10.3892/mmr.2019.10374] [PMID: 31257471]
[38]
Magi S, Castaldo P, Macrì ML, et al. Intracellular calcium dysregulation: implications for Alzheimer’s disease. BioMed Res Int 2016; 20166701324
[http://dx.doi.org/10.1155/2016/6701324 ] [PMID: 27340665]
[39]
Jadiya P, Kolmetzky DW, Tomar D, et al. Impaired mitochondrial calcium efflux contributes to disease progression in models of Alzheimer’s disease. Nat Commun 2019; 10(1): 3885.
[http://dx.doi.org/10.1038/s41467-019-11813-6 ] [PMID: 31467276]
[40]
Palty R, Silverman WF, Hershfinkel M, et al. NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci USA 2010; 107(1): 436-41.
[http://dx.doi.org/10.1073/pnas.0908099107 ] [PMID: 20018762]
[41]
Bhardwaj M, Patil VM, Dhiman R, Gupta SP, Masand N. Anti-acetylcholinesterase derivatives: A priviledged structural framework in drug discovery to treat Alzheimer’s disease. Curr Enzym Inhib 2019; 15: 8.
[http://dx.doi.org/10.2174/1573407215666190111150241]
[42]
Blasko I, Grubeck-Loebenstein B. Role of the immune system in the pathogenesis, prevention and treatment of Alzheimer’s disease. Drugs Aging 2003; 20(2): 101-13.
[http://dx.doi.org/10.2165/00002512-200320020-00002 ] [PMID: 12534311]
[43]
Puzzo D, Gulisano W, Palmeri A, Arancio O. Rodent models for Alzheimer’s disease drug discovery. Expert Opin Drug Discov 2015; 10(7): 703-11.
[http://dx.doi.org/10.1517/17460441.2015.1041913 ] [PMID: 25927677]
[44]
Deane R, Bell RD, Sagare A, Zlokovic BV. Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer’s disease. CNS Neurol Disord Drug Targets 2009; 8(1): 16-30.
[http://dx.doi.org/10.2174/187152709787601867 ] [PMID: 19275634]
[45]
Deane R, Wu Z, Zlokovic BV. RAGE (yin) versus LRP (yang) balance regulates alzheimer amyloid beta-peptide clearance through transport across the blood-brain barrier. Stroke 2004; 35(11)(Suppl. 1): 2628-31.
[http://dx.doi.org/10.1161/01.STR.0000143452.85382.d1 ] [PMID: 15459432]
[46]
Duran-Aniotz C, Hetz C. Glucose metabolism: a sweet relief of Alzheimer’s disease. Curr Biol 2016; 26(17): R806-9.
[http://dx.doi.org/10.1016/j.cub.2016.07.060 ] [PMID: 27623263]
[47]
Niccoli T, Cabecinha M, Tillmann A, et al. Increased glucose transport into neurons rescues Aβ toxicity in drosophila. Curr Biol 2016; 26(17): 2291-300.
[http://dx.doi.org/10.1016/j.cub.2016.07.017 ] [PMID: 27524482]
[48]
Miklossy J. Emerging roles of pathogens in Alzheimer disease. Expert Rev Mol Med 2011; 13e30
[http://dx.doi.org/10.1017/S1462399411002006 ] [PMID: 21933454]
[49]
Hogestyn JM, Mock DJ, Mayer-Proschel M. Contributions of neurotropic human herpesviruses herpes simplex virus 1 and human herpesvirus 6 to neurodegenerative disease pathology. Neural Regen Res 2018; 13(2): 211-21.
[http://dx.doi.org/10.4103/1673-5374.226380 ] [PMID: 29557362]
[50]
Itzhaki RF. Corroboration of a major role for herpes simplex virus type 1 in Alzheimer’s disease. Front Aging Neurosci 2018; 10: 324.
[http://dx.doi.org/10.3389/fnagi.2018.00324 ] [PMID: 30405395]
[51]
Readhead B, Haure-Mirande JV, Funk CC, et al. Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron 2018; 99(1): 64-82.e7.
[http://dx.doi.org/10.1016/j.neuron.2018.05.023 ] [PMID: 29937276]
[52]
Devanand DP. Viral hypothesis and antiviral treatment in Alzheimer’s disease. Curr Neurol Neurosci Rep 2018; 18(9): 1-34.
[http://dx.doi.org/10.1007/s11910-018-0863-1]
[53]
Castro DM, Dillon C, Machnicki G, Allegri RF. The economic cost of Alzheimer’s disease: family or public health burden? Dement Neuropsychol 2010; 4(4): 262-7.
[http://dx.doi.org/10.1590/S1980-57642010DN40400003 ] [PMID: 29213697]
[54]
Tan CC, Yu JT, Wang HF, et al. Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis 2014; 41(2): 615-31.
[http://dx.doi.org/10.3233/JAD-132690 ] [PMID: 24662102]
[55]
Mendiola-Precoma J, Berumen LC, Padilla K, Garcia-Alcocer G. Therapies for prevention and treatment of Alzheimer’s Disease. BioMed Res Int 2016; 20162589276
[http://dx.doi.org/10.1155/2016/2589276 ] [PMID: 27547756]
[56]
Crismon ML. Tacrine: first drug approved for Alzheimer’s disease. Ann Pharmacother 1994; 28(6): 744-51.
[http://dx.doi.org/10.1177/106002809402800612 ] [PMID: 7919566]
[57]
Watkins PB, Zimmerman HJ, Knapp MJ, Gracon SI, Lewis KW. Hepatotoxic effects of tacrine administration in patients with Alzheimer’s disease. JAMA 1994; 271(13): 992-8.
[http://dx.doi.org/10.1001/jama.1994.03510370044030 ] [PMID: 8139084]
[58]
Birks JS, Grimley Evans J. Rivastigmine for Alzheimer’s disease. Cochrane Database Syst Rev 2015; (4): CD001191
[http://dx.doi.org/10.1002/14651858.CD001191.pub3 ] [PMID: 25858345]
[59]
Olin J, Schneider L. Galantamine for Alzheimer’s disease. Cochrane Database Syst Rev 2002; (3): CD001747
[PMID: 12137632]
[60]
van Marum RJ. Update on the use of memantine in Alzheimer’s disease. Neuropsychiatr Dis Treat 2009; 5: 237-47.
[http://dx.doi.org/10.2147/NDT.S4048 ] [PMID: 19557118]
[61]
Tampi RR, Tampi DJ, Balachandran S, Srinivasan S. Antipsychotic use in dementia: a systematic review of benefits and risks from meta-analyses. Ther Adv Chronic Dis 2016; 7(5): 229-45.
[http://dx.doi.org/10.1177/2040622316658463 ] [PMID: 27583123]
[62]
Lemere CA, Masliah E. Can Alzheimer disease be prevented by amyloid-β immunotherapy? Nat Rev Neurol 2010; 6(2): 108-19.
[http://dx.doi.org/10.1038/nrneurol.2009.219 ] [PMID: 20140000]
[63]
Cummings J, Lee G, Mortsdorf T, Ritter A, Zhong K. Alzheimer’s disease drug development pipeline: 2017. Alzheimers Dement (N Y) 2017; 3(3): 367-84.
[http://dx.doi.org/10.1016/j.trci.2017.05.002 ] [PMID: 29067343]
[64]
van Dyck CH. Anti-amyloid-β monoclonal antibodies for Alzheimer’s disease: pitfalls and promise. Biol Psychiatry 2018; 83(4): 311-9.
[http://dx.doi.org/10.1016/j.biopsych.2017.08.010 ] [PMID: 28967385]
[65]
Knott EP, Assi M, Rao SN, Ghosh M, Pearse DD. Phosphodiesterase inhibitors as a therapeutic approach to neuroprotection and repair. Int J Mol Sci 2017; 18(4)E696
[http://dx.doi.org/10.3390/ijms18040696 ] [PMID: 28338622]
[66]
Reneerkens OA, Rutten K, Steinbusch HW, Blokland A, Prickaerts J. Selective phosphodiesterase inhibitors: a promising target for cognition enhancement. Psychopharmacology (Berl) 2009; 202(1-3): 419-43.
[http://dx.doi.org/10.1007/s00213-008-1273-x ] [PMID: 18709359]
[67]
Safieh M, Korczyn AD, Michaelson DM. ApoE4: an emerging therapeutic target for Alzheimer’s disease. BMC Med 2019; 17(1): 1-17.
[http://dx.doi.org/10.1186/s12916-019-1299-4]
[68]
Rosenberg JB, Kaplitt MG, De BP, et al. AAVrh.10-mediated APOE2 central nervous system gene therapy for APOE4-associated Alzheimer’s disease. Hum Gene Ther Clin Dev 2018; 29(1): 24-47.
[http://dx.doi.org/10.1089/humc.2017.231 ] [PMID: 29409358]
[69]
Jadhav S, Avila J, Schöll M, et al. A walk through tau therapeutic strategies. Acta Neuropathol Commun 2019; 7(1): 22.
[http://dx.doi.org/10.1186/s40478-019-0664-z ] [PMID: 30767766]
[70]
Pardridge WM. Peptide drug delivery to the brain. New York: Raven Press 1991; pp. 1-357.
[71]
Pardridge WM. Drug delivery to the brain. J Cereb Blood Flow Metab 1997; 17(7): 713-31.
[http://dx.doi.org/10.1097/00004647-199707000-00001 ] [PMID: 9270488]
[72]
Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res 2016; 44(14): 6518-48.
[http://dx.doi.org/10.1093/nar/gkw236 ] [PMID: 27084936]
[73]
Khorkova O, Wahlestedt C. Oligonucleotide therapies for disorders of the nervous system. Nat Biotechnol 2017; 35(3): 249-63.
[http://dx.doi.org/10.1038/nbt.3784 ] [PMID: 28244991]
[74]
Darras BT, Chiriboga CA, Iannaccone ST, et al. ISIS-396443-CS2/ISIS-396443-CS12 Study Groups. Nusinersen in later-onset spinal muscular atrophy: long-term results from the phase 1/2 studies. Neurology 2019; 92(21): e2492-506.
[http://dx.doi.org/10.1212/WNL.0000000000007527 ] [PMID: 31019106]
[75]
Tripathi AC, Saraf SA, Saraf SK. Carbon nanotropes: a contemporary paradigm in drug delivery. Materials (Basel) 2015; 8(6): 3068-100.
[http://dx.doi.org/10.3390/ma8063068]
[76]
Chen XY, Du YF, Chen L. Neuropeptides exert neuroprotective effects in Alzheimer’s Disease. Front Mol Neurosci 2019; 11: 493.
[http://dx.doi.org/10.3389/fnmol.2018.00493 ] [PMID: 30687008]
[77]
Sikorska M, Lanthier P, Miller H, et al. Nanomicellar formulation of coenzyme Q10 (Ubisol-Q10) effectively blocks ongoing neurodegeneration in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model: potential use as an adjuvant treatment in Parkinson’s disease. Neurobiol Aging 2014; 35(10): 2329-46.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.03.032 ] [PMID: 24775711]
[78]
Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, et al. Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target 2009; 17(8): 564-74.
[http://dx.doi.org/10.1080/10611860903112842 ] [PMID: 19694610]
[79]
Francis PT. The interplay of neurotransmitters in Alzheimer’s disease. CNS Spectr 2005; 10(11)(Suppl. 18): 6-9.
[http://dx.doi.org/10.1017/S1092852900014164 ] [PMID: 16273023]
[80]
Nishteswar K, Joshi H, Karra RD. Role of indigenous herbs in the management of Alzheimer’s disease. Anc Sci Life 2014; 34(1): 3-7.
[http://dx.doi.org/10.4103/0257-7941.150763 ] [PMID: 25737604]
[81]
Esfandiari E, Ghanadian M, Rashidi B, Mokhtarian A, Vatankhah AM. The effects of Acorus calamus L. in preventing memory loss, anxiety, and oxidative stress on lipopolysaccharide-induced neuroinflammation rat models. Int J Prev Med 2018; 9(1): 85.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_75_18 ] [PMID: 30450168]
[82]
Oh MH, Houghton PJ, Whang WK, Cho JH. Screening of Korean herbal medicines used to improve cognitive function for anti-cholinesterase activity. Phytomedicine 2004; 11(6): 544-8.
[http://dx.doi.org/10.1016/j.phymed.2004.03.001 ] [PMID: 15500267]
[83]
Budzynska B, Boguszewska-Czubara A, Kruk-Slomka M, et al. Effects of imperatorin on scopolamine-induced cognitive impairment and oxidative stress in mice. Psychopharmacology (Berl) 2015; 232(5): 931-42.
[http://dx.doi.org/10.1007/s00213-014-3728-6 ] [PMID: 25189792]
[84]
Sigurdsson S, Gudbjarnason S. Inhibition of acetylcholinesterase by extracts and constituents from Angelica archangelica and Geranium sylvaticum. Z Natforsch C J Biosci 2007; 62(9-10): 689-93.
[http://dx.doi.org/10.1515/znc-2007-9-1011 ] [PMID: 18069242]
[85]
Ray B, Chauhan NB, Lahiri DK. The “aged garlic extract:” (AGE) and one of its active ingredients S-Allyl-L-Cysteine (SAC) as potential preventive and therapeutic agents for Alzheimer’s disease (AD). Curr Med Chem 2011; 18(22): 3306-13.
[http://dx.doi.org/10.2174/092986711796504664 ] [PMID: 21728972]
[86]
Chauhan NB. Anti-amyloidogenic effect of Allium sativum in Alzheimer’s transgenic model Tg2576. J Herb Pharmacother 2003; 3(1): 95-107.
[http://dx.doi.org/10.1080/J157v03n01_05 ] [PMID: 15277073]
[87]
Mukherjee D, Banerjee S. Learning and memory promoting effects of crude garlic extract Ind J Experimen biol 2013; 51(12): 1094-0.
[88]
Nemat AZ, Yassina Siham MA. Effect of Boswellia serrata on Alzheimer’s disease induced in rats. JASMR 2013; 8: 1-11.
[89]
Bhattacharya SK, Bhattacharya A, Kumar A, Ghosal S. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus. Phytother Res 2000; 14(3): 174-9.
[http://dx.doi.org/10.1002/(SICI)1099-1573(200005)14:3<174: AID-PTR624>3.0.CO;2-O ] [PMID: 10815010]
[90]
Chaudhari KS, Tiwari NR, Tiwari RR, Sharma RS. Neurocognitive effect of nootropic drug Brahmi (Bacopa monnieri) in Alzheimer’s Disease. Ann Neurosci 2017; 24(2): 111-22.
[http://dx.doi.org/10.1159/000475900 ] [PMID: 28588366]
[91]
Shinomol GK, Bharath MM. Muralidhara. Neuromodulatory propensity of Bacopa monnieri leaf extract against 3-nitropropionic acid-induced oxidative stress: in vitro and in vivo evidences. Neurotox Res 2012; 22(2): 102-14.
[http://dx.doi.org/10.1007/s12640-011-9303-6 ] [PMID: 22203611]
[92]
Jyoti A, Sharma D. Neuroprotective role of Bacopa monniera extract against aluminium-induced oxidative stress in the hippocampus of rat brain. Neurotoxicology 2006; 27(4): 451-7.
[http://dx.doi.org/10.1016/j.neuro.2005.12.007 ] [PMID: 16500707]
[93]
Goswami S, Saoji A, Kumar N, Thawani V, Tiwari M, Thawani M. Effect of Bacopa monnieri on cognitive functions in Alzheimer’s disease patients. Int J Collab Res Intern Med Public Health 2011; 3: 285-93.
[94]
Veerendra Kumar MH, Gupta YK. Effect of Centella asiatica on cognition and oxidative stress in an intracerebroventricular streptozotocin model of Alzheimer’s disease in rats. Clin Exp Pharmacol Physiol 2003; 30(5-6): 336-42.
[http://dx.doi.org/10.1046/j.1440-1681.2003.03842.x ] [PMID: 12859423]
[95]
Begum AN, Jones MR, Lim GP, et al. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J Pharmacol Exp Ther 2008; 326(1): 196-208.
[http://dx.doi.org/10.1124/jpet.108.137455 ] [PMID: 18417733]
[96]
Sorrenti V, Contarini G, Sut S, et al. Curcumin prevents acute neuroinflammation and long-term memory impairment induced by systemic lipopolysaccharide in mice. Front Pharmacol 2018; 9(183): 183.
[http://dx.doi.org/10.3389/fphar.2018.00183 ] [PMID: 29556196]
[97]
Saxena G, Singh SP, Pal R, Singh S, Pratap R, Nath C. Gugulipid, an extract of Commiphora whighitii with lipid-lowering properties, has protective effects against streptozotocin-induced memory deficits in mice. Pharmacol Biochem Behav 2007; 86(4): 797-805.
[http://dx.doi.org/10.1016/j.pbb.2007.03.010 ] [PMID: 17477963]
[98]
Alama B, Haque E. Anti-Alzheimer antioxidant activity of Celastrus paniculatus Seed. Iran J Pharm Sci 2011; 7: 49-56.
[99]
Kumar MH, Gupta YK. Antioxidant property of Celastrus paniculatus willd.: a possible mechanism in enhancing cognition. Phytomedicine 2002; 9(4): 302-11.
[http://dx.doi.org/10.1078/0944-7113-00136 ] [PMID: 12120811]
[100]
Rachitha P, Krupashree K, Jayashree GV, et al. Chemical composition, antioxidant potential, macromolecule damage and neuroprotective activity of Convolvulus pluricaulis. J Tradit Complement Med 2018; 8(4): 483-96.
[http://dx.doi.org/10.1016/j.jtcme.2017.11.002 ] [PMID: 30302329]
[101]
Bihaqi SW, Sharma M, Singh AP, Tiwari M. Neuroprotective role of Convolvulus pluricaulis on aluminium induced neurotoxicity in rat brain. J Ethnopharmacol 2009; 124(3): 409-15.
[http://dx.doi.org/10.1016/j.jep.2009.05.038 ] [PMID: 19505562]
[102]
Kizhakke PA, Olakkaran S, Antony A, Tilagul KS, Hunasanahally PG. Convolvulus pluricaulis (Shankhapushpi) ameliorates human microtubule-associated protein tau (hMAPτ) induced neurotoxicity in Alzheimer’s disease Drosophila model. J Chem Neuroanat 2019; 95: 115-22.
[http://dx.doi.org/10.1016/j.jchemneu.2017.10.002 ] [PMID: 29051039]
[103]
Nahata A, Patil UK, Dixit VK. Effect of Evolvulus alsinoides Linn. on learning behavior and memory enhancement activity in rodents. Phytother Res 2010; 24(4): 486-93.
[http://dx.doi.org/10.1002/ptr.2932 ] [PMID: 19610035]
[104]
Badgujar SB, Patel VV, Bandivdekar AH. Foeniculum vulgare Mill: a review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology. BioMed Res Int 2014; 2014842674
[http://dx.doi.org/10.1155/2014/842674 ] [PMID: 25162032]
[105]
Joshi H, Parle M. Cholinergic basis of memory-strengthening effect of Foeniculum vulgare Linn. J Med Food 2006; 9(3): 413-7.
[http://dx.doi.org/10.1089/jmf.2006.9.413 ] [PMID: 17004908]
[106]
Liu X, Hao W, Qin Y, et al. Long-term treatment with Ginkgo biloba extract EGb 761 improves symptoms and pathology in a transgenic mouse model of Alzheimer’s disease. Brain Behav Immun 2015; 46: 121-31.
[http://dx.doi.org/10.1016/j.bbi.2015.01.011 ] [PMID: 25637484]
[107]
Cui YM, Ao MZ, Li W, Yu LJ. Effect of glabridin from Glycyrrhiza glabra on learning and memory in mice. Planta Med 2008; 74(4): 377-80.
[http://dx.doi.org/10.1055/s-2008-1034319 ] [PMID: 18484526]
[108]
Bickel U, Thomsen T, Fischer JP, Weber W, Kewitz H. Galanthamine: pharmacokinetics, tissue distribution and cholinesterase inhibition in brain of mice. Neuropharmacology 1991; 30(5): 447-54.
[http://dx.doi.org/10.1016/0028-3908(91)90005-V ] [PMID: 1865992]
[109]
Ohba T, Yoshino Y, Ishisaka M, et al. Japanese Huperzia serrata extract and the constituent, huperzine A, ameliorate the scopolamine-induced cognitive impairment in mice. Biosci Biotechnol Biochem 2015; 79(11): 1838-44.
[http://dx.doi.org/10.1080/09168451.2015.1052773 ] [PMID: 26059088]
[110]
Rubio J, Dang H, Gong M, Liu X, Chen SL, Gonzales GF. Aqueous and hydroalcoholic extracts of black maca (Lepidium meyenii) improve scopolamine-induced memory impairment in mice. Food Chem Toxicol 2007; 45(10): 1882-90.
[http://dx.doi.org/10.1016/j.fct.2007.04.002 ] [PMID: 17543435]
[111]
Lee JW, Lee YK, Lee BJ, et al. Inhibitory effect of ethanol extract of Magnolia officinalis and 4-O-methylhonokiol on memory impairment and neuronal toxicity induced by beta-amyloid. Pharmacol Biochem Behav 2010; 95(1): 31-40.
[http://dx.doi.org/10.1016/j.pbb.2009.12.003 ] [PMID: 20004682]
[112]
Soodi M, Naghdi N, Hajimehdipoor H, Choopani S, Sahraei E. Memory-improving activity of Melissa officinalis extract in naïve and scopolamine-treated rats. Res Pharm Sci 2014; 9(2): 107-14.
[PMID: 25657779]
[113]
Joshi H, Parle M. Nardostachys jatamansi improves learning and memory in mice. J Med Food 2006; 9(1): 113-8.
[http://dx.doi.org/10.1089/jmf.2006.9.113 ] [PMID: 16579738]
[114]
Kim HJ, Jung SW, Kim SY, et al. Panax ginseng as an adjuvant treatment for Alzheimer’s disease. J Ginseng Res 2018; 42(4): 401-11.
[http://dx.doi.org/10.1016/j.jgr.2017.12.008 ] [PMID: 30337800]
[115]
Ozarowski M, Mikolajczak PL, Bogacz A, et al. Rosmarinus officinalis L. leaf extract improves memory impairment and affects acetylcholinesterase and butyrylcholinesterase activities in rat brain. Fitoterapia 2013; 91: 261-71.
[http://dx.doi.org/10.1016/j.fitote.2013.09.012 ] [PMID: 24080468]
[116]
Sallam A, Mira A, Ashour A, Shimizu K. Acetylcholine esterase inhibitors and melanin synthesis inhibitors from Salvia officinalis. Phytomedicine 2016; 23(10): 1005-11.
[http://dx.doi.org/10.1016/j.phymed.2016.06.014 ] [PMID: 27444345]
[117]
Misra BB, Dey S. TLC-bioautographic evaluation of in vitro anti-tyrosinase and anti-cholinesterase potentials of sandalwood oil. Nat Prod Commun 2013; 8(2): 253-6.
[http://dx.doi.org/10.1177/1934578X1300800231 ] [PMID: 23513742]
[118]
Agarwal A, Malini S, Bairy KL. Rao, Muddanna SR. Effect of Tinospora cardifolia on learning and memory in normal and memory deficit rats. Indian J Pharmacol 2002; 34(5): 339-49.
[119]
Patel SS, Gupta S, Udayabanu M. Urtica dioica modulates hippocampal insulin signaling and recognition memory deficit in streptozotocin induced diabetic mice. Metab Brain Dis 2016; 31(3): 601-11.
[http://dx.doi.org/10.1007/s11011-016-9791-4 ] [PMID: 26767366]
[120]
Bhattacharya SK, Kumar A, Ghosal S. Effects of glycowithanolides from Withania somnifera on an animal model of Alzheimer’s disease and perturbed central cholinergic markers of cognition in rats. Phytother Res 1995; 9: 110-3.
[http://dx.doi.org/10.1002/ptr.2650090206]
[121]
Mathew M, Subramanian S. In vitro evaluation of anti-Alzheimer effects of dry ginger (Zingiber officinale Roscoe) extract. Indian J Exp Biol 2014; 52(6): 606-12.
[PMID: 24956891]
[122]
Kulkarni R, Girish KJ, Kumar A. Nootropic herbs (Medhya Rasayana) in Ayurveda: an update. Pharmacogn Rev 2012; 6(12): 147-53.
[http://dx.doi.org/10.4103/0973-7847.99949 ] [PMID: 23055641]
[123]
Bhattacharya SK, Kumar A, Jaiswal AK. Effect of mentat, a herbal formulation, on experimental models of Alzheimer’s disease and central cholinergic markers in rats. Fitoterapia 1995; 66: 216-22.
[124]
Bhattacharya SK, Kumar A. Effect of Trasina, an ayurvedic herbal formulation, on experimental models of Alzheimer’s disease and central cholinergic markers in rats. J Altern Complement Med 1997; 3(4): 327-36.
[http://dx.doi.org/10.1089/acm.1997.3.327 ] [PMID: 9449054]
[125]
Manyam BV. Dementia in Ayurveda. J Altern Complement Med 1999; 5(1): 81-8.
[http://dx.doi.org/10.1089/acm.1999.5.81 ] [PMID: 10100034]
[126]
Parasuraman S, Thing GS, Dhanaraj SA. Polyherbal formulation: concept of Ayurveda. Pharmacogn Rev 2014; 8(16): 73-80.
[http://dx.doi.org/10.4103/0973-7847.134229 ] [PMID: 25125878]
[127]
Acqua SD. Plant-derived acetylcholinesterase inhibitory alkaloids for the treatment of Alzheimer’s disease. Botanics 2013; 3: 19-28.
[http://dx.doi.org/10.2147/BTAT.S17297]
[128]
Razay G, Wilcock GK. Galantamine in Alzheimer’s disease. Expert Rev Neurother 2008; 8(1): 9-17.
[http://dx.doi.org/10.1586/14737175.8.1.9 ] [PMID: 18088197]
[129]
Maelicke A, Hoeffle-Maas A, Ludwig J, et al. Memogain is a galantamine pro-drug having dramatically reduced adverse effects and enhanced efficacy. J Mol Neurosci 2010; 40(1-2): 135-7.
[http://dx.doi.org/10.1007/s12031-009-9269-5 ] [PMID: 19669943]
[130]
Wang YJ, Thomas P, Zhong JH, et al. Consumption of grape seed extract prevents amyloid-beta deposition and attenuates inflammation in brain of an Alzheimer’s disease mouse. Neurotox Res 2009; 15(1): 3-14.
[http://dx.doi.org/10.1007/s12640-009-9000-x ] [PMID: 19384583]
[131]
Beggiato S, Tomasini MC, Ferraro L. Palmitoylethanolamide (PEA) as a potential therapeutic agent in Alzheimer’s Disease. Front Pharmacol 2019; 10: 821.
[http://dx.doi.org/10.3389/fphar.2019.00821 ] [PMID: 31396087]
[132]
Thaipisuttikul P, Galvin JE. Use of medical foods and nutritional approaches in the treatment of Alzheimer’s disease. Clin Pract (Lond) 2012; 9(2): 199-209.
[http://dx.doi.org/10.2217/cpr.12.3 ] [PMID: 23362453]
[133]
Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem 2005; 280(45): 37377-82.
[http://dx.doi.org/10.1074/jbc.M508246200 ] [PMID: 16162502]
[134]
Williams P, Sorribas A, Howes MJ. Natural products as a source of Alzheimer’s drug leads. Nat Prod Rep 2011; 28(1): 48-77.
[http://dx.doi.org/10.1039/C0NP00027B ] [PMID: 21072430]
[135]
Ha GT, Wong RK, Zhang Y. Huperzine a as potential treatment of Alzheimer’s disease: an assessment on chemistry, pharmacology, and clinical studies. Chem Biodivers 2011; 8(7): 1189-204.
[http://dx.doi.org/10.1002/cbdv.201000269 ] [PMID: 21766442]
[136]
Yang G, Wang Y, Tian J, Liu JP. A for Alzheimer’s disease: a systematic review and meta-analysis of randomized clinical trials. PLoS One 2013; 8(9)e74916
[137]
Rajakrishnan V, Viswanathan P, Rajasekharan KN, Menon VP. Neuroprotective role of curcumin from curcuma longa on ethanol-induced brain damage. Phytother Res 1999; 13(7): 571-4.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199911)13:7<571: AID-PTR494>3.0.CO;2-7 ] [PMID: 10548748]
[138]
Yavarpour-Bali H, Ghasemi-Kasman M, Pirzadeh M. Curcumin-loaded nanoparticles: a novel therapeutic strategy in treatment of central nervous system disorders. Int J Nanomedicine 2019; 14(14): 4449-60.
[http://dx.doi.org/10.2147/IJN.S208332 ] [PMID: 31417253]
[139]
Rebai O, Belkhir M, Sanchez-Gomez MV, Matute C, Fattouch S, Amri M. Differential molecular targets for neuroprotective effect of chlorogenic acid and its related compounds against glutamate induced excitotoxicity and oxidative stress in rat cortical neurons. Neurochem Res 2017; 42(12): 3559-72.
[http://dx.doi.org/10.1007/s11064-017-2403-9 ] [PMID: 28948515]
[140]
Ali YO, Bradley G, Lu HC. Screening with an NMNAT2-MSD platform identifies small molecules that modulate NMNAT2 levels in cortical neurons. Sci Rep 2017; 7: 43846.
[http://dx.doi.org/10.1038/srep43846 ] [PMID: 28266613]
[141]
Nillert N, Pannangrong W, Welbat JU, Chaijaroonkhanarak W, Sripanidkulchai K, Sripanidkulchai B. Neuroprotective effects of aged garlic extract on cognitive dysfunction and neuroinflammation induced by β-amyloid in rats. Nutrients 2017; 9(1): 24.
[http://dx.doi.org/10.3390/nu9010024 ] [PMID: 28054940]
[142]
Finley JW, Gao S. A perspective on Crocus sativus L. (Saffron) constituent crocin: a potent water-soluble antioxidant and potential therapy for Alzheimer’s disease. J Agric Food Chem 2017; 65: 1005-20.
[143]
Frydman-Marom A, Levin A, Farfara D, et al. Orally administrated cinnamon extract reduces β-amyloid oligomerization and corrects cognitive impairment in Alzheimer’s disease animal models. PLoS One 2011; 6(1)e16564
[http://dx.doi.org/10.1371/journal.pone.0016564 ] [PMID: 21305046]
[144]
Moreno LCGEI, Puerta E, Suárez-Santiago JE, Santos-Magalhães NS, Ramirez MJ, Irache JM. Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer’s disease. Int J Pharm 2017; 517(1-2): 50-7.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.061 ] [PMID: 27915007]
[145]
Hager K, Kenklies M, McAfoose J, Engel J, Münch G. Alpha-lipoic acid as a new treatment option for Alzheimer’s disease--a 48 months follow-up analysis. J Neural Transm Suppl 2007; (72): 189-93.
[PMID: 17982894]
[146]
Cole GM, Ma QL, Frautschy SA. Omega-3 fatty acids and dementia. Prostaglandins Leukot Essent Fatty Acids 2009; 81(2-3): 213-21.
[http://dx.doi.org/10.1016/j.plefa.2009.05.015 ] [PMID: 19523795]
[147]
de Andrade Teles RB, Diniz TC, Costa Pinto TC, et al. Flavonoids as therapeutic agents in Alzheimer’s and Parkinson’s diseases: a systematic review of preclinical evidences. Oxid Med Cell Longev 2018.20187043213
[http://dx.doi.org/10.1155/2018/7043213 ] [PMID: 29861833]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy