Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Exploring miRNA Sponge Networks of Breast Cancer by Combining miRNA-disease-lncRNA and miRNA-target Networks

Author(s): Lei Tian and Shu-Lin Wang*

Volume 16, Issue 3, 2021

Published on: 11 July, 2020

Page: [385 - 394] Pages: 10

DOI: 10.2174/1574893615999200711171530

Price: $65

Abstract

Background: Recently, ample researches show that microRNAs (miRNAs) not only interact with coding genes but interact with a pool of different RNAs. Those RNAs are called miRNA sponges, including long non-coding RNAs (lncRNAs), circular RNA, pseudogenes and various messenger RNAs. Understanding regulatory networks of miRNA sponges can better help researchers to study the mechanisms of breast cancers.

Objective: We develop a new method to explore miRNA sponge networks of breast cancer by combining miRNA-disease-lncRNA and miRNA-target networks (MSNMDL).

Methods: Firstly, MSNMDL infers miRNA-lncRNA functional similarity networks from miRNAdisease- lncRNA networks. Secondly, MSNMDL forms lncRNA-target networks by using lncRNA to replace the role of matched miRNA in miRNA-target networks according to the lncRNA-miRNA pair of miRNA-lncRNA functional similarity networks. And MSNMDL only retains the genes of breast cancer in lncRNA-target networks to construct candidate miRNA sponge networks. Thirdly, MSNMDL merges these candidate miRNA sponge networks with other miRNA sponge interactions and then selects top-hub lncRNA and its interactions to construct miRNA sponge networks.

Result: MSNMDL is superior to other methods in terms of biological significance and its identified modules might act as module signatures for prognostication of breast cancer.

Conclusion: MiRNA sponge networks identified by MSNMDL are biologically significant and are closely associated with breast cancer, which makes MSNMDL a promising way for researchers to study the pathogenesis of breast cancer.

Keywords: miRNA sponge networks, miRNA sponge modules, breast cancer, biological enrichment, clustering algorithm, prognostication.

Graphical Abstract

[1]
Djebali S, Davis CA, Merkel A, et al.. Landscape of transcription in human cells Nature 2012; 489(7414): 101-8.
[http://dx.doi.org/10.1038/nature11233.]
[2]
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215-33.
[http://dx.doi.org/10.1016/j.cell.2009.01.002.]
[3]
Sardina DS, Alaimo S, Ferro A, Pulvirenti A, Giugno R. A novel computational method for inferring competing endogenous interactions. Brief Bioinform 2017; 18: 1071-81.
[http://dx.doi.org/10.1093/bib/bbw084.]
[4]
Chen X, Xie D, Zhao Q, You ZH. MicroRNAs and complex diseases: from experimental results to computational models. Brief Bioinform 2019; 20: 515-39.
[http://dx.doi.org/10.1093/bib/bbx130.]
[5]
Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature 2014; 505: 344-52.
[http://dx.doi.org/10.1038/nature12986.]
[6]
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the rosetta stone of a hidden RNA language? Cell 2011.
[http://dx.doi.org/10.1016/j.cell.2011.07.014.]
[7]
Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 2011; 147: 358-69.
[http://dx.doi.org/10.1016/j.cell.2011.09.028.]
[8]
D’Errico I, Gadaleta G, Saccone C. Pseudogenes in metazoa: origin and features. Brief Funct Genomics Proteomics 2004; 3: 157-67.
[http://dx.doi.org/10.1093/bfgp/3.2.157.]
[9]
Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol 2015; 12(4): 381-8.
[http://dx.doi.org/10.1080/15476286.2015.1020271.]
[10]
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495: 384-8.
[http://dx.doi.org/10.1038/nature11993.]
[11]
Le TD, Zhang J, Liu L, Li J. Computational methods for identifying miRNA sponge interactions. Brief Bioinform 2017; 18: 577-90.
[http://dx.doi.org/10.1093/bib/bbw042.]
[12]
Ala U, Karreth FA, Bosia C, et al. Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proc Natl Acad Sci 2013; 110(18): 7154-9.
[http://dx.doi.org/10.1073/pnas.1222509110.]
[13]
Zhang J, Le TD, Liu L, Li J. Identifying miRNA sponge modules using biclustering and regulatory scores. BMC Bioinformatics 2017; 18: 44.
[http://dx.doi.org/10.1186/s12859-017-1467-5.]
[14]
Turner H, Bailey T, Krzanowski W. Improved biclustering of microarray data demonstrated through systematic performance tests. Comput Stat Data Anal 2005; 48: 235-54.
[http://dx.doi.org/10.1016/j.csda.2004.02.003.]
[15]
Paci P, Colombo T, Farina L. Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC Syst Biol 2014; 8: 83.
[http://dx.doi.org/10.1186/1752-0509-8-83.]
[16]
Chiu HS, Llobet-Navas D, Yang X, et al. Cupid: Simultaneous reconstruction of micrornatarget and cerna networks. Genome Res 2015; 25: 257-67.
[http://dx.doi.org/10.1101/gr.178194.114.]
[17]
Olgun G, Sahin O, Tastan O. Discovering competing endogenous RNA interactions in breast cancer molecular subtypes. bioRxiv..
[18]
Zhang K, Peters J, Janzing D, Schölkopf B. Kernel-based conditional independence test and application in causal discovery. Proc 27th Conf Uncertain Artif Intell UAI 2011;. 804-13.
[19]
Figliuzzi M, Marinari E, De Martino A. MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory. Biophys J 2013; 104: 1203-13.
[http://dx.doi.org/10.1016/j.bpj.2013.01.012.]
[20]
Tian L, Wang S-L. Exploring the potential MicroRNA sponge interactions of breast cancer based on some known interactions. J Bioinform Comput Biol 2019; 6: 1-8.
[http://dx.doi.org/10.1142/S0219720020500079.]
[21]
Cui T, Zhang L, Huang Y, et al. MNDR v2.0: an updated resource of ncRNA-disease associations in mammals. Nucleic Acids Res 2018; 46: D371-4.
[http://dx.doi.org/10.1093/nar/gkx1025.]
[22]
Chou CH, Chang NW, Shrestha S, et al. miRTarBase 2016: Updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 2016; 44: D239-47.
[http://dx.doi.org/10.1093/nar/gkv1258.]
[23]
Vlachos IS, Paraskevopoulou MD, Karagkouni D, et al. DIANA-TarBase v7.0: Indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res 2015; 43: D153-9.
[http://dx.doi.org/10.1093/nar/gku1215.]
[24]
Dweep H, Gretz N. MiRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 2015; 12(8): 697.
[http://dx.doi.org/10.1038/nmeth.3485.]
[25]
Hao Y, Wu W, Li H, et al. NPInter v3.0: an upgraded database of noncoding RNA-associated interactions. Database 2016; 2016: baw057-baw057..
[http://dx.doi.org/10.1093/database/baw057.]
[26]
Paraskevopoulou MD, Vlachos IS, Karagkouni D, et al. DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res 2016; 2016: D231-8.https://do.org/10.1093/nar/gkv1270
[27]
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015; 4e05005
[http://dx.doi.org/10.7554/eLife.05005.]
[28]
Li JH, Liu S, Zhou H, Qu LH, Yang JH. StarBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 2014; 42(Database issue): D92-7.
[http://dx.doi.org/10.1093/nar/gkt1248.]
[29]
Zhang J, Le TD, Liu L, Li J. Inferring miRNA sponge co-regulation of protein-protein interactions in human breast cancer. BMC Bioinformatics 2017; 18: 235.
[http://dx.doi.org/10.1186/s12859-017-1672-2.]
[30]
Wang P, Li X, Gao Y, et al. Lncactdb 2.0: An updated database of experimentally supported cerna interactions curated from low- and high-throughput experiments. Nucleic Acids Res 2019; 47: D121-7.
[http://dx.doi.org/10.1093/nar/gky1144.]
[31]
Pian C, Zhang G, Tu T, Ma X, Li F. LncCeRBase: a database of experimentally validated human competing endogenous long non-coding RNAs. Database 2018; 2018: 1-4.
[http://dx.doi.org/10.1093/database/bay061.]
[32]
Cheng L, Wang P, Tian R, et al. Lncrna2target v2.0: a comprehensive database for target genes of lncrnas in human and mouse. Nucleic Acids Res 2019; 47: D140-4.
[http://dx.doi.org/10.1093/nar/gky1051.]
[33]
Xu J, Feng L, Han Z, et al. Extensive ceRNA-ceRNA interaction networks mediated by miRNAs regulate development in multiple rhesus tissues. Nucleic Acids Res 2016; 44: 9438-51.
[http://dx.doi.org/10.1093/nar/gkw587.]
[34]
Xu J, Li Y, Lu J, et al. The mRNA related ceRNA-ceRNA landscape and significance across 20 major cancer types. Nucleic Acids Res 2015; 43: 8169-82.
[http://dx.doi.org/10.1093/nar/gkv853.]
[35]
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 1999; 27-30
[http://dx.doi.org/10.1093/nar/27.1.29.]
[36]
Zhang J, Liu L, Xu T, et al. MiRspongeR: An R/Bioconductor package for the identification and analysis of miRNA sponge interaction networks and modules. BMC Bioinformatics 2019; 20: 1-12.
[http://dx.doi.org/10.1186/s12859-019-2861-y.]
[37]
Viteri G, Matthews L, Varusai T, et al. Reactome and ORCID-fine-grained credit attribution for community curation. Database (Oxford) 2019; 2019: 1-5.
[http://dx.doi.org/10.1093/database/baz123.]
[38]
Howe LR, Brown AMC. Wht signaling and breast cancer. Cancer Biol Ther 2004; 3: 36-41.
[http://dx.doi.org/10.4161/cbt.3.1.561.]
[39]
Mittal S, Subramanyam D, Dey D, Kumar RV, Rangarajan A. Cooperation of Notch and Ras/MAPK signaling pathways in human breast carcinogenesis. Mol Cancer 2009; 8: 1-12.
[http://dx.doi.org/10.1186/1476-4598-8-128.]
[40]
Yu Z, Baserga R, Chen L, Wang C, Lisanti MP, Pestell RG. MicroRNA, cell cycle, and human breast cancer. Am J Pathol 2010; 176(3): 1058-64.
[http://dx.doi.org/10.2353/ajpath.2010.090664.]
[41]
Tokunaga E, Kimura Y, Mashino K, et al. Activation of PI3K/Akt signaling and hormone resistance in breast cancer. Breast Cancer 2006; 13: 137-44.
[http://dx.doi.org/10.2325/jbcs.13.137.]
[42]
Zhang J, Yao S, Hu Q, et al. Genetic variations in the Hippo signaling pathway and breast cancer risk in African American women in the AMBER Consortium. Carcinogenesis 2016; 37: 951-6.
[http://dx.doi.org/10.1093/carcin/bgw077.]
[43]
Tay Y, Kats L, Salmena L, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 2011; 147: 344-57.
[http://dx.doi.org/10.1016/j.cell.2011.09.029.]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy