Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Anticancer Active Heterocyclic Chalcones: Recent Developments

Author(s): Prasad Dandawate, Khursheed Ahmed, Subhash Padhye, Aamir Ahmad* and Bernhard Biersack*

Volume 21, Issue 5, 2021

Published on: 05 July, 2020

Page: [558 - 566] Pages: 9

DOI: 10.2174/1871520620666200705215722

Price: $65

Abstract

Background: Chalcones are structurally simple compounds that are easily accessible by synthetic methods. Heterocyclic chalcones have gained the interest of scientists due to their diverse biological activities. The anti-tumor activities of heterocyclic chalcones are especially remarkable and the growing number of publications dealing with this topic warrants an up-to-date compilation.

Methods: Search for antitumor active heterocyclic chalcones was carried out using Pubmed and Scifinder as common web-based literature searching tools. Pertinent and current literature was covered from 2015/2016 to 2019. Chemical structures, biological activities and modes of action of anti-tumor active heterocyclic chalcones are summarized.

Results: Simply prepared chalcones have emerged over the last years with promising antitumor activities. Among them, there are a considerable number of tubulin polymerization inhibitors. But there are also new chalcones targeting special enzymes such as histone deacetylases or with DNA-binding properties.

Conclusion: This review provides a summary of recent heterocyclic chalcone derivatives with distinct antitumor activities.

Keywords: Chalcone, heterocycle, anticancer agents, drug design, tubulin, histone deacetylase.

Graphical Abstract

[1]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[2]
Ducki, S.; Forrest, R.; Hadfield, J.A.; Kendall, A.; Lawrence, N.J.; McGown, A.T.; Rennison, D. Potent antimitotic and cell growth inhibitory properties of substituted chalcones. Bioorg. Med. Chem. Lett., 1998, 8(9), 1051-1056.
[http://dx.doi.org/10.1016/S0960-894X(98)00162-0] [PMID: 9871706]
[3]
Sahu, N.K.; Balbhadra, S.S.; Choudhary, J.; Kohli, D.V. Exploring pharmacological significance of chalcone scaffold: A review. Curr. Med. Chem., 2012, 19(2), 209-225.
[http://dx.doi.org/10.2174/092986712803414132] [PMID: 22320299]
[4]
Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem., 2014, 85, 758-777.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.033] [PMID: 25137491]
[5]
Mahapatra, D.K.; Bharti, S.K.; Asati, V.; Singh, S.K. Perspectives of medicinally privileged chalcone based metal coordination compounds for biomedical applications. Eur. J. Med. Chem., 2019, 174, 142-158.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.032] [PMID: 31035237]
[6]
Karthikeyan, C.; Moorthy, N.S.; Ramasamy, S.; Vanam, U.; Manivannan, E.; Karunagaran, D.; Trivedi, P. Advances in chalcones with anticancer activities. Rec. Pat. Anticancer Drug Discov., 2015, 10(1), 97-115.
[http://dx.doi.org/10.2174/1574892809666140819153902] [PMID: 25138130]
[7]
Ghosh, R.; Das, A. Synthesis and biological activities of chalcones and their heterocyclic derivatives: A review. World J. Pharm. Pharm. Sci., 2014, 3, 578-595.
[8]
Jaiswal, P.; Pathak, D.P.; Bansal, H.; Agarwal, U. Chalcone and their heterocyclic analogue: A review article. J. Chem. Pharm. Res., 2018, 10, 160-173.
[9]
Shaikh, S.B.; Mujahid, S.; Tambat, N.; Salgar, K.; Nimbale, R.V. Heteroaryl chalcones: A review with special focus on heterocyclic aryl ring and their pharmacological activities. Int. J. Pharmaceut. Res. Scholars, 2014, 3, 317-329.
[10]
Overmeyer, J.H.; Young, A.M.; Bhanot, H.; Maltese, W.A. A chalcone-related small molecule that induces methuosis, a novel form of non-apoptotic cell death, in glioblastoma cells. Mol. Cancer, 2011, 10, 69.
[http://dx.doi.org/10.1186/1476-4598-10-69] [PMID: 21639944]
[11]
Robinson, M.W.; Overmeyer, J.H.; Young, A.M.; Erhardt, P.W.; Maltese, W.A. Synthesis and evaluation of indole-based chalcones as inducers of methuosis, a novel type of nonapoptotic cell death. J. Med. Chem., 2012, 55(5), 1940-1956.
[http://dx.doi.org/10.1021/jm201006x] [PMID: 22335538]
[12]
Horley, N.J.; Beresford, K.J.M.; Kaduskar, S.; Joshi, P.; McCann, G.J.P.; Ruparelia, K.C.; Williams, I.S.; Gatchie, L.; Sonawane, V.R.; Bharate, S.B.; Chaudhuri, B. (E)-3-(3,4,5-Trimethoxyphenyl)-1-(pyridin-4-yl)prop-2-en-1-one, a heterocyclic chalcone is a potent and selective CYP1A1 inhibitor and cancer chemopreventive agent. Bioorg. Med. Chem. Lett., 2017, 27(24), 5409-5414.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.009] [PMID: 29138024]
[13]
Horley, N.J.; Beresford, K.J.M.; Chawla, T.; McCann, G.J.P.; Ruparelia, K.C.; Gatchie, L.; Sonawane, V.R.; Williams, I.S.; Tan, H.L.; Joshi, P.; Bharate, S.S.; Kumar, V.; Bharate, S.B.; Chaudhuri, B. Discovery and characterization of novel CYP1B1 inhibitors based on heterocyclic chalcones: Overcoming cisplatin resistance in CYP1B1-overexpressing lines. Eur. J. Med. Chem., 2017, 129, 159-174.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.016] [PMID: 28222316]
[14]
Williams, I.S.; Joshi, P.; Gatchie, L.; Sharma, M.; Satti, N.K.; Vishwakarma, R.A.; Chaudhuri, B.; Bharate, S.B. Synthesis and biological evaluation of pyrrole-based chalcones as CYP1 enzyme inhibitors, for possible prevention of cancer and overcoming cisplatin resistance. Bioorg. Med. Chem. Lett., 2017, 27(16), 3683-3687.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.010] [PMID: 28711350]
[15]
Chen, J.; Yan, J.; Hu, J.; Pang, Y.; Huang, L.; Li, X. Synthesis, biological evaluation and mechanism study of chalcone analogues as novel anticancer agents. RSC Advances, 2015, 5, 68128-68135.
[http://dx.doi.org/10.1039/C5RA14888J]
[16]
Xu, F.; Li, W.; Shuai, W.; Yang, L.; Bi, Y.; Ma, C.; Yao, H.; Xu, S.; Zhu, Z.; Xu, J. Design, synthesis and biological evaluation of pyridine-chalcone derivatives as novel microtubule-destabilizing agents. Eur. J. Med. Chem., 2019, 173, 1-14.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.008] [PMID: 30981112]
[17]
Karunakaran, J.; Dhatchana Moorthy, N.; Chowdhury, S.R.; Iqbal, S.; Majumder, H.K.; Gunasekaran, K.; Vellaichamy, E.; Mohanakrishnan, A.K. Divergent synthesis and evaluation of the in vitro cytotoxicity profiles of 3,4-ethylenedioxythiophenyl-2-propen-1-one analogues. ChemMedChem, 2019, 14(15), 1418-1430.
[http://dx.doi.org/10.1002/cmdc.201900225] [PMID: 31343838]
[18]
Gibson, M.Z.; Nguyen, M.A.; Zingales, S.K. Design, synthesis, and evaluation of (2-(pyridinyl)methylene)-1-tetralone chalcones for anticancer and antimicrobial activity. Med. Chem., 2018, 14(4), 333-343.
[http://dx.doi.org/10.2174/1573406413666171020121244] [PMID: 29065840]
[19]
Gomha, S.M.; Abdallah, M.A.; Abbas, I.M.; Kazem, M.S.H. Synthesis, cytotoxicity evaluation, molecular docking and utility of novel chalcones as precursors for heterocycles incorporating pyrazole moiety. Med. Chem., 2018, 14(4), 344-355.
[http://dx.doi.org/10.2174/1573406413666171020114105] [PMID: 29065841]
[20]
Rai, S.U.; Isloor, A.M.; Shetty, P.; Pai, K.S.R.; Fun, H.K. Synthesis and in vitro biological evaluation of new pyrazole chalcones and heterocyclic diamides as potential anticancer agents. Arab. J. Chem., 2015, 8, 317-321.
[http://dx.doi.org/10.1016/j.arabjc.2014.01.018]
[21]
Mokhtar, Z.; Jamalis, J.; Bohari, S.P.M.; Rosli, M.M.; Fun, H-K. Synthesis, characterization, and cytotoxic activities of heterocyclic chalcones containing furan, and crystal structure of 1-(4-iodophenyl)-3-(5-methylfuran-2-yl)prop-2-en-1-one. Mol. Cryst. Liquid Cryst., 2016, 631, 119-131.
[http://dx.doi.org/10.1080/15421406.2016.1149025]
[22]
Murti, Y.; Mishra, P. Expeditious synthesis and evaluation of heterocyclic chalcones and flavanones as anticancer agents. Indian J. Heterocycl. Chem., 2016, 26, 113-120.
[23]
Zhang, F.L.; Casey, P.J. Protein prenylation: Molecular mechanisms and functional consequences. Annu. Rev. Biochem., 1996, 65, 241-269.
[http://dx.doi.org/10.1146/annurev.bi.65.070196.001325] [PMID: 8811180]
[24]
Goodsell, D.S. The molecular perspective: The RAS oncogene. Oncologist, 1999, 4(3), 263-264.
[http://dx.doi.org/10.1634/theoncologist.4-3-263] [PMID: 10394594]
[25]
Rajalingam, K.; Schreck, R.; Rapp, U.R.; Albert, S. Ras oncogenes and their downstream targets. Biochim. Biophys. Acta, 2007, 1773(8), 1177-1195.
[http://dx.doi.org/10.1016/j.bbamcr.2007.01.012] [PMID: 17428555]
[26]
Moise, I-M.; Ghinet, A.; Belei, D.; Dubois, J.; Farce, A.; Bîcu, E. New indolizine-chalcones as potent inhibitors of human farnesyltransferase: Design, synthesis and biological evaluation. Bioorg. Med. Chem. Lett., 2016, 26(15), 3730-3734.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.074] [PMID: 27282741]
[27]
Li, Z.; Mbah, N.E.; Overmeyer, J.H.; Sarver, J.G.; George, S.; Trabbic, C.J.; Erhardt, P.W.; Maltese, W.A. The JNK signaling pathway plays a key role in methuosis (non-apoptotic cell death) induced by MOMIPP in glioblastoma. BMC Cancer, 2019, 19(1), 77.
[http://dx.doi.org/10.1186/s12885-019-5288-y] [PMID: 30651087]
[28]
Mbah, N.E.; Overmeyer, J.H.; Maltese, W.A. Disruption of endolysosomal trafficking pathways in glioma cells by methuosis-inducing indole-based chalcones. Cell Biol. Toxicol., 2017, 33(3), 263-282.
[http://dx.doi.org/10.1007/s10565-016-9369-2] [PMID: 27822587]
[29]
Li, Z.; Mbah, N.E.; Maltese, W.A. Vacuole-inducing compounds that disrupt endolysosomal trafficking stimulate production of exosomes by glioblastoma cells. Mol. Cell. Biochem., 2018, 439(1-2), 1-9.
[http://dx.doi.org/10.1007/s11010-017-3130-x] [PMID: 28770472]
[30]
Cho, H.; Geno, E.; Patoor, M.; Reid, A.; McDonald, R.; Hild, M.; Jenkins, J.L. Indolyl-pyridiniyl-propenone-induced methuosis through the inhibition of PIKFYVE. ACS Omega, 2018, 3(6), 6097-6103.
[http://dx.doi.org/10.1021/acsomega.8b00202] [PMID: 30221232]
[31]
Trabbic, C.J.; Overmeyer, J.H.; Alexander, E.M.; Crissman, E.J.; Kvale, H.M.; Smith, M.A.; Erhardt, P.W.; Maltese, W.A. Synthesis and biological evaluation of indolyl-pyridinyl-propenones having either methuosis or microtubule disruption activity. J. Med. Chem., 2015, 58(5), 2489-2512.
[http://dx.doi.org/10.1021/jm501997q] [PMID: 25654321]
[32]
Trabbic, C.J.; George, S.M.; Alexander, E.M.; Du, S.; Offenbacher, J.M.; Crissman, E.J.; Overmeyer, J.H.; Maltese, W.A.; Erhardt, P.W. Synthesis and biological evaluation of isomeric methoxy substitutions on anti-cancer indolyl-pyridinyl-propenones: Effects on potency and mode of activity. Eur. J. Med. Chem., 2016, 122, 79-91.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.016] [PMID: 27343855]
[33]
Du, S.; Sarver, J.G.; Trabbic, C.J.; Erhardt, P.W.S.; Chroering, A.; Maltese, W.A. 6-MOMIPP, a novel brain-penetrant anti-mitotic indolyl-chaclone, inhibits glioblastoma growth and viability. Cancer Chemother. Pharmacol., 2019, 83, 237-254.
[http://dx.doi.org/10.1007/s00280-018-3726-1] [PMID: 30426158]
[34]
Pardin, C.; Pelletier, J.N.; Lubell, W.D.; Keillor, J.W. Cinnamoyl inhibitors of tissue transglutaminase. J. Org. Chem., 2008, 73(15), 5766-5775.
[http://dx.doi.org/10.1021/jo8004843] [PMID: 18582115]
[35]
Dieterich, W.; Ehnis, T.; Bauer, M.; Donner, P.; Volta, U.; Riecken, E.O.; Schuppan, D. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat. Med., 1997, 3(7), 797-801.
[http://dx.doi.org/10.1038/nm0797-797] [PMID: 9212111]
[36]
Tabolacci, C.; De Martino, A.; Mischiati, C.; Feriotto, G.; Beninati, S. The role of tissue transglutaminase in cancer cell initiation, survival and progression. Med. Sci. (Basel), 2019, 7(2), 19.
[http://dx.doi.org/10.3390/medsci7020019] [PMID: 30691081]
[37]
Schobert, R.; Biersack, B. Multimodal HDAC inhibitors with improved anticancer activity. Curr. Cancer Drug Targets, 2018, 18(1), 39-56.
[PMID: 28176653]
[38]
Basso, M.; Chen, H.H.; Tripathy, D.; Conte, M.; Apperley, K.Y.P.; De Simone, A.; Keillor, J.W.; Ratan, R.; Nebbioso, A.; Sarno, F.; Altucci, L.; Milelli, A. Designing dual transglutaminase 2/histone deacetylase inhibitors effective at halting neuronal death. ChemMedChem, 2018, 13(3), 227-230.
[http://dx.doi.org/10.1002/cmdc.201700601] [PMID: 29286587]
[39]
Draper, J.M.; Xia, Z.; Smith, R.A.; Zhuang, Y.; Wang, W.; Smith, C.D. Discovery and evaluation of inhibitors of human ceramidase. Mol. Cancer Ther., 2011, 10(11), 2052-2061.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0365] [PMID: 21885864]
[40]
Vejselova, D.; Kutlu, H.M.; Kuş, G. Examining impacts of ceranib-2 on the proliferation, morphology and ultrastructure of human breast cancer cells. Cytotechnology, 2016, 68(6), 2721-2728.
[http://dx.doi.org/10.1007/s10616-016-9997-7] [PMID: 27380965]
[41]
Vethakanraj, H.S.; Sesurajan, B.P.; Padmanaban, V.P.; Jayaprakasam, M.; Murali, S.; Sekar, A.K. Anticancer effect of acid ceramidase inhibitor ceranib-2 in human breast cancer cell lines MCF-7, MDA MB-231 by the activation of SAPK/JNK, p38 MAPK apoptotic pathways, inhibition of the Akt pathway, downregulation of ERα. Anticancer Drugs, 2018, 29(1), 50-60.
[http://dx.doi.org/10.1097/CAD.0000000000000566] [PMID: 29023248]
[42]
Kus, G.; Kabadere, S.; Uyar, R.; Kutlu, H.M. Induction of apoptosis in prostate cancer cells by the novel ceramidase inhibitor ceranib-2. In Vitro Cell. Dev. Biol. Anim., 2015, 51(10), 1056-1063.
[http://dx.doi.org/10.1007/s11626-015-9932-9] [PMID: 26170224]
[43]
Yildiz-Ozer, M.; Oztopcu-Vatan, P.; Kus, G. The investigation of ceranib-2 on apoptosis and drug interaction with carboplatin in human non small cell lung cancer cells in vitro. Cytotechnology, 2018, 70(1), 387-396.
[http://dx.doi.org/10.1007/s10616-017-0154-8] [PMID: 29230631]
[44]
Baspinar, M.; Ozyurt, R.; Kus, G.; Kutlay, O.; Ozkurt, M.; Erkasap, N.; Kabadere, S.; Yasar, N.F.; Erkasap, S. Effects of ceranib-2 on cell survival and TNF-alpha in colon cancer cell line. Bratisl. Lek Listy, 2017, 118(7), 391-393.
[http://dx.doi.org/10.4149/BLL_2017_076] [PMID: 28766347]
[45]
Kuş, G.; Özkurt, M.; Öztopcu Vatan, P.; Erkasap, N.; Uyar, R.; Kabadere, S. Comparison of a ceramidase inhibitor (ceranib-2) with C2 ceramide and cisplatin on cytotoxicity and apoptosis of glioma cells. Turk. J. Biol., 2018, 42(3), 259-265.
[PMID: 30814888]
[46]
Signoretto, E.; Zierle, J.; Bhuyan, A.A.; Castagna, M.; Lang, F. Ceranib-2-induced suicidal erythrocyte death. Cell Biochem. Funct., 2016, 34(5), 359-366.
[http://dx.doi.org/10.1002/cbf.3196] [PMID: 27291470]
[47]
Fu, D-F.; Zhang, S-Y.; Song, J.; Liu, Y-C.; Zhang, L.; Zhao, R-H.; Zi, X-L.; Liu, H-M.; Zhang, Y-B. Design and antiproliferative activity of N-heterocyclic-chalcone derivatives. J. Chem. Res., 2016, 40, 620-623.
[http://dx.doi.org/10.3184/174751916X14740355883191]
[48]
Mao, Z.; Zheng, X.; Lin, Y.; Qi, Y.; Hu, C.; Wan, C.; Rao, G. Concise synthesis and biological evaluation of chalcone derivatives bearing N-heterocyclic moieties. Heterocycles, 2016, 92, 1102-1110.
[http://dx.doi.org/10.3987/COM-16-13452]
[49]
Hussaini, S.M.A.; Yedla, P.; Babu, K.S.; Shaik, T.B.; Chityal, G.K.; Kamal, A. Synthesis and biological evaluation of 1,2,3-triazole tethered pyrazoline and chalcone derivatives. Chem. Biol. Drug Des., 2016, 88(1), 97-109.
[http://dx.doi.org/10.1111/cbdd.12738] [PMID: 26854643]
[50]
Zhang, S-Y.; Fu, D-J.; Yue, X-X.; Liu, Y-C.; Song, J.; Sun, H-H.; Liu, H-M.; Zhang, Y-B. Design, synthesis and structure-activity relationships of novel chalcone-1,2,3-triazole-azole derivatives as antiproliferative agents. Molecules, 2016, 21, 653.
[http://dx.doi.org/10.3390/molecules21050653]
[51]
Tuncel, S.; Trivella, A.; Atilla, D.; Bennis, K.; Savoie, H.; Albrieux, F.; Delort, L.; Billard, H.; Dubois, V.; Ahsen, V.; Caldefie-Chézet, F.; Richard, C.; Boyle, R.W.; Ducki, S.; Dumoulin, F. Assessing the dual activity of a chalcone-phthalocyanine conjugate: Design, synthesis, and antivascular and photodynamic properties. Mol. Pharm., 2013, 10(10), 3706-3716.
[http://dx.doi.org/10.1021/mp400207v] [PMID: 23937202]
[52]
Aribi, F.; Vey, C.; Topkaya, D.; Kostakoglu, S.T. Fournier-dit-Chabert, J.; Büyükeksi, S.I.; Taskin, G.C.; Alpugan, S.; Albrieux, F.; Gürek, A.G.; Cucca, M.; Bennis, K.; Atilla, D.; Ahsen, V.; Ducki, S.; Dumoulin, F. Phthalocyanine-chalcone conjugates. J. Porphyr. Phthalocyanines, 2016, 20, 497-504.
[http://dx.doi.org/10.1142/S1088424616500310]
[53]
Kantekin, H.; Yalazan, H.; Kahriman, N.; Ertem, B.; Serdaroglu, V.; Piskin, M.; Durmus, M. New peripherally and non-peripherally tetra-substituted metal-free, magnesium(II) and zinc(II) phthalocyanine derivatives fused chalcone units: Design, synthesis, spectroscopic characterization, photochemistry and photophysics. J. Photochem. Photobiol. Chem., 2018, 361, 1-11.
[http://dx.doi.org/10.1016/j.jphotochem.2018.04.034]
[54]
Özen, F.; Günel, A.; Baran, A. DNA-binding, enzyme inhibition, and photochemical properties of chalcone-containing metallophthalocyanine compounds. Bioorg. Chem., 2018, 81, 71-78.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.002] [PMID: 30118987]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy