Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

3,4,5-Trisubstituted-1,2,4-triazole Derivatives as Antiproliferative Agents: Synthesis, In vitro Evaluation and Molecular Modelling

Author(s): Leyla Yurttaş*, Asaf Evrim Evren, Aslıhan Kubilay, Halide Edip Temel and Gülşen Akalın Çiftçi

Volume 17, Issue 12, 2020

Page: [1502 - 1515] Pages: 14

DOI: 10.2174/1570180817999200712190831

Price: $65

Abstract

Background: Cancer is the name given to various diseases that are mainly uncontrolled, related to cell growth and can affect various organs. Among them, lung cancer is the one, which, in its earliest stages, is difficult to diagnose, and it is asymptomatic until the disease progresses. Triazole ring is an important heterocyclic ring known with various pharmacological activities.

Objective: It is aimed to synthesize and characterize novel 1,2,4-triazole derivatives and screen them for in vitro antiproliferative activity and binding analysis through docking studies.

Method: In this study, we have synthesized new 2-[[5-[(4-aminophenoxy)methyl]-4-phenyl-4H- 1,2,4-triazol-3-yl]thio]-N-(substituted aryl)acetamide (5a-h) derivatives and investigated their anticancer activities against human lung cancer (A549) and mouse embryo fibroblast cell lines (NIH/3T3) by MTT, flow cytometric, caspase-3 and matrix metalloproteinase-9 (MMP-9) inhibition assays.

Results: Compounds 5f, 5g and 5h showed the highest cytotoxicity and caused significant apoptosis. These compounds inhibited MMP-9, slightly whereas they did not effect caspase-3.

Conclusion: 5f namely, N-(5-acetyl-4-methylthiazol-2-yl)-2-((5-((4-aminophenoxy)methyl)-4- phenyl-4H-1,2,4-triazol-3-yl)thio)acetamide exhibited as the most active compound with selective cytotoxicity and the highest MMP-9 inhibition. Besides, molecular modelling assessment was signified that antiproliferative activity of the compounds 5f, 5g and 5h was through a slight MMP-9 inhibition pathway.

Keywords: Triazole, thiazole, apoptosis, MMP-9, caspase-3, A549, molecular modelling.

Graphical Abstract

[1]
Mernyak, E. Quality of life in chronic disease patients. Health Psychcol. Res, 2013, 1(3)
[2]
Seyfried, T.N.; Huysentruyt, L.C. On the origin of cancer metastasis. Crit. Rev. Oncog., 2013, 18(1-2), 43-73.
[http://dx.doi.org/10.1615/CritRevOncog.v18.i1-2.40] [PMID: 23237552]
[3]
Wu, P.; Nielsen, T.E.; Clausen, M.H. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci., 2015, 36(7), 422-439.
[http://dx.doi.org/10.1016/j.tips.2015.04.005] [PMID: 25975227]
[4]
Kumbhare, R.M.; Dadmal, T.L.; Ramaiah, M.J.; Kishore, K.S.; Pushpa Valli, S.N.; Tiwari, S.K.; Appalanaidu, K.; Rao, Y.K.; Bhadra, M.P. Synthesis and anticancer evaluation of novel triazole linked N-(pyrimidin-2-yl)benzo[d]thiazol-2-amine derivatives as inhibitors of cell survival proteins and inducers of apoptosis in MCF-7 breast cancer cells. Bioorg. Med. Chem. Lett., 2015, 25(3), 654-658.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.083] [PMID: 25563891]
[5]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[6]
McIlwain, D.R.; Berger, T.; Mak, T.W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol., 2013, 5(4)a008656
[http://dx.doi.org/10.1101/cshperspect.a008656] [PMID: 23545416]
[7]
Ozmen, N.; Kaya-Sezginer, E.; Bakar-Ates, F. The cellular uptake and apoptotic efficiency of colchicine is correlated with downregulation of MMP-9 mRNA expression in SW480 colon cancer cells. Anticancer. Agents Med. Chem., 2018, 18(13), 1927-1933.
[http://dx.doi.org/10.2174/1871520618666180821102047] [PMID: 30129419]
[8]
Mishra, C.B.; Mongre, R.K.; Kumari, S.; Jeong, D.K.; Tiwari, M. Novel triazole-piperazine hybrid molecules induce apoptosis via activation of the mitochondrial pathway and exhibit antitumor efficacy in osteosarcoma xenograft nude mice model. ACS Chem. Biol., 2017, 12(3), 753-768.
[http://dx.doi.org/10.1021/acschembio.6b01007] [PMID: 28084722]
[9]
El-Sherief, H.A.M.; Youssif, B.G.M.; Abdelazeem, A.H.; Abdel-Aziz, M.; Abdel-Rahman, H.M. Design, synthesis and antiproliferative evaluation of novel 1,2,4-triazole/schiff base hybrids with EGFR and B-RAF inhibitory activities. Anticancer. Agents Med. Chem., 2019, 19(5), 697-706.
[http://dx.doi.org/10.2174/1871520619666181224115346] [PMID: 30582484]
[10]
Wang, X-F.; Zhang, S.; Li, B-L.; Zhao, J-J.; Liu, Y-M.; Zhang, R-L.; Li, B.; Chen, B-Q. Synthesis and biological evaluation of disulfides bearing 1,2,4-triazole moiety as antiproliferative agents. Med. Chem. Res., 2017, 26(12), 3367-3374.
[http://dx.doi.org/10.1007/s00044-017-2029-0]
[11]
Mioc, M.; Soica, C.; Bercean, V.; Avram, S.; Balan-Porcarasu, M.; Coricovac, D.; Ghiulai, R.; Muntean, D.; Andrica, F.; Dehelean, C.; Spandidos, D.A.; Tsatsakis, A.M.; Kurunczi, L. Design, synthesis and pharmaco-toxicological assessment of 5-mercapto-1,2,4-triazole derivatives with antibacterial and antiproliferative activity. Int. J. Oncol., 2017, 50(4), 1175-1183.
[http://dx.doi.org/10.3892/ijo.2017.3912] [PMID: 28350123]
[12]
Tokala, R.; Bale, S.; Janrao, I.P.; Vennela, A.; Kumar, N.P.; Senwar, K.R.; Godugu, C.; Shankaraiah, N. Synthesis of 1,2,4-triazole-linked urea/thiourea conjugates as cytotoxic and apoptosis inducing agents. Bioorg. Med. Chem. Lett., 2018, 28(10), 1919-1924.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.074] [PMID: 29657100]
[13]
Sharma, V.M.; Kumar, G.S.; Reddy, K.V.; Nagalingam, S.; Cunningham, A.M.; Ummanni, K.; Hugel, R.H.; Sharma, D.; Malhotra, V.S. Synthesis and biological evaluation of triazole-vanillin molecular hybrids as anti-cancer agents. Curr. Bioact., 2017, 13(3), 223-235.
[http://dx.doi.org/10.2174/1573407213666161128122552]
[14]
Keerthy, H.K.; Mohan, S. Basappa; Bharathkumar, H.; Rangappa, S.; Svensson, F.; Bender, A.; Mohan, C.D.; Rangappa, K.S.; Bhatnagar, R. Basappa; Bharathkumar, H.; Rangappa, S.; Svensson, F.; Bender, A.; Mohan, C.D.; Rangappa, K.S.; Bhatnagar, R. Triazole-pyridine dicarbonitrile targets phosphodiesterase 4 to induce cytotoxicity in lung carcinoma cells. Chem. Biodivers., 2019, 16(9)e1900234
[http://dx.doi.org/10.1002/cbdv.201900234] [PMID: 31287204]
[15]
El-Gazzar, Y.I.; Georgey, H.H.; El-Messery, S.M.; Ewida, H.A.; Hassan, G.S.; Raafat, M.M.; Ewida, M.A.; El-Subbagh, H.I. Synthesis, biological evaluation and molecular modeling study of new (1,2,4-triazole or 1,3,4-thiadiazole)-methylthio-derivatives of quinazolin-4(3H)-one as DHFR inhibitors. Bioorg. Chem., 2017, 72, 282-292.
[http://dx.doi.org/10.1016/j.bioorg.2017.04.019] [PMID: 28499189]
[16]
El-Sherief, H.A.M.; Youssif, B.G.M.; Bukhari, S.N.A.; Abdel-Aziz, M.; Abdel-Rahman, H.M. Novel 1,2,4-triazole derivatives as potential anticancer agents: Design, synthesis, molecular docking and mechanistic studies. Bioorg. Chem., 2018, 76, 314-325.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.013] [PMID: 29227915]
[17]
Bekircan, O.; Kahveci, B.; Küçük, M. Synthesis and anticancer evaluation of some new unsymmetrical 3, 5-diaryl-4H-1, 2, 4-triazole derivatives. Turk. J. Chem., 2006, 30(1), 29-40.
[18]
Jia, Y.; Si, L.; Lin, R.; Jin, H.; Jian, W.; Yu, Q.; Yang, S. Thiophenol-formaldehyde triazole causes apoptosis induction in ovary cancer cells and prevents tumor growth formation in mice model. Eur. J. Med. Chem., 2019, 172, 62-70.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.033] [PMID: 30947122]
[19]
Cihan-Ustundag, G.; Simsek, B.; Ilhan, E.; Capan, G. Synthesis, characterization, antimycobacterial and anticancer evaluation of new 1, 2, 4-triazole derivatives. Lett. Drug Des. Discov., 2014, 11(3), 290-296.
[http://dx.doi.org/10.2174/157018081131000074]
[20]
Ahmed, F.F.; Abd El-Hafeez, A.A.; Abbas, S.H.; Abdelhamid, D.; Abdel-Aziz, M. New 1,2,4-triazole-Chalcone hybrids induce caspase-3 dependent apoptosis in A549 human lung adenocarcinoma cells. Eur. J. Med. Chem., 2018, 151, 705-722.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.073] [PMID: 29660690]
[21]
Bozsity, N.; Minorics, R.; Szabo, J.; Mernyak, E.; Schneider, G.; Wolfling, J.; Wang, H.C.; Wu, C.C.; Ocsovszki, I.; Zupko, I. Mechanism of antiproliferative action of a new d-secoestronetriazole derivative in cervical cancer cells and its effect on cancer cell motility J. Steroid. Biochem. Mol. Biol., 2017, 165(Pt b), 247-257.
[22]
Kaur, R.; Dwivedi, A.R.; Kumar, B.; Kumar, V. Recent developments on 1, 2, 4-triazole nucleus in anticancer compounds: A review. Anticancer. Agents Med. Chem., 2016, 16(4), 465-489.
[http://dx.doi.org/10.2174/1871520615666150819121106] [PMID: 26286663]
[23]
Kulabaş, N.; Tatar, E.; Bingöl Özakpınar, Ö.; Özsavcı, D.; Pannecouque, C.; De Clercq, E.; Küçükgüzel, İ. Synthesis and antiproliferative evaluation of novel 2-(4H-1,2,4-triazole-3-ylthio)acetamide derivatives as inducers of apoptosis in cancer cells. Eur. J. Med. Chem., 2016, 121, 58-70.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.017] [PMID: 27214512]
[24]
Hugenberg, V.; Riemann, B.; Hermann, S.; Schober, O.; Schäfers, M.; Szardenings, K.; Lebedev, A.; Gangadharmath, U.; Kolb, H.; Walsh, J.; Zhang, W.; Kopka, K.; Wagner, S. Inverse 1,2,3-triazole-1-yl-ethyl substituted hydroxamates as highly potent matrix metalloproteinase inhibitors: (radio)synthesis, in vitro and first in vivo evaluation. J. Med. Chem., 2013, 56(17), 6858-6870.
[http://dx.doi.org/10.1021/jm4006753] [PMID: 23899323]
[25]
Ramos-Inza, S.; Aydillo, C.; Sanmartín, C.; Plano, D. Thiazole moiety: An interesting scaffold for developing new antitumoral compounds. Heterocycles - Synthesis and Biological Activities; IntechOpen, 2019.
[http://dx.doi.org/10.5772/intechopen.82741.]
[26]
Chhabria, M.T.; Patel, S.; Modi, P.; Brahmkshatriya, P.S. Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives. Curr. Top. Med. Chem., 2016, 16(26), 2841-2862.
[http://dx.doi.org/10.2174/1568026616666160506130731] [PMID: 27150376]
[27]
Evren, A.E.; Yurttas, L.; Ekselli, B.; Akalin-Ciftci, G. Synthesis and biological evaluation of 5-methyl-4-phenyl thiazole derivatives as anticancer agents. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(8), 820-828.
[http://dx.doi.org/10.1080/10426507.2018.1550642]
[28]
Lowe, S.W.; Lin, A.W. Apoptosis in cancer. Carcinogenesis, 2000, 21(3), 485-495.
[http://dx.doi.org/10.1093/carcin/21.3.485] [PMID: 10688869]
[29]
Maestro, S. Version 10.6, 2016.
[30]
Nuti, E.; Cuffaro, D.; D’Andrea, F.; Rosalia, L.; Tepshi, L.; Fabbi, M.; Carbotti, G.; Ferrini, S.; Santamaria, S.; Camodeca, C.; Ciccone, L.; Orlandini, E.; Nencetti, S.; Stura, E.A.; Dive, V.; Rossello, A. Sugar-based arylsulfonamide carboxylates as selective and water-soluble matrix metalloproteinase-12 inhibitors. ChemMedChem, 2016, 11(15), 1626-1637.
[http://dx.doi.org/10.1002/cmdc.201600235] [PMID: 27356908]
[31]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[32]
Daina, A.; Michielin, O.; Zoete, V. iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J. Chem. Inf. Model., 2014, 54(12), 3284-3301.
[http://dx.doi.org/10.1021/ci500467k] [PMID: 25382374]
[33]
Daina, A.; Zoete, V. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 2016, 11(11), 1117-1121.
[http://dx.doi.org/10.1002/cmdc.201600182] [PMID: 27218427]
[34]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[35]
Gao, Q.; Wang, Y.; Hou, J.; Yao, Q.; Zhang, J. Multiple receptor-ligand based pharmacophore modeling and molecular docking to screen the selective inhibitors of matrix metalloproteinase-9 from natural products. J. Comput. Aided Mol. Des., 2017, 31(7), 625-641.
[http://dx.doi.org/10.1007/s10822-017-0028-3] [PMID: 28623487]
[36]
Yurttaş, L.; Öztürk, Ö.; Cantürk, Z. New procaspase activating compound (PAC-1) like molecules as potent antitumoral agents against lung cancer. Lett. Drug Des. Discov., 2019, 16, 645-655.
[http://dx.doi.org/10.2174/1570180815666180926113040]
[37]
Wang, T.H.; Wang, H.S.; Soong, Y.K. Paclitaxel-induced cell death: Where the cell cycle and apoptosis come together. Cancer, 2000, 88(11), 2619-2628.
[http://dx.doi.org/10.1002/1097-0142(20000601)88:11<2619:AID-CNCR26>3.0.CO;2-J] [PMID: 10861441]
[38]
Nalla, A.K.; Gorantla, B.; Gondi, C.S.; Lakka, S.S.; Rao, J.S. Targeting MMP-9, uPAR, and cathepsin B inhibits invasion, migration and activates apoptosis in prostate cancer cells. Cancer Gene Ther., 2010, 17(9), 599-613.
[http://dx.doi.org/10.1038/cgt.2010.16] [PMID: 20448670]
[39]
Ertas, M.; Sahin, Z. BulBul, E.F.; Bender, C.; Biltekin, S.N.; Berk, B.; Yurttas, L.; Nalbur, A.M.; Çelik, H.; Demirayak, Ş. Potent ribonucleotide reductase inhibitors: Thiazole-containing thiosemicarbazone derivatives. Arch. Pharm. Chem. Life Sci., 2019, 352, 1-13.
[40]
Ertas, M.; Sahin, Z.; Berk, B.; Yurttas, L.; Biltekin, S.N.; Demirayak, Ş. Pyridine-substituted thiazolylphenol derivatives: Synthesis, modeling studies, aromatase inhibition, and antiproliferative activity evaluation. Arch. Pharm. Chem. Life Sci., 2018, 351(3-4)e1700272
[PMID: 29522642]
[41]
Yurttaş, L.; Özkay, Y.; Akalın-Çiftçi, G.; Ulusoylar-Yıldırım, Ş. Synthesis and anticancer activity evaluation of N-[4-(2-methylthiazol-4-yl)phenyl]acetamide derivatives containing (benz)azole moiety. J. Enzyme Inhib. Med. Chem., 2014, 29(2), 175-184.
[http://dx.doi.org/10.3109/14756366.2013.763253] [PMID: 23391122]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy