Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Roux-en-Y Gastrointestinal Bypass Promotes Activation of TGR5 and Peptide YY

Author(s): Haojun Yang, Hanyang Liu, YuWen Jiao and Jun Qian*

Volume 20, Issue 8, 2020

Page: [1262 - 1267] Pages: 6

DOI: 10.2174/1871530320666200628024500

Price: $65

conference banner
Abstract

Background: G protein-coupled bile acid receptor (TGR5) is involved in a number of metabolic diseases. The aim of this study was to identify the role of TGR5 after Roux-en-Y gastric bypass (GBP).

Methods: Wild type and TGR5 knockout mice (tgr5-/-) were fed a high-fat diet (HFD) to establish the obesity model. GBP was performed. The changes in body weight and food intake were measured. The levels of TGR5 and peptide YY (PYY) were evaluated by RT-PCR, Western blot, and ELISA. Moreover, the L-cells were separated from wild type and tgr5-/- mice. The levels of PYY in L-cells were evaluated by ELISA.

Results: The body weights were significantly decreased after GBP in wild type mice (p<0.05), but not tgr5-/- mice (p>0.05). Food intake was reduced after GBP in wild type mice, but also not significantly affected in tgr5-/- mice (p>0.05). The levels of PYY were significantly increased after GBP compared with the sham group (p<0.05); however, in tgr5-/- mice the expression of PYY was not significantly affected (p>0.05). After INT-777 stimulation in L-cells obtained from murine intestines, the levels of PYY were significantly increased in L-cells tgr5+/+ (p<0.05).

Conclusion: Our study suggests that GBP up-regulated the expression of TGR5 in murine intestines, and increased the levels of PYY, which further reduced food intake and decreased the body weight.

Keywords: Roux-en-Y, gastrointestinal bypass, obesity, TGR5, PYY, high-fat diet.

Graphical Abstract

[1]
Grundy, S.M. Obesity, metabolic syndrome, and cardiovascular disease. J. Clin. Endocrinol. Metab., 2004, 89(6), 2595-2600.
[http://dx.doi.org/10.1210/jc.2004-0372] [PMID: 15181029]
[2]
Mingrone, G.; Panunzi, S.; De Gaetano, A.; Guidone, C.; Iaconelli, A.; Leccesi, L.; Nanni, G.; Pomp, A.; Castagneto, M.; Ghirlanda, G.; Rubino, F. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N. Engl. J. Med., 2012, 366(17), 1577-1585.
[http://dx.doi.org/10.1056/NEJMoa1200111] [PMID: 22449317]
[3]
Schauer, P.R.; Bhatt, D.L.; Kirwan, J.P.; Wolski, K.; Brethauer, S.A.; Navaneethan, S.D.; Aminian, A.; Pothier, C.E.; Kim, E.S.; Nissen, S.E.; Kashyap, S.R. STAMPEDE Investigators. Bariatric surgery versus intensive medical therapy for diabetes--3-year outcomes. N. Engl. J. Med., 2014, 370(21), 2002-2013.
[http://dx.doi.org/10.1056/NEJMoa1401329] [PMID: 24679060]
[4]
O’Brien, P.E. Bariatric surgery: mechanisms, indications and outcomes. J. Gastroenterol. Hepatol., 2010, 25(8), 1358-1365.
[http://dx.doi.org/10.1111/j.1440-1746.2010.06391.x] [PMID: 20659224]
[5]
Goldstone, A.P.; Miras, A.D.; Scholtz, S.; Jackson, S.; Neff, K.J.; Pénicaud, L.; Geoghegan, J.; Chhina, N.; Durighel, G.; Bell, J.D.; Meillon, S.; le Roux, C.W. Link Between Increased Satiety Gut Hormones and Reduced Food Reward After Gastric Bypass Surgery for Obesity. J. Clin. Endocrinol. Metab., 2016, 101(2), 599-609.
[http://dx.doi.org/10.1210/jc.2015-2665] [PMID: 26580235]
[6]
Abdeen, G.; le Roux, C.W. Mechanism underlying the weight loss and complications of roux-en-y gastric bypass. Review. Obes. Surg., 2016, 26(2), 410-421.
[http://dx.doi.org/10.1007/s11695-015-1945-7] [PMID: 26530712]
[7]
Persaud, S.J.; Bewick, G.A.; Peptide, Y.Y.; Peptide, Y.Y. More than just an appetite regulator. Diabetologia, 2014, 57(9), 1762-1769.
[http://dx.doi.org/10.1007/s00125-014-3292-y] [PMID: 24917132]
[8]
Schmidt, J.B.; Pedersen, S.D.; Gregersen, N.T.; Vestergaard, L.; Nielsen, M.S.; Ritz, C.; Madsbad, S.; Worm, D.; Hansen, D.L.; Clausen, T.R.; Rehfeld, J.F.; Astrup, A.; Holst, J.J.; Sjödin, A. Effects of RYGB on energy expenditure, appetite and glycaemic control: a randomized controlled clinical trial. Int. J. Obes., 2016, 40(2), 281-290.
[http://dx.doi.org/10.1038/ijo.2015.162] [PMID: 26303352]
[9]
Price, S.L.; Bloom, S.R. Protein PYY and its role in metabolism. Front. Horm. Res., 2014, 42, 147-154.
[http://dx.doi.org/10.1159/000358343] [PMID: 24732932]
[10]
Flynn, C.R.; Albaugh, V.L.; Cai, S.; Cheung-Flynn, J.; Williams, P.E.; Brucker, R.M.; Bordenstein, S.R.; Guo, Y.; Wasserman, D.H.; Abumrad, N.N. Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery. Nat. Commun., 2015, 6, 7715.
[http://dx.doi.org/10.1038/ncomms8715] [PMID: 26197299]
[11]
Bhutta, H.Y.; Rajpal, N.; White, W.; Freudenberg, J.M.; Liu, Y.; Way, J.; Rajpal, D.; Cooper, D.C.; Young, A.; Tavakkoli, A.; Chen, L. Effect of Roux-en-Y gastric bypass surgery on bile acid metabolism in normal and obese diabetic rats. PLoS One, 2015, 10(3), e0122273.
[http://dx.doi.org/10.1371/journal.pone.0122273] [PMID: 25798945]
[12]
Lutz, T.A.; Bueter, M. The physiology underlying Roux-en-Y gastric bypass: a status report. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2014, 307(11), R1275-R1291.
[http://dx.doi.org/10.1152/ajpregu.00185.2014] [PMID: 25253084]
[13]
Keitel, V.; Cupisti, K.; Ullmer, C.; Knoefel, W.T.; Kubitz, R.; Häussinger, D. The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders. Hepatology, 2009, 50(3), 861-870.
[http://dx.doi.org/10.1002/hep.23032] [PMID: 19582812]
[14]
Watanabe, M.; Houten, S.M.; Mataki, C.; Christoffolete, M.A.; Kim, B.W.; Sato, H.; Messaddeq, N.; Harney, J.W.; Ezaki, O.; Kodama, T.; Schoonjans, K.; Bianco, A.C.; Auwerx, J. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 2006, 439(7075), 484-489.
[http://dx.doi.org/10.1038/nature04330] [PMID: 16400329]
[15]
Keitel, V.; Donner, M.; Winandy, S.; Kubitz, R.; Häussinger, D. Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochem. Biophys. Res. Commun., 2008, 372(1), 78-84.
[http://dx.doi.org/10.1016/j.bbrc.2008.04.171] [PMID: 18468513]
[16]
Brighton, C.A.; Rievaj, J.; Kuhre, R.E.; Glass, L.L.; Schoonjans, K.; Holst, J.J.; Gribble, F.M.; Reimann, F. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors. Endocrinology, 2015, 156(11), 3961-3970.
[http://dx.doi.org/10.1210/en.2015-1321] [PMID: 26280129]
[17]
Vítek, L.; Haluzík, M. The role of bile acids in metabolic regulation. J. Endocrinol., 2016, 228(3), R85-R96.
[http://dx.doi.org/10.1530/JOE-15-0469] [PMID: 26733603]
[18]
Zechner, J.F.; Mirshahi, U.L.; Satapati, S.; Berglund, E.D.; Rossi, J.; Scott, M.M.; Still, C.D.; Gerhard, G.S.; Burgess, S.C.; Mirshahi, T.; Aguirre, V. Weight-independent effects of roux-en-Y gastric bypass on glucose homeostasis via melanocortin-4 receptors in mice and humans. Gastroenterology, 2013, 144(3), 580-590.e7.
[http://dx.doi.org/10.1053/j.gastro.2012.11.022] [PMID: 23159449]
[19]
Jiang, R.; Xia, Y.; Li, J.; Deng, L.; Zhao, L.; Shi, J.; Wang, X.; Sun, B. High expression levels of IKKalpha and IKKbeta are necessary for the malignant properties of liver cancer. Int. J. Cancer, 2010, 126(5), 1263-1274.
[http://dx.doi.org/10.1002/ijc.24854] [PMID: 19728335]
[20]
Pellicciari, R.; Gioiello, A.; Macchiarulo, A.; Thomas, C.; Rosatelli, E.; Natalini, B.; Sardella, R.; Pruzanski, M.; Roda, A.; Pastorini, E.; Schoonjans, K.; Auwerx, J. Discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J. Med. Chem., 2009, 52(24), 7958-7961.
[http://dx.doi.org/10.1021/jm901390p] [PMID: 20014870]
[21]
Seeley, R.J.; Chambers, A.P.; Sandoval, D.A. The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes. Cell Metab., 2015, 21(3), 369-378.
[http://dx.doi.org/10.1016/j.cmet.2015.01.001] [PMID: 25662404]
[22]
Patti, M.E.; Houten, S.M.; Bianco, A.C.; Bernier, R.; Larsen, P.R.; Holst, J.J.; Badman, M.K.; Maratos-Flier, E.; Mun, E.C.; Pihlajamaki, J.; Auwerx, J.; Goldfine, A.B. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring), 2009, 17(9), 1671-1677.
[http://dx.doi.org/10.1038/oby.2009.102] [PMID: 19360006]
[23]
Kohli, R.; Bradley, D.; Setchell, K.D.; Eagon, J.C.; Abumrad, N.; Klein, S. Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids. J. Clin. Endocrinol. Metab., 2013, 98(4), E708-E712.
[http://dx.doi.org/10.1210/jc.2012-3736] [PMID: 23457410]
[24]
Werling, M.; Vincent, R.P.; Cross, G.F.; Marschall, H.U.; Fändriks, L.; Lönroth, H.; Taylor, D.R.; Alaghband-Zadeh, J.; Olbers, T.; Le Roux, C.W. Enhanced fasting and post-prandial plasma bile acid responses after Roux-en-Y gastric bypass surgery. Scand. J. Gastroenterol., 2013, 48(11), 1257-1264.
[http://dx.doi.org/10.3109/00365521.2013.833647] [PMID: 24044585]
[25]
Pols, T.W.; Auwerx, J.; Schoonjans, K. Targeting the TGR5-GLP-1 pathway to combat type 2 diabetes and non-alcoholic fatty liver disease. Gastroenterol. Clin. Biol., 2010, 34(4-5), 270-273.
[http://dx.doi.org/10.1016/j.gcb.2010.03.009] [PMID: 20444564]
[26]
Bala, V.; Rajagopal, S.; Kumar, D.P.; Nalli, A.D.; Mahavadi, S.; Sanyal, A.J.; Grider, J.R.; Murthy, K.S. Release of GLP-1 and PYY in response to the activation of G protein-coupled bile acid receptor TGR5 is mediated by Epac/PLC-ε pathway and modulated by endogenous H2S. Front. Physiol., 2014, 5, 420.
[http://dx.doi.org/10.3389/fphys.2014.00420] [PMID: 25404917]
[27]
Dehmlow, H.; Alvarez Sánchez, R.; Bachmann, S.; Bissantz, C.; Bliss, F.; Conde-Knape, K.; Graf, M.; Martin, R.E.; Obst Sander, U.; Raab, S.; Richter, H.G.; Sewing, S.; Sprecher, U.; Ullmer, C.; Mattei, P. Discovery and optimisation of 1-hydroxyimino-3,3-diphenylpropanes, a new class of orally active GPBAR1 (TGR5) agonists. Bioorg. Med. Chem. Lett., 2013, 23(16), 4627-4632.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.017] [PMID: 23831134]
[28]
Wu, T.; Bound, M.J.; Standfield, S.D.; Gedulin, B.; Jones, K.L.; Horowitz, M.; Rayner, C.K. Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans. Diabetes Obes. Metab., 2013, 15(5), 474-477.
[http://dx.doi.org/10.1111/dom.12043] [PMID: 23181598]
[29]
Major, P.; Matłok, M.; Pędziwiatr, M.; Migaczewski, M.; Zub-Pokrowiecka, A.; Radkowiak, D.; Winiarski, M.; Zychowicz, A.; Fedak, D.; Budzyński, A. Changes in levels of selected incretins and appetite-controlling hormones following surgical treatment for morbid obesity. Wideochir. Inne Tech. Malo Inwazyjne, 2015, 10(3), 458-465.
[http://dx.doi.org/10.5114/wiitm.2015.54003] [PMID: 26649096]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy