Abstract
Objective: To synthesize a series of phenanthrene-thiazolidinedione hybrids and explore their cytotoxic potential against human cancer cell lines of A-549 (lung cancer), HCT-116 and HT-29 (colon cancer), MDA MB-231 (triple-negative breast cancer), BT-474 (breast cancer) and (mouse melanoma) B16F10 cells.
Methods: A new series of phenanthrene-thiazolidinedione hybrids was synthesized via Knoevenagel condensation of phenanthrene-9-carbaldehyde and N-alkylated thiazolidinediones. The cytotoxicity (IC50) of the synthesized compounds was determined by MTT assay. Apoptotic assays like (AO/EB) and DAPI staining, cell cycle analysis, JC-1 staining and Annexin V binding assay studies were performed for the most active compound (Z)- 3-(4-bromobenzyl)-5-((2,3,6,7-tetramethoxyphenanthren-9-yl)methylene)thiazolidine-2,4-dione (17b). Molecular docking, dynamics and evaluation of pharmacokinetic (ADME/T) properties were also carried out by using Schrödinger.
Results and Discussion: From the series of tested compounds, 17b unveiled promising cytotoxic action with an IC50 value of 0.985±0.02μM on HCT-116 human colon cancer cells. The treatment of HCT-116 cells with 17b demonstrated distinctive apoptotic morphology like shrinkage of cells, horseshoe-shaped nuclei formation and chromatin condensation. The flow-cytometry analysis revealed the G0/G1 phase cell cycle arrest in a dosedependent fashion. The AO/EB, DAPI, DCFDA, Annexin-V and JC-1 staining studies were performed in order to determine the effect of the compound on cell viability. Computational studies were performed by using Schrödinger to determine the stability of the ligand with the DNA.
Conclusion: The current study provides an insight into developing a series of phenanthrene thiazolidinedione derivatives as potential DNA interactive agents which might aid in colon cancer therapy.
Keywords: Phenanthrene, thiazolidinedione, knoevenagel condensation, cytotoxicity, apoptosis, cell cycle arrest.
Graphical Abstract
[http://dx.doi.org/10.2174/0929867325666180410110729] [PMID: 29637849]
(b)Rashid, M.; Husain, A.; Mishra, R. Synthesis of benzimidazoles bearing oxadiazole nucleus as anticancer agents. Eur. J. Med. Chem., 2012, 54, 855-866.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.027] [PMID: 22608854]
[http://dx.doi.org/10.1634/theoncologist.11-4-342] [PMID: 16614230]
(b)Sui, X.; Chen, R.; Wang, Z.; Huang, Z.; Kong, N.; Zhang, M.; Han, W.; Lou, F.; Yang, J.; Zhang, Q.; Wang, X.; He, C.; Pan, H. Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment. Cell Death Dis., 2013, 4, e838.
[http://dx.doi.org/10.1038/cddis.2013.350] [PMID: 24113172]
[http://dx.doi.org/10.1007/s00726-016-2363-4] [PMID: 27864693]
(b)Roviello, G.N.; Iannitti, R.; Palumbo, R.; Simonyan, H.; Vicidomini, C.; Roviello, V. Lac-L-TTA, a novel lactose-based amino acid-sugar conjugate for anti-metastatic applications. Amino Acids, 2017, 49(8), 1347-1353.
[http://dx.doi.org/10.1007/s00726-017-2433-2] [PMID: 28478584]
[http://dx.doi.org/10.1038/sj.bjc.6604510] [PMID: 18665178]
[http://dx.doi.org/10.1159/000067145] [PMID: 12466642]
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[http://dx.doi.org/10.1038/nrc749] [PMID: 11990855]
(b)Sheng, J.; Gan, J.; Huang, Z. Structure-based DNA-targeting strategies with small molecule ligands for drug discovery. Med. Res. Rev., 2013, 33(5), 1119-1173.
[http://dx.doi.org/10.1002/med.21278] [PMID: 23633219]
(c)Fik-Jaskółka, M.A.; Mkrtchyan, A.F.; Saghyan, A.S.; Palumbo, R.; Belter, A.; Hayriyan, L.A.; Simonyan, H.; Roviello, V.; Roviello, G.N. Spectroscopic and SEM evidences for G4-DNA binding by a synthetic alkyne-containing amino acid with anticancer activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 229, 117884.
[http://dx.doi.org/10.1016/j.saa.2019.117884] [PMID: 31927477]
[http://dx.doi.org/10.1016/j.bmc.2006.06.009] [PMID: 16809043]
(b)Ikeda, T.; Yaegashi, T.; Matsuzaki, T.; Yamazaki, R.; Hashimoto, S.; Sawada, S. Synthesis of phenanthroindolizidine alkaloids and evaluation of their antitumor activities and toxicities. Bioorg. Med. Chem. Lett., 2011, 21(19), 5978-5981.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.120] [PMID: 21865039]
[http://dx.doi.org/10.1016/j.bmcl.2014.04.101] [PMID: 24835986]
[http://dx.doi.org/10.1016/0031-9422(90)80209-Y]
[http://dx.doi.org/10.3390/molecules181215704] [PMID: 24352023]
[http://dx.doi.org/10.1002/art.21640] [PMID: 16508970]
[http://dx.doi.org/10.1016/j.bmc.2006.01.004] [PMID: 16431116]
[http://dx.doi.org/10.1016/j.bmcl.2005.09.032] [PMID: 16236503]
[http://dx.doi.org/10.1158/0008-5472.CAN-03-1904] [PMID: 14744785]
[http://dx.doi.org/10.1021/jm200330s] [PMID: 21668000]
[http://dx.doi.org/10.1016/S0304-3835(98)00061-5] [PMID: 9683281]
[http://dx.doi.org/10.1016/j.ejmech.2017.02.031] [PMID: 28231521]
[http://dx.doi.org/10.1016/j.ejmech.2014.10.025] [PMID: 25440883]
[http://dx.doi.org/10.1016/j.ejmech.2011.10.031] [PMID: 22074985]
(b)Motomura, W.; Tanno, S.; Takahashi, N.; Nagamine, M.; Fukuda, M.; Kohgo, Y.; Okumura, T. Involvement of MEK-ERK signaling pathway in the inhibition of cell growth by troglitazone in human pancreatic cancer cells. Biochem. Biophys. Res. Commun., 2005, 332(1), 89-94.
[http://dx.doi.org/10.1016/j.bbrc.2005.04.095] [PMID: 15896303]
[http://dx.doi.org/10.1021/ml900028r] [PMID: 24900173]
(b)Jung, K.Y.; Samadani, R.; Chauhan, J.; Nevels, K.; Yap, J.L.; Zhang, J.; Worlikar, S.; Lanning, M.E.; Chen, L.; Ensey, M.; Shukla, S.; Salmo, R.; Heinzl, G.; Gordon, C.; Dukes, T.; MacKerell, A.D., Jr; Shapiro, P.; Fletcher, S. Structural modifications of (Z)-3-(2-aminoethyl)-5-(4-ethoxybenzylidene)thiazolidine-2,4-dione that improve selectivity for inhibiting the proliferation of melanoma cells containing active ERK signaling. Org. Biomol. Chem., 2013, 11(22), 3706-3732.
[http://dx.doi.org/10.1039/c3ob40199e] [PMID: 23624850]
[http://dx.doi.org/10.1016/j.bbrc.2010.05.109] [PMID: 20510675]
[http://dx.doi.org/10.1007/s12154-016-0154-8] [PMID: 27698947]
[http://dx.doi.org/10.1016/j.ejmech.2016.08.029] [PMID: 27614408]
(b)Sharma, P.; Reddy, T.S.; Kumar, N.P.; Senwar, K.R.; Bhargava, S.K.; Shankaraiah, N. Conventional and microwave-assisted synthesis of new 1H-benzimidazole-thiazolidinedione derivatives: A potential anticancer scaffold. Eur. J. Med. Chem., 2017, 138, 234-245.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.035] [PMID: 28668476]
(c)Tokala, R.; Thatikonda, S.; Sana, S.; Regur, P.; Godugu, C.; Shankaraiah, N. Synthesis and in vitro cytotoxicity evaluation of β-carboline-linked 2, 4-thiazolidinedione hybrids: potential DNA intercalation and apoptosis-inducing studies. New J. Chem., 2018, 42, 16226-16236.
[http://dx.doi.org/10.1039/C8NJ03248C]
[http://dx.doi.org/10.1016/j.ejmech.2018.03.069] [PMID: 29609122]
(b)Kumar, N.P.; Thatikonda, S.; Tokala, R.; Kumari, S.S.; Lakshmi, U.J.; Godugu, C.; Shankaraiah, N.; Kamal, A. Sulfamic acid promoted one-pot synthesis of phenanthrene fused-dihydrodibenzoquinolinones: Anticancer activity, tubulin polymerization inhibition and apoptosis inducing studies. Bioorg. Med. Chem., 2018, 26(8), 1996-2008.
[http://dx.doi.org/10.1016/j.bmc.2018.02.050] [PMID: 29525336]
(c)Kumar, N.P.; Sharma, P.; Reddy, T.S.; Nekkanti, S.; Shankaraiah, N.; Lalita, G.; Sujanakumari, S.; Bhargava, S.K.; Naidu, V.G.M.; Kamal, A. Synthesis of 2,3,6,7- tetramethoxyphenanthren-9-amine: An efficient precursor to access new 4-aza-2,3-dihydropyridophenanthrenes as apoptosis inducing agents. Eur. J. Med. Chem., 2017, 127, 305-317.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.001] [PMID: 28068602]
(d)Jadala, C.; Sathish, M.; Reddy, T.S.; Reddy, V.G.; Tokala, R.; Bhargava, S.K.; Shankaraiah, N.; Nagesh, N.; Kamal, A. Synthesis and in vitro cytotoxicity evaluation of β-carboline-combretastatin carboxamides as apoptosis inducing agents: DNA intercalation and topoisomerase-II inhibition. Bioorg. Med. Chem., 2019, 27(15), 3285-3298.
[http://dx.doi.org/10.1016/j.bmc.2019.06.007] [PMID: 31227365]
(e)Shankaraiah, N.; Kumar, N.P.; Tokala, R.; Gayatri, B.S.; Talla, V.; Santos, L.S. Synthesis of new 1, 2, 3-triazolo-naphthalimide/phthalimide conjugates via ‘click’ reaction: DNA intercalation and cytotoxic studies. J. Braz. Chem. Soc., 2019, 3, 454-461.
(f)Sankara Rao, N.; Nagesh, N.; Lakshma Nayak, V.; Sunkari, S.; Tokala, R.; Kiranmai, G.; Regur, P.; Shankaraiah, N.; Kamal, A. Design and synthesis of DNA-intercalative naphthalimidebenzothiazole/ cinnamide derivatives: Cytotoxicity evaluation and topoisomerase-IIα inhibition. Med. Chem. Comm., 2018, 10(1), 72-79.
[http://dx.doi.org/10.1039/C8MD00395E] [PMID: 30774856]
(g)Tokala, R.; Thatikonda, S.; Vanteddu, U.S.; Sana, S.; Godugu, C.; Shankaraiah, N. Design and synthesis of DNA-interactive β- carboline-oxindole hybrids as cytotoxic and apoptosis-inducing agents. Chem. Med. Chem., 2018, 13(18), 1909-1922.
[http://dx.doi.org/10.1002/cmdc.201800402] [PMID: 30010248]
(h)Sathish, M.; Chetan Dushantrao, S.; Nekkanti, S.; Tokala, R.; Thatikonda, S.; Tangella, Y.; Srinivas, G.; Cherukommu, S.; Hari Krishna, N.; Shankaraiah, N.; Nagesh, N.; Kamal, A. Synthesis of DNA interactive C3-trans-cinnamide linked β-carboline conjugates as potential cytotoxic and DNA topoisomerase I inhibitors. Bioorg. Med. Chem., 2018, 26(17), 4916-4929.
[http://dx.doi.org/10.1016/j.bmc.2018.08.031] [PMID: 30172625]
(i)Nekkanti, S.; Pooladanda, V.; Veldandi, M.; Tokala, R.; Godugu, C.; Shankaraiah, N. Synthesis of 1, 2, 3-triazolo-fusedtetrahydro- β-carboline derivatives via 1, 3-dipolar cycloaddition reaction: Cytotoxicity evaluation and DNA-binding studies. Chemistry Select, 2017, 2, 7210-7221.
[http://dx.doi.org/10.1002/slct.201700620]
(j)Senwar, K.R.; Reddy, T.S.; Thummuri, D.; Sharma, P.; Naidu, V.G.M.; Srinivasulu, G.; Shankaraiah, N. Design, synthesis and apoptosis inducing effect of novel (Z)-3-(3′-methoxy-4′-(2-amino- 2-oxoethoxy)-benzylidene)indolin-2-ones as potential antitumour agents. Eur. J. Med. Chem., 2016, 118, 34-46.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.025] [PMID: 27128173]
(k)Kamal, A.; Sreekanth, K.; Shankaraiah, N.; Sathish, M.; Nekkanti, S.; Srinivasulu, V. Dithiocarbamate/piperazine bridged pyrrolobenzodiazepines as DNA-minor groove binders: Synthesis, DNA-binding affinity and cytotoxic activity. Bioorg. Chem., 2015, 59, 23-30.
[http://dx.doi.org/10.1016/j.bioorg.2015.01.002] [PMID: 25665519]
(l)Kamal, A.; Sreekanth, K.; Kumar, P.P.; Shankaraiah, N.; Balakishan, G.; Ramaiah, M.J.; Pushpavalli, S.N.C.V.L.; Ray, P.; Bhadra, M.P. Synthesis and potential cytotoxic activity of new phenanthrylphenol-pyrrolobenzodiazepines. Eur. J. Med. Chem., 2010, 45(6), 2173-2181.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.054] [PMID: 20171761]
[http://dx.doi.org/10.1016/j.mcat.2019.110701]
(b)Zhang, C.; Huang, H.; Li, G.; Wang, L.; Song, L.; Li, X. Zeolitic acidity as a promoter for the catalytic oxidation of toluene over MnOx/HZSM-5 catalysts. Catal. Today, 2019, 327, 374-381.
[http://dx.doi.org/10.1016/j.cattod.2018.03.019]
[http://dx.doi.org/10.1016/j.ejmech.2015.07.031] [PMID: 26231080]
(b)Kumar, N.P.; Sharma, P.; Kumari, S.S.; Brahma, U.; Nekkanti, S.; Shankaraiah, N.; Kamal, A. Synthesis of substituted phenanthrene- 9-benzimidazole conjugates: Cytotoxicity evaluation and apoptosis inducing studies. Eur. J. Med. Chem., 2017, 140, 128-140.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.006] [PMID: 28923381]
(c)Sharma, P.; Thummuri, D.; Reddy, T.S.; Senwar, K.R.; Naidu, V.G.M.; Srinivasulu, G.; Bharghava, S.K.; Shankaraiah, N. New (E)-1-alkyl-1H-benzo[d]imidazol-2-yl)methylene)indolin-2-ones: Synthesis, in vitro cytotoxicity evaluation and apoptosis inducing studies. Eur. J. Med. Chem., 2016, 122, 584-600.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.019] [PMID: 27448916]
(d)Kumar, N.P.; Nekkanti, S.; Sujana Kumari, S.; Sharma, P.; Shankaraiah, N. Design and synthesis of 1,2,3-triazolo-phenanthrene hybrids as cytotoxic agents. Bioorg. Med. Chem. Lett., 2017, 27(11), 2369-2376.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.022] [PMID: 28431881]
[http://dx.doi.org/10.3109/10520299109109990] [PMID: 1725854]
(b)Otto, F. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Methods Cell Biol., 1990, 33, 105-110.
[http://dx.doi.org/10.1016/S0091-679X(08)60516-6] [PMID: 1707478]
[http://dx.doi.org/10.1016/j.ejmech.2015.08.017] [PMID: 26301558]
(b)Carella, A.; Roviello, V.; Iannitti, R.; Palumbo, R.; La Manna, S.; Marasco, D.; Trifuoggi, M.; Diana, R.; Roviello, G.N. Evaluating the biological properties of synthetic 4-nitrophenyl functionalized benzofuran derivatives with telomeric DNA binding and antiproliferative activities. Int. J. Biol. Macromol., 2019, 121, 77-88.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.153] [PMID: 30261256]
[http://dx.doi.org/10.21769/BioProtoc.374] [PMID: 27430005]
[http://dx.doi.org/10.1016/j.bmcl.2016.06.077] [PMID: 27397498]
(b)Eruslanov, E.; Kusmartsev, S. Identification of ROS using oxidized DCFDA and flow-cytometry. Advanced Protocols in Oxidative Stress II. Methods in Molecular Biology (Methods and Protocols), 594; Humana Press: Totowa, NJ, 2010.
[http://dx.doi.org/10.1002/0471142956.cy0914s13] [PMID: 18770751]
(b)Kulabaş, N.; Tatar, E.; Bingöl Özakpınar, Ö.; Özsavcı, D.; Pannecouque, C.; De Clercq, E.; Küçükgüzel, İ. Synthesis and antiproliferative evaluation of novel 2-(4H-1,2,4-triazole-3-ylthio)acetamide derivatives as inducers of apoptosis in cancer cells. Eur. J. Med. Chem., 2016, 121, 58-70.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.017] [PMID: 27214512]
[http://dx.doi.org/10.1016/j.jphotochem.2019.04.014]]
[http://dx.doi.org/10.1039/c0ob00961j] [PMID: 21347502]
(b)Satyanarayana, S.; Dabrowiak, J.C.; Chaires, J.B. Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA: mode and specificity of binding. Biochemistry, 1993, 32(10), 2573-2584.
[http://dx.doi.org/10.1021/bi00061a015] [PMID: 8448115]