Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Salinomycin Modulates the Expression of mRNAs and miRNAs Related to Stemness in Endometrial Cancer

Author(s): Karol Talkowski*, Kamil Kiełbasiński, Wojciech Peszek, Beniamin O. Grabarek, Dariusz Boroń and Marcin Oplawski

Volume 22, Issue 2, 2021

Published on: 21 June, 2020

Page: [317 - 326] Pages: 10

DOI: 10.2174/1573403X16666200621160742

open access plus

Abstract

Background: Salinomycin, an ionophore antibiotic, has a strong anti-cancer effect, inducing the apoptosis of cancer cells and cancer stem cells.

Objective: The aim of the study was to assess the influence of salinomycin on the expression profile of genes related to stemness and miRNA regulating their expression in endometrial cancer cells.

Methods: Endometrial cancer cells of cell line Ishikawa were exposed to salinomycin at concentrations in the range of 0.1-100 μM, with the aim of determining its pro-apoptotic potential and the concentration which would cause the death of 50% of the cells (Sulforhodamine B test). In the following stages, the cells were incubated with the drug at a concentration of 1μM for 12,24 and 48 hour periods and compared to the control. Determining the changes in the expression of the genes related to stemness and regulating their miRNA was done using the microarray technique and RTqPCR. ELISA assay was performed in order to determine the level of TGFβ2, COL14A1, CDH2, WNT5A in cell culture under salinomycin treatment in comparison to the control.

Results: Salinomycin caused the apoptosis of cells. For the concentration of 0.1 μM, a decrease in the population of living cells by 11.9% was determined. For 1 μM, it was 49.8%, for 10 μM -69.4%, and for a concentration of 100 μM - 87.9%. The most noticeable changes in the expression caused by the addition of salinomycin into the culture were noted for mRNA: TGFβ2; WNT5A (up-regulated); COL14A1; CDH2 (down-regulated), as well as miRNA: hsa-miR-411 (up-regulated); hsa-miR-200a; hsa-miR-33a; hsa-miR-199a; hsa-miR-371-5p; hsa-miR-374; hsa-miR-374b (down-regulated).

Conclusion: It was confirmed that salinomycin has an influence on the stemness process. The most noticeable changes in the expression were noted for mRNA: TGFβ2; COL14A1; CDH2; WNT5A, as well as for miRNA: hsa-miR-200a; hsa-miR-33a; hsa-miR-199a; hsa-miR-371-5p; hsa-miR-411; hsa-miR- 374a; hsa-miR-374b.

Keywords: Stem cells, salinomycin, Wnt/β-catenin pathway, microarray, apoptosis, miRNA.

« Previous
Graphical Abstract

[1]
Batlle, E.; Clevers, H. Cancer stem cells revisited. Nat. Med., 2017, 23(10), 1124-1134.
[http://dx.doi.org/10.1038/nm.4409] [PMID: 28985214]
[2]
Kise 2. K. Kinugasa-Katayama Y Takakura N. Tumor microenvironment for cancer stem cells. Adv. Drug Deliv. Rev., 2016, 99, 197-205.
[3]
Kim, W.T.; Ryu, C.J. Cancer stem cell surface markers on normal stem cells. BMB Rep., 2017, 50(6), 285-298.
[http://dx.doi.org/10.5483/BMBRep.2017.50.6.039] [PMID: 28270302]
[4]
Cui, X.; Dhruv, S.; Ornelas, L.A. Generation of induced pluripotent stem cells from normal human mammary epithelial cells. U.S. Patent Application No. 14/904,641, 2016.
[5]
van Schaijik, B.; Wickremesekera, A.C.; Mantamadiotis, T.; Kaye, A.H.; Tan, S.T.; Stylli, S.S.; Itinteang, T. Circulating tumor stem cells and glioblastoma: A review. J. Clin. Neurosci., 2019, 61, 5-9.
[http://dx.doi.org/10.1016/j.jocn.2018.12.019] [PMID: 30622004]
[6]
Gouveia, R.M.; Vajda, F.; Wibowo, J.A.; Figueiredo, F.; Connon, C.J. YAP, ΔNp63, and β-catenin signaling pathways are involved in the modulation of corneal epithelial stem cell phenotype induced by substrate stiffness. Cells, 2019, 8(4), 347.
[http://dx.doi.org/10.3390/cells8040347] [PMID: 31013745]
[7]
Shcherbina, A.; Li, J.; Narayanan, C.; Greenleaf, W.; Kundaje, A.; Chetty, S. Cell cycle dynamics of human pluripotent stem cells primed for differentiation. Stem Cells, 2019, 37(9), 1151-1157.
[http://dx.doi.org/10.1002/stem.3041] [PMID: 31135093]
[8]
Shevchenko, V.; Arnotskaya, N.; Korneyko, M.; Zaytsev, S.; Khotimchenko, Y.; Sharma, H.; Bryukhovetskiy, I. Proteins of the Wnt signaling pathway as targets for the regulation of CD133+ cancer stem cells in glioblastoma. Oncol. Rep., 2019, 41(5), 3080-3088.
[http://dx.doi.org/10.3892/or.2019.7043] [PMID: 30864699]
[9]
Östman, A.; Corvigno, S. Microvascular mural cells in cancer. Trends Cancer, 2018, 4(12), 838-848.
[http://dx.doi.org/10.1016/j.trecan.2018.10.004] [PMID: 30470305]
[10]
Pinho, S.; Frenette, P.S. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol., 2019, 20(5), 303-320.
[http://dx.doi.org/10.1038/s41580-019-0103-9] [PMID: 30745579]
[11]
Mai, T.T.; Hamaï, A.; Hienzsch, A.; Cañeque, T.; Müller, S.; Wicinski, J.; Cabaud, O.; Leroy, C.; David, A.; Acevedo, V.; Ryo, A.; Ginestier, C.; Birnbaum, D.; Charafe-Jauffret, E.; Codogno, P.; Mehrpour, M.; Rodriguez, R. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat. Chem., 2017, 9(10), 1025-1033.
[http://dx.doi.org/10.1038/nchem.2778] [PMID: 28937680]
[12]
Gupta, P. B.; Onder, T. T.; Jiang, G.; Tao, K.; Kuperwasser, C.; Weinberg, R. A.; Lander, E. S. Identification of selective inhibitors of cancer stem cells by high-throughput screening cell, 2009, 138(4), 645-659.
[13]
Huczynski, A. Salinomycin: A new cancer drug candidate. Chem. Biol. Drug Des., 2012, 79(3), 235-238.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01287.x] [PMID: 22145602]
[14]
Kölbl, A.C.; Birk, A.E.; Kuhn, C.; Jeschke, U.; Andergassen, U. Influence of VEGFR and LHCGR on endometrial adenocarcinoma. Oncol. Lett., 2016, 12(3), 2092-2098.
[http://dx.doi.org/10.3892/ol.2016.4906] [PMID: 27625708]
[15]
Rupaimoole, R.; Calin, G.A.; Lopez-Berestein, G.; Sood, A.K. miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov., 2016, 6(3), 235-246.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0893] [PMID: 26865249]
[16]
Gonçalves, O.S.L.; Wheeler, G.; Dalmay, T.; Dai, H.; Castro, M.; Castro, P. Detection of miRNA cancer biomarkers using light activated Molecular Beacons. RSC Advances, 2019, 9(22), 12766-12783.
[http://dx.doi.org/10.1039/C9RA00081J]
[17]
Kozak, J.; Wdowiak, P.; Maciejewski, R.; Torres, A. A guide for endometrial cancer cell lines functional assays using the measurements of electronic impedance. Cytotechnology, 2018, 70(1), 339-350.
[http://dx.doi.org/10.1007/s10616-017-0149-5] [PMID: 28988392]
[18]
Friel, A.M.; Sergent, P.A.; Patnaude, C.; Szotek, P.P.; Oliva, E.; Scadden, D.T.; Seiden, M.V.; Foster, R.; Rueda, B.R. Functional analyses of the cancer stem cell-like properties of human endometrial tumor initiating cells. Cell Cycle, 2008, 7(2), 242-249.
[http://dx.doi.org/10.4161/cc.7.2.5207] [PMID: 18256549]
[19]
Guy, M.S.; Qamar, L.; Behbakht, K.; Post, M.D.; Sheeder, J.; Sartorius, C.A.; Spillman, M.A. Progestin treatment decreases CD133+ cancer stem cell populations in endometrial cancer. Gynecol. Oncol., 2016, 140(3), 518-526.
[http://dx.doi.org/10.1016/j.ygyno.2015.12.022] [PMID: 26731726]
[20]
Guy, M.; Qamar, L.; Behbakht, K.; Spillman, M. Progestin treatment decreases cd133+ cancer stem cell populations in endometrial cancer. Gynecol. Oncol., 2014, 135(2), 391-392.
[http://dx.doi.org/10.1016/j.ygyno.2014.07.033] [PMID: 26731726]
[21]
Nakamura, M.; Zhang, X.; Mizumoto, Y.; Maida, Y.; Bono, Y.; Takakura, M.; Kyo, S. Molecular characterization of CD133+ cancer stem-like cells in endometrial cancer. Int. J. Oncol., 2014, 44(3), 669-677.
[http://dx.doi.org/10.3892/ijo.2013.2230] [PMID: 24366104]
[22]
Nakamura, M.; Kyo, S.; Zhang, B.; Zhang, X.; Mizumoto, Y.; Takakura, M.; Maida, Y.; Mori, N.; Hashimoto, M.; Ohno, S.; Inoue, M. Prognostic impact of CD133 expression as a tumor-initiating cell marker in endometrial cancer. Hum. Pathol., 2010, 41(11), 1516-1529.
[http://dx.doi.org/10.1016/j.humpath.2010.05.006] [PMID: 20800872]
[23]
Pouyafar, A.; Zadi Heydarabad, M.; Aghdam, S.B.; Khaksar, M.; Azimi, A.; Rahbarghazi, R.; Talebi, M. Resveratrol potentially increased the tumoricidal effect of doxorubicin on SKOV3 cancer stem cells in vitro. J. Cell. Biochem., 2019, 120(5), 8430-8437.
[http://dx.doi.org/10.1002/jcb.28129] [PMID: 30609135]
[24]
Betel, D.; Wilson, M.; Gabow, A.; Marks, D.S.; Sander, C. The microRNA. Org resource: Targets and expression. Nucleic Acids Res., 2008, 36(1), D149-D153.
[25]
Antoszczak, M.; Huczyński, A.; Brzezinski, B. Synteza i aktywność biologiczna pochodnych salinomycyny. Wiadomości Chemiczne, 2017, 71(7-8), 629-661.
[26]
Zhang, B.; Wang, X.; Cai, F.; Chen, W.; Loesch, U.; Zhong, X.Y. Antitumor properties of salinomycin on cisplatin-resistant human ovarian cancer cells in vitro and in vivo: Involvement of p38 MAPK activation. Oncol. Rep., 2013, 29(4), 1371-1378.
[http://dx.doi.org/10.3892/or.2013.2241] [PMID: 23338561]
[27]
Chung, H.; Kim, Y.H.; Kwon, M.; Shin, S.J.; Kwon, S.H.; Cha, S.D.; Cho, C.H. The effect of salinomycin on ovarian cancer stem-like cells. Obstet. Gynecol. Sci., 2016, 59(4), 261-268.
[http://dx.doi.org/10.5468/ogs.2016.59.4.261] [PMID: 27462592]
[28]
Batlle, E.; Massagué, J. Transforming growth factor-β signaling in immunity and cancer. Immunity, 2019, 50(4), 924-940.
[http://dx.doi.org/10.1016/j.immuni.2019.03.024] [PMID: 30995507]
[29]
Alsina-Sanchís, E.; Figueras, A.; Lahiguera, A.; Gil-Martín, M.; Pardo, B.; Piulats, J.M.; Martí, L.; Ponce, J.; Matias-Guiu, X.; Vidal, A.; Villanueva, A.; Viñals, F. TGFβ controls ovarian cancer cell proliferation. Int. J. Mol. Sci., 2017, 18(8), 1658.
[http://dx.doi.org/10.3390/ijms18081658] [PMID: 28758950]
[30]
Rao, S.; Mishra, L. Targeting transforming growth factor beta signaling in liver cancer. Hepatology, 2019, 69(4), 1375-1378.
[http://dx.doi.org/10.1002/hep.30426] [PMID: 30549280]
[31]
Liu, J.L.; He, J.P.; Zhu, C.; Cheng, H.Z. Endometrial carcinoma may favor partial, but not complete, loss of the TGF-β signaling pathway. Proc. Natl. Acad. Sci. USA, 2019, 116(19), 9164-9165.
[http://dx.doi.org/10.1073/pnas.1903646116] [PMID: 31068477]
[32]
Li, Z.; Zhang, J.; Zhou, J.; Lu, L.; Wang, H.; Zhang, G.; Wan, G.; Cai, S.; Du, J. Nodal facilitates differentiation of fibroblasts to cancer-associated fibroblasts that support tumor growth in melanoma and colorectal cancer. Cells, 2019, 8(6), 538.
[http://dx.doi.org/10.3390/cells8060538] [PMID: 31167491]
[33]
Wang, J.; Zhang, B.; Wu, H.; Cai, J.; Sui, X.; Wang, Y.; Li, H.; Qiu, Y.; Wang, T.; Chen, Z.; Zhu, Q.; Xia, H.; Song, W.; Xiang, A.P. CD51 correlates with the TGF-beta pathway and is a functional marker for colorectal cancer stem cells. Oncogene, 2017, 36(10), 1351-1363.
[http://dx.doi.org/10.1038/onc.2016.299] [PMID: 27593923]
[34]
Chen, D.; Dang, B.L.; Huang, J.Z.; Chen, M.; Wu, D.; Xu, M.L.; Li, R.; Yan, G.R. MiR-373 drives the epithelial-to-mesenchymal transition and metastasis via the miR-373-TXNIP-HIF1α-TWIST signaling axis in breast cancer. Oncotarget, 2015, 6(32), 32701-32712.
[http://dx.doi.org/10.18632/oncotarget.4702] [PMID: 26196741]
[35]
Meng, X.; Müller, V.; Milde-Langosch, K.; Trillsch, F.; Pantel, K.; Schwarzenbach, H. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget, 2016, 7(13), 16923-16935.
[http://dx.doi.org/10.18632/oncotarget.7850] [PMID: 26943577]
[36]
Karatas, O.F.; Wang, J.; Shao, L.; Ozen, M.; Zhang, Y.; Creighton, C.J.; Ittmann, M. miR-33a is a tumor suppressor microRNA that is decreased in prostate cancer. Oncotarget, 2017, 8(36), 60243-60256.
[http://dx.doi.org/10.18632/oncotarget.19521] [PMID: 28947967]
[37]
Morris, M.R.; Ricketts, C.; Gentle, D.; Abdulrahman, M.; Clarke, N.; Brown, M.; Kishida, T.; Yao, M.; Latif, F.; Maher, E.R. Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma. Oncogene, 2010, 29(14), 2104-2117.
[http://dx.doi.org/10.1038/onc.2009.493] [PMID: 20154727]
[38]
Perdigoto, C.N. Epigenetic cancer evolution, one cell at a time. Nat. Rev. Genet., 2019, 20(8), 434-435.
[http://dx.doi.org/10.1038/s41576-019-0143-1] [PMID: 31160791]
[39]
Chen, Y.C.; Tsao, C.M.; Kuo, C.C.; Yu, M.H.; Lin, Y.W.; Yang, C.Y.; Li, H.J.; Yan, M.D.; Wang, T.J.; Chou, Y.C.; Su, H.Y. Quantitative DNA methylation analysis of selected genes in endometrial carcinogenesis. Taiwan. J. Obstet. Gynecol., 2015, 54(5), 572-579.
[http://dx.doi.org/10.1016/j.tjog.2015.08.010] [PMID: 26522113]
[40]
Leite, K.R.; Tomiyama, A.; Reis, S.T.; Sousa-Canavez, J.M.; Sañudo, A.; Camara-Lopes, L.H.; Srougi, M. MicroRNA expression profiles in the progression of prostate cancer-from high-grade prostate intraepithelial neoplasia to metastasisUrologic In: Oncology: Seminars and Original Investigations;; Elsevier, 2013; 31, pp. (6)796-801.
[41]
Chen, H.P.; Wen, J.; Tan, S.R.; Kang, L.M.; Zhu, G.C. MiR‐199a‐3p inhibition facilitates cardiomyocyte differentiation of embryonic stem cell through promotion of MEF2C. J. Cell. Physiol., 2019, 234(12), 23315-23325.
[42]
Wasniewski, T.; Kiezun, J.; Krazinski, B.E.; Kowalczyk, A.E.; Szostak, B.; Wierzbicki, P.M.; Kiewisz, J. WNT5A gene and protein expression in endometrial cancer. Folia Histochem. Cytobiol., 2019, 57(2), 84-93.
[http://dx.doi.org/10.5603/FHC.a2019.0010] [PMID: 31198984]
[43]
Cao, M.; Chan, R.W.; Cheng, F.H.; Li, J.; Pang, R.T.; Lee, C.L.; Yeung, W.S. Myometrial cells stimulate self‐renewal of endometrial mesenchymal stem‐like cells through WNT5A/β‐catenin signaling. Stem Cells, 2019, 37(11), 1455-1466.
[44]
Salama, E.; Eldeen, G.N.; Abdel Rasheed, M.; Abdel Atti, S.; Elnoury, A.; Taha, T.; Azmy, O. Differentially expressed genes: OCT-4, SOX2, STAT3, CDH1 and CDH2, in cultured mesenchymal stem cells challenged with serum of women with endometriosis. J. Genet. Eng. Biotechnol., 2018, 16(1), 63-69.
[http://dx.doi.org/10.1016/j.jgeb.2017.10.006] [PMID: 30647706]
[45]
Cicchillitti, L.; Corrado, G.; Carosi, M.; Dabrowska, M.E.; Loria, R.; Falcioni, R.; Cutillo, G.; Piaggio, G.; Vizza, E. Prognostic role of NF-YA splicing isoforms and Lamin A status in low grade endometrial cancer. Oncotarget, 2017, 8(5), 7935-7945.
[http://dx.doi.org/10.18632/oncotarget.13854] [PMID: 27974701]
[46]
Mao, Z.; Wu, Y.; Zhou, J.; Xing, C. Salinomycin reduces epithelial-mesenchymal transition-mediated multidrug resistance by modifying long noncoding RNA HOTTIP expression in gastric cancer cells. Anticancer Drugs, 2019, 30(9), 892-899.
[http://dx.doi.org/10.1097/CAD.0000000000000786] [PMID: 30882398]
[47]
Oliveto, S.; Mancino, M.; Manfrini, N.; Biffo, S. Role of microRNAs in translation regulation and cancer. World J. Biol. Chem., 2017, 8(1), 45-56.
[http://dx.doi.org/10.4331/wjbc.v8.i1.45] [PMID: 28289518]
[48]
Wang, Y.; Xia, H.; Zhuang, Z.; Miao, L.; Chen, X.; Cai, H. Axl-altered microRNAs regulate tumorigenicity and gefitinib resistance in lung cancer. Cell Death Dis., 2014, 5(5)e1227
[http://dx.doi.org/10.1038/cddis.2014.186] [PMID: 24832599]
[49]
Wang, Y.; Yang, D.; Cogdell, D.; Hu, L.; Xue, F.; Broaddus, R.; Zhang, W. Genomic characterization of gene copy-number aberrations in endometrial carcinoma cell lines derived from endometrioid-type endometrial adenocarcinoma. Technol. Cancer Res. Treat., 2010, 9(2), 179-189.
[http://dx.doi.org/10.1177/153303461000900207] [PMID: 20218740]
[50]
Van Nyen, T.; Moiola, C.P.; Colas, E.; Annibali, D.; Amant, F. Modeling endometrial cancer: Past, present, and future. Int. J. Mol. Sci., 2018, 19(8), 2348.
[http://dx.doi.org/10.3390/ijms19082348] [PMID: 30096949]
[51]
Falck, E.; Behboudi, A.; Klinga-Levan, K. The impact of the genetic background on the genome make-up of tumor cells. Genes Chromosomes Cancer, 2012, 51(5), 438-446.
[http://dx.doi.org/10.1002/gcc.21929] [PMID: 22250046]
[52]
Suzuki, A.; Li, A.; Gajera, M.; Abdallah, N.; Zhang, M.; Zhao, Z.; Iwata, J. MicroRNA-374a, -4680, and -133b suppress cell proliferation through the regulation of genes associated with human cleft palate in cultured human palate cells. BMC Med. Genomics, 2019, 12(1), 93.
[http://dx.doi.org/10.1186/s12920-019-0546-z] [PMID: 31262291]
[53]
Huczyński, A.; Markowska, J.; Ramlau, R.; Sajdak, S.; Szubert, S.; Stencel, K. Salinomycyna-przełom w leczeniu raka jajnika? Curr. Gynecologic Oncol., 2016, 14(3), 156-161.

© 2024 Bentham Science Publishers | Privacy Policy