Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

An Insight into Oligopeptide Transporter 3 (OPT3) Family Proteins

Author(s): Fırat Kurt*

Volume 28, Issue 1, 2021

Published on: 25 June, 2020

Page: [43 - 54] Pages: 12

DOI: 10.2174/0929866527666200625202028

Price: $65

Abstract

Background: OPT3s are involved in the transport of Fe from xylem to phloem, in loading Fe into phloem, and in the transmission of shoot-to-root iron signaling. Yet, apart from Arabidopsis, little is known about these transporters’functions in other plant species.

Objective: OPT3 proteins of several plant species were characterized using bioinformatical tools. Also, a probable Fe chelating protein, GSH, was used in docking analyses to shed light on the interactions of ligand binding sites of OPT3s.

Methods: The multiple sequence alignment (MSA) analysis, protein secondary and tertiary structure analyses, molecular phylogeny analysis, transcription factor binding site analyses, co-expression and docking analyses were performed using up-to-date bioinformatical tools.

Results: All OPT3s in this study appear to be transmembrane proteins. They appear to have broad roles and substrate specificities in different metabolic processes. OPT3 gene structures were highly conserved. Promoter analysis showed that bZIP, WRKY, Dof and AT-Hook Transcription factors (TFs) may regulate the expression of OPT3 genes. Consequently, they seemed to be taking part in both biotic and abiotic stress responses as well as growth and developmental processes.

Conclusion: The results showed that OPT3 proteins are involved in ROS regulation, plant stress responses, and basal pathogen resistance. They have species-specific roles in biological processes. Lastly, the transport of iron through OPT3s may occur with GSH according to the binding affinity results of the docking analyses.

Keywords: Glutathione (GSH), iron, YSL, oligopeptide transporter 3, docking, transporters.

Graphical Abstract

[1]
Cao, J.; Huang, J.; Yang, Y.; Hu, X. Analyses of the oligopeptide transporter gene family in poplar and grape. BMC Genomics, 2011, 12, 465.
[http://dx.doi.org/10.1186/1471-2164-12-465] [PMID: 21943393]
[2]
Gomolplitinant, K.M.; Saier, M.H.Jr. Evolution of the oligopeptide transporter family. J. Membr. Biol., 2011, 240(2), 89-110.
[http://dx.doi.org/10.1007/s00232-011-9347-9] [PMID: 21347612]
[3]
Vasconcelos, M.W.; Li, G.W.; Lubkowitz, M.A.; Grusak, M.A. Characterization of the PT Clade of Oligopeptide Transporters in Rice. Plant Genome J., 2008, 1, 77.
[http://dx.doi.org/10.3835/plantgenome2007.10.0540]
[4]
Patel, A.A. Role of the Arabidopsis peptide transporter AtOPT6 in heavy metal detoxification., 2007,
[5]
Liu, R; Shan, H; Shu, Y. Genome-wide analysis of oligopeptide transporters gene family in Medicago truncatula. Preprint, 2016. 2016090048.
[http://dx.doi.org/10.20944/preprints201609.0048.v1]
[6]
Reuss, O.; Morschhäuser, J. A family of oligopeptide transporters is required for growth of Candida albicans on proteins. Mol. Microbiol., 2006, 60(3), 795-812.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05136.x] [PMID: 16629678]
[7]
Stacey, G.; Koh, S.; Granger, C.; Becker, J.M. Peptide transport in plants. Trends Plant Sci., 2002, 7(6), 257-263.
[http://dx.doi.org/10.1016/S1360-1385(02)02249-5] [PMID: 12049922]
[8]
Liu, T.; Zeng, J.; Xia, K.; Fan, T.; Li, Y.; Wang, Y.; Xu, X.; Zhang, M. Evolutionary expansion and functional diversification of oligopeptide transporter gene family in rice. Rice (N. Y.), 2012, 5(1), 12.
[http://dx.doi.org/10.1186/1939-8433-5-12] [PMID: 27234238]
[9]
Pu, Y.; Yang, D.; Yin, X.; Wang, Q.; Chen, Q.; Yang, Y.; Yang, Y. Genome-wide analysis indicates diverse physiological roles of the turnip (Brassica rapa var. rapa) oligopeptide transporters gene family. Plant Divers, 2018, 40(2), 57-67.
[http://dx.doi.org/10.1016/j.pld.2018.03.001] [PMID: 30159543]
[10]
Haydon, M.J.; Cobbett, C.S. Transporters of ligands for essential metal ions in plants. New Phytol., 2007, 174(3), 499-506.
[http://dx.doi.org/10.1111/j.1469-8137.2007.02051.x] [PMID: 17447906]
[11]
Naranjo-Archos, M.A.; Bauer, P. Iron nutrition, oxidative stress, and pathogen defense, Nutritional Deficiency. Nutritional Deficiency., 2016, , 13.
[http://dx.doi.org/10.5772/63204]
[12]
Hu, Y.T.; Ming, F.; Chen, W.W.; Yan, J.Y.; Xu, Z.Y.; Li, G.X.; Xu, C.Y.; Yang, J.L.; Zheng, S.J. TcOPT3, a member of oligopeptide transporters from the hyperaccumulator Thlaspi caerulescens, is a novel Fe/Zn/Cd/Cu transporter. PLoS One, 2012, 7(6), e38535.
[http://dx.doi.org/10.1371/journal.pone.0038535] [PMID: 22761683]
[13]
Wang, M.; Gruissem, W.; Bhullar, N.K. Nicotianamine synthase overexpression positively modulates iron homeostasis-related genes in high iron rice. Front. Plant Sci., 2013, 4, 156.
[http://dx.doi.org/10.3389/fpls.2013.00156] [PMID: 23755054]
[14]
Jeong, J.; Merkovich, A.; Clyne, M.; Connolly, E.L. Directing iron transport in dicots: regulation of iron acquisition and translocation. Curr. Opin. Plant Biol., 2017, 39, 106-113.
[http://dx.doi.org/10.1016/j.pbi.2017.06.014] [PMID: 28689052]
[15]
Zhai, Z.; Gayomba, S.R.; Jung, H-I.; Vimalakumari, N.K.; Piñeros, M.; Craft, E.; Rutzke, M.A.; Danku, J.; Lahner, B.; Punshon, T.; Guerinot, M.L.; Salt, D.E.; Kochian, L.V.; Vatamaniuk, O.K. OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis. Plant Cell, 2014, 26(5), 2249-2264.
[http://dx.doi.org/10.1105/tpc.114.123737] [PMID: 24867923]
[16]
Stacey, M.G.; Patel, A.; McClain, W.E.; Mathieu, M.; Remley, M.; Rogers, E.E.; Gassmann, W.; Blevins, D.G.; Stacey, G. The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiol., 2008, 146(2), 589-601.
[http://dx.doi.org/10.1104/pp.107.108183] [PMID: 18083798]
[17]
Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; Rokhsar, D.S. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res., 2012, 40(Database issue), D1178-D1186.
[http://dx.doi.org/10.1093/nar/gkr944] [PMID: 22110026]
[18]
Finn, R.D.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Mistry, J.; Mitchell, A.L.; Potter, S.C.; Punta, M.; Qureshi, M.; Sangrador-Vegas, A.; Salazar, G.A.; Tate, J.; Bateman, A. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res., 2016, 44(D1), D279-D285.
[http://dx.doi.org/10.1093/nar/gkv1344] [PMID: 26673716]
[19]
Yu, C.S.; Cheng, C.W.; Su, W.C.; Chang, K.C.; Huang, S.W.; Hwang, J.K.; Lu, C.H. CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS One, 2014, 9(6), e99368.
[http://dx.doi.org/10.1371/journal.pone.0099368] [PMID: 24911789]
[20]
Gasteiger, E.; Hoogland, C.; Gattiker, A. Protein Analysis Tools on the ExPASy Server. The Proteomics Protocols Handbook., 2005, , 571-607.
[http://dx.doi.org/10.1385/1-59259-890-0:571]
[21]
Saier, M.H., Jr; Reddy, V.S.; Tsu, B.V.; Ahmed, M.S.; Li, C.; Moreno-Hagelsieb, G. The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res., 2016, 44(D1), D372-D379.
[http://dx.doi.org/10.1093/nar/gkv1103] [PMID: 26546518]
[22]
Innovagen AB (2015) PepCalc.com-Peptide property calculator. http://pepcalc.com Accessed 25 May 2019.
[23]
Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol., 1982, 157(1), 105-132.
[http://dx.doi.org/10.1016/0022-2836(82)90515-0] [PMID: 7108955]
[24]
Hall, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser., 1999, 41, 95-98.
[25]
Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res., 2009, 37(Web Server issue), W202-8.
[http://dx.doi.org/10.1093/nar/gkp335] [PMID: 19458158]
[26]
Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol., 2016, 33(7), 1870-1874.
[http://dx.doi.org/10.1093/molbev/msw054] [PMID: 27004904]
[27]
Zuckerkandl, E.; Pauling, L. Molecules as documents of evolutionary history. J. Theor. Biol., 1965, 8(2), 357-366.
[http://dx.doi.org/10.1016/0022-5193(65)90083-4] [PMID: 5876245]
[28]
Kelley, L.A.; Mezulis, S.; Yates, C.M. Europe PMC Funders Group Phyre2 web portal for protein modelling, prediction and analysis. Nat. Protoc., 2015, 10, 845-858.
[http://dx.doi.org/10.1038/nprot.2015.053] [PMID: 25950237]
[29]
Willard, L.; Ranjan, A.; Zhang, H.; Monzavi, H.; Boyko, R.F.; Sykes, B.D.; Wishart, D.S. VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res., 2003, 31(13), 3316-3319.
[http://dx.doi.org/10.1093/nar/gkg565] [PMID: 12824316]
[30]
Nguyen, M.N.; Tan, K.P.; Madhusudhan, M.S. CLICK--topology-independent comparison of biomolecular 3D structures. Nucleic Acids Res., 2011, 39(Web Server issue), W24-8.
[http://dx.doi.org/10.1093/nar/gkr393] [PMID: 21602266]
[31]
Chow, C-N.; Zheng, H-Q.; Wu, N-Y.; Chien, C.H.; Huang, H.D.; Lee, T.Y.; Chiang-Hsieh, Y.F.; Hou, P.F.; Yang, T.Y.; Chang, W.C. PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Res., 2016, 44(D1), D1154-D1160.
[http://dx.doi.org/10.1093/nar/gkv1035] [PMID: 26476450]
[32]
Hruz, T.; Laule, O.; Szabo, G.; Wessendorp, F.; Bleuler, S.; Oertle, L.; Widmayer, P.; Gruissem, W.; Zimmermann, P. Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv. Bioinforma., 2008, 2008, 420747.
[http://dx.doi.org/10.1155/2008/420747] [PMID: 19956698]
[33]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334.AutoDock] [PMID: 19499576]
[34]
Kawabata, T. Detection of multiscale pockets on protein surfaces using mathematical morphology. Proteins, 2010, 78(5), 1195-1211.
[http://dx.doi.org/10.1002/prot.22639] [PMID: 19938154]
[35]
Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res., 2018, 46(W1), W363-W367.
[http://dx.doi.org/10.1093/nar/gky473] [PMID: 29860391]
[36]
Kurt, F.; Filiz, E. Genome-wide and comparative analysis of bHLH38, bHLH39, bHLH100 and bHLH101 genes in Arabidopsis, tomato, rice, soybean and maize: insights into iron (Fe) homeostasis. Biometals, 2018, 31(4), 489-504.
[http://dx.doi.org/10.1007/s10534-018-0095-5] [PMID: 29546482]
[37]
Brumbarova, T.; Bauer, P.; Ivanov, R. Molecular mechanisms governing Arabidopsis iron uptake. Trends Plant Sci., 2015, 20(2), 124-133.
[http://dx.doi.org/10.1016/j.tplants.2014.11.004] [PMID: 25499025]
[38]
Zeng, H.; Zhang, Y.; Zhang, X.; Pi, E.; Zhu, Y. Analysis of EF-Hand proteins in soybean genome suggests their potential roles in environmental and nutritional stress signaling. Front. Plant Sci., 2017, 8, 877.
[http://dx.doi.org/10.3389/fpls.2017.00877] [PMID: 28596783]
[39]
Tian, Q.; Zhang, X.; Yang, A.; Wang, T.; Zhang, W.H. CIPK23 is involved in iron acquisition of Arabidopsis by affecting ferric chelate reductase activity. Plant Sci., 2016, 246, 70-79.
[http://dx.doi.org/10.1016/j.plantsci.2016.01.010] [PMID: 26993237]
[40]
Zhang, C-J.; Zhao, B-C.; Ge, W-N.; Zhang, Y.F.; Song, Y.; Sun, D.Y.; Guo, Y. An apoplastic h-type thioredoxin is involved in the stress response through regulation of the apoplastic reactive oxygen species in rice. Plant Physiol., 2011, 157(4), 1884-1899.
[http://dx.doi.org/10.1104/pp.111.182808] [PMID: 22010108]
[41]
Caro, E.; Castellano, M.M.; Gutierrez, C. A chromatin link that couples cell division to root epidermis patterning in Arabidopsis. Nature, 2007, 447(7141), 213-217.
[http://dx.doi.org/10.1038/nature05763] [PMID: 17450124]
[42]
Lin, Q.; Ohashi, Y.; Kato, M. Tsuge, T.; Gu, H.; Qu, L.J.; Aoyama, T. GLABRA2 directly suppresses basic helix-loop-helix transcription factor genes with diverse functions in root hair development. Plant Cell, 2015, 27(10), 2894-2906.
[http://dx.doi.org/10.1105/tpc.15.00607]
[43]
Fulton, L.; Batoux, M.; Vaddepalli, P.; Yadav, R.K.; Busch, W.; Andersen, S.U.; Jeong, S.; Lohmann, J.U.; Schneitz, K. DETORQUEO, QUIRKY, and ZERZAUST represent novel components involved in organ development mediated by the receptor-like kinase STRUBBELIG in Arabidopsis thaliana. PLoS Genet., 2009, 5(1), e1000355.
[http://dx.doi.org/10.1371/journal.pgen.1000355] [PMID: 19180193]
[44]
Zhang, Y.; Xu, S.; Ding, P.; Wang, D.; Cheng, Y.T.; He, J.; Gao, M.; Xu, F.; Li, Y.; Zhu, Z.; Li, X.; Zhang, Y. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proc. Natl. Acad. Sci. USA, 2010, 107(42), 18220-18225.
[http://dx.doi.org/10.1073/pnas.1005225107] [PMID: 20921422]
[45]
Wang, L.; Tsuda, K.; Truman, W.; Sato, M.; Nguyen, V.; Katagiri, F.; Glazebrook, J. CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling. Plant J., 2011, 67(6), 1029-1041.
[http://dx.doi.org/10.1111/j.1365-313X.2011.04655.x] [PMID: 21615571]
[46]
Wan, D.; Li, R.; Zou, B.; Zhang, X.; Cong, J.; Wang, R.; Xia, Y.; Li, G. Calmodulin-binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis. Plant Cell Rep., 2012, 31(7), 1269-1281.
[http://dx.doi.org/10.1007/s00299-012-1247-7] [PMID: 22466450]
[47]
Pagel, P.; Wong, P.; Frishman, D. A domain interaction map based on phylogenetic profiling. J. Mol. Biol., 2004, 344(5), 1331-1346.
[http://dx.doi.org/10.1016/j.jmb.2004.10.019] [PMID: 15561146]
[48]
De Schutter, K.; Tsaneva, M.; Kulkarni, S.R.; Rougé, P.; Vandepoele, K.; Van Damme, E.J.M. Evolutionary relationships and expression analysis of EUL domain proteins in rice (Oryza sativa). Rice (N. Y.), 2017, 10(1), 26.
[http://dx.doi.org/10.1186/s12284-017-0164-3] [PMID: 28560587]
[49]
Hu, W.; Yang, H.; Yan, Y.; Wei, Y.; Tie, W.; Ding, Z.; Zuo, J.; Peng, M.; Li, K. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava. Sci. Rep., 2016, 6, 22783.
[http://dx.doi.org/10.1038/srep22783] [PMID: 26947924]
[50]
Finatto, T.; Viana, V.E.; Woyann, L.G.; Busanello, C.; Maia, L.C.D.; Oliveira, A.C. Can WRKY transcription factors help plants to overcome environmental challenges? Genet. Mol. Biol., 2018, 41(3), 533-544.
[http://dx.doi.org/10.1590/1678-4685-gmb-2017-0232] [PMID: 30235398]
[51]
Cominelli, E.; Galbiati, M.; Albertini, A.; Fornara, F.; Conti, L.; Coupland, G.; Tonelli, C. DOF-binding sites additively contribute to guard cell-specificity of AtMYB60 promoter. BMC Plant Biol., 2011, 11, 162.
[http://dx.doi.org/10.1186/1471-2229-11-162] [PMID: 22088138]
[52]
Kelly, B.L.; Singh, G.; Aiyar, A. Molecular and cellular characterization of an AT-hook protein from Leishmania. PLoS One, 2011, 6(6), e21412.
[http://dx.doi.org/10.1371/journal.pone.0021412] [PMID: 21731738]
[53]
Zhao, N.; Pang, B.; Shyu, C.R.; Korkin, D. Structural similarity and classification of protein interaction interfaces. PLoS One, 2011, 6(5), e19554.
[http://dx.doi.org/10.1371/journal.pone.0019554] [PMID: 21589874]
[54]
Redfern, O.C.; Dessailly, B.; Orengo, C.A. Exploring the structure and function paradigm. Curr. Opin. Struct. Biol., 2008, 18(3), 394-402.
[http://dx.doi.org/10.1016/j.sbi.2008.05.007] [PMID: 18554899]
[55]
Todd, A.E.; Orengo, C.A.; Thornton, J.M. Evolution of function in protein superfamilies, from a structural perspective. J. Mol. Biol., 2001, 307(4), 1113-1143.
[http://dx.doi.org/10.1006/jmbi.2001.4513] [PMID: 11286560]
[56]
Koch, O. Use of secondary structure element information in drug design: polypharmacology and conserved motifs in protein-ligand binding and protein-protein interfaces. Future Med. Chem., 2011, 3(6), 699-708.
[http://dx.doi.org/10.4155/fmc.11.26] [PMID: 21554076]
[57]
Breinbauer, R.; Vetter, IR.; Waldmann, H. From Protein Domains to Drug Candidates—Natural products as guiding principles in the design and synthesis of compound libraries. Angew. Chem. Int. Ed., 2002, 41, 2878-2890.
[http://dx.doi.org/10.1002/1521-3773(20020816)41:16%3C2878::AID-ANIE2878%3E3.0.CO;2-B]
[58]
Lubkowitz, M. The oligopeptide transporters: a small gene family with a diverse group of substrates and functions? Mol. Plant, 2011, 4(3), 407-415.
[http://dx.doi.org/10.1093/mp/ssr004] [PMID: 21310763]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy