Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

New Insight into Triple-Negative Breast Cancer Therapy: The Potential Roles of Endoplasmic Reticulum Stress and Autophagy Mechanisms

Author(s): Milad Ashrafizadeh, Reza Mohammadinejad, Shima Tavakol, Zahra Ahmadi and Amirhossein Sahebkar*

Volume 21, Issue 6, 2021

Published on: 19 June, 2020

Page: [679 - 691] Pages: 13

DOI: 10.2174/1871520620666200619180716

Price: $65

Abstract

Background: Breast cancer is accounted as the fifth leading cause of mortality among the other cancers. Notwithstanding, Triple Negative Breast Cancer (TNBC) is responsible for 15-20% of breast cancer mortality. Despite many investigations, it remains incurable in part due to insufficient understanding of its exact mechanisms.

Methods: A literature search was performed in PubMed, SCOPUS and Web of Science databases using the keywords autophagy, Endoplasmic Reticulum (ER) stress, apoptosis, TNBC and the combinations of these keywords.

Results: It was found that autophagy plays a dual role in cancer, so that it may decrease the viability of tumor cells or act as a cytoprotective mechanism. It then appears that using compounds having modulatory effects on autophagy is of importance in terms of induction of autophagic cell death and diminishing the proliferation and metastasis of tumor cells. Also, ER stress can be modulated in order to stimulate apoptotic and autophagic cell death in tumor cells.

Conclusion: Perturbation in the signaling pathways related to cell survival leads to the initiation and progression of cancer. Regarding the advancement in the cancer pathology, it seems that modulation of autophagy and ER stress are promising.

Keywords: Triple-negative breast cancer, endoplasmic reticulum stress, autophagy, apoptosis, cell death, cytoprotective mechanism.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Pawar, A.; Prabhu, P. Nanosoldiers: A promising strategy to combat triple negative breast cancer. Biomed. Pharmacother., 2019, 110, 319-341.
[http://dx.doi.org/10.1016/j.biopha.2018.11.122] [PMID: 30529766]
[3]
Agostini, D.; Natalucci, V.; Baldelli, G.; De Santi, M.; Donati Zeppa, S.; Vallorani, L.; Annibalini, G.; Lucertini, F.; Federici, A.; Izzo, R. New insights into the role of exercise in inhibiting mTOR signaling in triple-negative breast cancer. Oxid. Med. Cell. Longev., 2018, 2018 Article ID 5896786
[http://dx.doi.org/10.1155/2018/5896786]
[4]
Kalimutho, M.; Parsons, K.; Mittal, D.; López, J.A.; Srihari, S.; Khanna, K.K. Targeted therapies for triple-negative breast cancer: Combating a stubborn disease. Trends Pharmacol. Sci., 2015, 36(12), 822-846.
[http://dx.doi.org/10.1016/j.tips.2015.08.009] [PMID: 26538316]
[5]
Rabiee, S.; Tavakol, S.; Barati, M.; Joghataei, M.T. Autophagic, apoptotic, and necrotic cancer cell fates triggered by acidic pH microenvironment. J. Cell. Physiol., 2018, 234(7), 12061-12069.
[PMID: 30515813]
[6]
Brewster, A.M.; Chavez-MacGregor, M.; Brown, P. Epidemiology, biology, and treatment of triple-negative breast cancer in women of African ancestry. Lancet Oncol., 2014, 15(13), e625-e634.
[http://dx.doi.org/10.1016/S1470-2045(14)70364-X] [PMID: 25456381]
[7]
Choi, K.H.; Jeon, J.Y.; Lee, Y-E.; Kim, S.W.; Kim, S.Y.; Yun, Y.J.; Park, K.C. Synergistic activity of paclitaxel, sorafenib, and radiation therapy in advanced renal cell carcinoma and breast cancer. Transl. Oncol., 2019, 12(2), 381-388.
[http://dx.doi.org/10.1016/j.tranon.2018.11.007] [PMID: 30522045]
[8]
Surov, A.; Meyer, H.J.; Wienke, A. Associations between PET parameters and expression of Ki-67 in breast cancer. Transl. Oncol., 2019, 12(2), 375-380.
[http://dx.doi.org/10.1016/j.tranon.2018.11.005] [PMID: 30522044]
[9]
Hesari, A.; Anoshiravani, A.A.; Talebi, S.; Noruzi, S.; Mohammadi, R.; Salarinia, R.; Zare, R.; Ghasemi, F. Knockdown of sal-like 4 expression by small interfering RNA induces apoptosis in breast cancer cells. J. Cell. Biochem., 2018, 120(6), 9392-9399.
[PMID: 30520112]
[10]
Hesari, A.; Azizian, M.; Darabi, H.; Nesaei, A.; Hosseini, S.A.; Salarinia, R.; Motaghi, A.A.; Ghasemi, F. Expression of circulating miR-17, miR-25, and miR-133 in breast cancer patients. J. Cell. Biochem., 2019, 120(5), 7109-7114.
[PMID: 30485486]
[11]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[12]
Tarver, T. American Cancer Society. Cancer facts and figures 2014. J. Consum. Health Internet, 2012, 16, 366-367.
[http://dx.doi.org/10.1080/15398285.2012.701177]
[13]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin., 2015, 65(1), 5-29.
[http://dx.doi.org/10.3322/caac.21254] [PMID: 25559415]
[14]
Fiorica, J.V. Breast cancer screening, mammography, and other modalities. Clin. Obstet. Gynecol., 2016, 59(4), 688-709.
[http://dx.doi.org/10.1097/GRF.0000000000000246] [PMID: 27741212]
[15]
Elledge, R.; Allred, D. Clinical aspects of estrogen and progesterone receptors. Dis. Breast, 2004, 3, 602-617.
[16]
Tavakol, S. Acidic pH derived from cancer cells may induce failed reprogramming of normal differentiated cells adjacent tumor cells and turn them into cancer cells. Med. Hypotheses, 2014, 83(6), 668-672.
[http://dx.doi.org/10.1016/j.mehy.2014.09.014] [PMID: 25459130]
[17]
Sharma, S.; Barry, M.; Gallagher, D.J.; Kell, M.; Sacchini, V. An overview of triple negative breast cancer for surgical oncologists. Surg. Oncol., 2015, 24(3), 276-283.
[http://dx.doi.org/10.1016/j.suronc.2015.06.007] [PMID: 26092709]
[18]
Avery, T.P. Triple-Negative Breast Cancer.Changing Paradigms in the Management of Breast Cancer; Springer: Germany, 2018, pp. 155-166.
[http://dx.doi.org/10.1007/978-3-319-60336-0_11]
[19]
Uscanga-Perales, G.I.; Santuario-Facio, S.K.; Ortiz-López, R. Triple negative breast cancer: Deciphering the biology and heterogeneity. Med. Univ., 2016, 18, 105-114.
[20]
Burstein, M.D.; Tsimelzon, A.; Poage, G.M.; Covington, K.R.; Contreras, A.; Fuqua, S.A.; Savage, M.I.; Osborne, C.K.; Hilsenbeck, S.G.; Chang, J.C.; Mills, G.B.; Lau, C.C.; Brown, P.H. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin. Cancer Res., 2015, 21(7), 1688-1698.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0432] [PMID: 25208879]
[21]
Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest., 2011, 121(7), 2750-2767.
[http://dx.doi.org/10.1172/JCI45014] [PMID: 21633166]
[22]
Shah, S.P.; Roth, A.; Goya, R.; Oloumi, A.; Ha, G.; Zhao, Y.; Turashvili, G.; Ding, J.; Tse, K.; Haffari, G.; Bashashati, A.; Prentice, L.M.; Khattra, J.; Burleigh, A.; Yap, D.; Bernard, V.; McPherson, A.; Shumansky, K.; Crisan, A.; Giuliany, R.; Heravi-Moussavi, A.; Rosner, J.; Lai, D.; Birol, I.; Varhol, R.; Tam, A.; Dhalla, N.; Zeng, T.; Ma, K.; Chan, S.K.; Griffith, M.; Moradian, A.; Cheng, S.W.; Morin, G.B.; Watson, P.; Gelmon, K.; Chia, S.; Chin, S.F.; Curtis, C.; Rueda, O.M.; Pharoah, P.D.; Damaraju, S.; Mackey, J.; Hoon, K.; Harkins, T.; Tadigotla, V.; Sigaroudinia, M.; Gascard, P.; Tlsty, T.; Costello, J.F.; Meyer, I.M.; Eaves, C.J.; Wasserman, W.W.; Jones, S.; Huntsman, D.; Hirst, M.; Caldas, C.; Marra, M.A.; Aparicio, S. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature, 2012, 486(7403), 395-399.
[http://dx.doi.org/10.1038/nature10933] [PMID: 22495314]
[23]
Masuda, H.; Baggerly, K.A.; Wang, Y.; Zhang, Y.; Gonzalez-Angulo, A.M.; Meric-Bernstam, F.; Valero, V.; Lehmann, B.D.; Pietenpol, J.A.; Hortobagyi, G.N. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin. Cancer Res., 2013, 19(19), 5533-5540.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0799]
[24]
O’Reilly, E.A.; Gubbins, L.; Sharma, S.; Tully, R.; Guang, M.H.Z.; Weiner-Gorzel, K.; McCaffrey, J.; Harrison, M.; Furlong, F.; Kell, M.; McCann, A. The fate of chemoresistance in Triple Negative Breast Cancer (TNBC). BBA Clin., 2015, 3, 257-275.
[http://dx.doi.org/10.1016/j.bbacli.2015.03.003] [PMID: 26676166]
[25]
Yao, H.; He, G.; Yan, S.; Chen, C.; Song, L.; Rosol, T.J.; Deng, X. Triple-negative breast cancer: Is there a treatment on the horizon? Oncotarget, 2017, 8(1), 1913-1924.
[http://dx.doi.org/10.18632/oncotarget.12284] [PMID: 27765921]
[26]
Meena, R.; Kumar, S.; Kumar, R.; Gaharwar, U.S.; Rajamani, P. PLGA-CTAB curcumin nanoparticles: Fabrication, characterization and molecular basis of anticancer activity in triple negative breast cancer cell lines (MDA-MB-231 cells). Biomed. Pharmacother., 2017, 94, 944-954.
[http://dx.doi.org/10.1016/j.biopha.2017.07.151] [PMID: 28810532]
[27]
Shan, N.L.; Wahler, J.; Lee, H.J.; Bak, M.J.; Gupta, S.D.; Maehr, H.; Suh, N. Vitamin D compounds inhibit cancer stem-like cells and induce differentiation in triple negative breast cancer. J. Steroid Biochem. Mol. Biol., 2017, 173, 122-129.
[http://dx.doi.org/10.1016/j.jsbmb.2016.12.001] [PMID: 27923595]
[28]
Boyle, P. Triple-negative breast cancer: Epidemiological considerations and recommendations. Ann. Oncol., 2012, 23(Suppl. 6), vi7-vi12.
[http://dx.doi.org/10.1093/annonc/mds187] [PMID: 23012306]
[29]
Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin. Cancer Res., 2007, 13(15 Pt 1), 4429-4434.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-3045] [PMID: 17671126]
[30]
Foulkes, W.D.; Smith, I.E.; Reis-Filho, J.S. Triple-negative breast cancer. N. Engl. J. Med., 2010, 363(20), 1938-1948.
[http://dx.doi.org/10.1056/NEJMra1001389] [PMID: 21067385]
[31]
Oakman, C.; Viale, G.; Di Leo, A. Management of triple negative breast cancer. Breast, 2010, 19(5), 312-321.
[http://dx.doi.org/10.1016/j.breast.2010.03.026] [PMID: 20382530]
[32]
Osborne, C. Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. Breast Dis.: Year Book Quarterly, 2008, 18, 401-402.
[http://dx.doi.org/10.1016/S1043-321X(07)80435-8]
[33]
Petrelli, F.; Coinu, A.; Borgonovo, K.; Cabiddu, M.; Ghilardi, M.; Lonati, V.; Barni, S. The value of platinum agents as neoadjuvant chemotherapy in triple-negative breast cancers: a systematic review and meta-analysis. Breast Cancer Res. Treat., 2014, 144(2), 223-232.
[http://dx.doi.org/10.1007/s10549-014-2876-z] [PMID: 24557340]
[34]
Garmpis, N.; Damaskos, C.; Garmpi, A.; Kalampokas, E.; Kalampokas, T.; Spartalis, E.; Daskalopoulou, A.; Valsami, S.; Kontos, M.; Nonni, A.; Kontzoglou, K.; Perrea, D.; Nikiteas, N.; Dimitroulis, D. Histone deacetylases as new therapeutic targets in triple-negative breast Cancer: Progress and promises. Cancer Genomics Proteomics, 2017, 14(5), 299-313.
[PMID: 28870998]
[35]
Brenner, D.R.; Brockton, N.T.; Kotsopoulos, J.; Cotterchio, M.; Boucher, B.A.; Courneya, K.S.; Knight, J.A.; Olivotto, I.A.; Quan, M.L.; Friedenreich, C.M. Breast cancer survival among young women: a review of the role of modifiable lifestyle factors. Cancer Causes Control, 2016, 27(4), 459-472.
[http://dx.doi.org/10.1007/s10552-016-0726-5] [PMID: 26970739]
[36]
Ibrahim, E.M.; Al-Homaidh, A. Physical activity and survival after breast cancer diagnosis: Meta-analysis of published studies. Med. Oncol., 2011, 28(3), 753-765.
[http://dx.doi.org/10.1007/s12032-010-9536-x] [PMID: 20411366]
[37]
Limpert, A.S.; Lambert, L.J.; Bakas, N.A.; Bata, N.; Brun, S.N.; Shaw, R.J.; Cosford, N.D.P. Autophagy in cancer: Regulation by small molecules. Trends Pharmacol. Sci., 2018, 39(12), 1021-1032.
[http://dx.doi.org/10.1016/j.tips.2018.10.004] [PMID: 30454769]
[38]
Ren, J.; Zhang, Y. Targeting autophagy in aging and aging-related cardiovascular diseases. Trends Pharmacol. Sci., 2018, 39(12), 1064-1076.
[http://dx.doi.org/10.1016/j.tips.2018.10.005] [PMID: 30458935]
[39]
Mohammadinejad, R.; Moosavi, M.A.; Tavakol, S.; Vardar, D.Ö.; Hosseini, A.; Rahmati, M.; Dini, L.; Hussain, S.; Mandegary, A.; Klionsky, D.J. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy, 2019, 15(1), 4-33.
[http://dx.doi.org/10.1080/15548627.2018.1509171] [PMID: 30160607]
[40]
Hosseinpour-Moghaddam, K.; Caraglia, M.; Sahebkar, A. Autophagy induction by trehalose: Molecular mechanisms and therapeutic impacts. J. Cell. Physiol., 2018, 233(9), 6524-6543.
[http://dx.doi.org/10.1002/jcp.26583] [PMID: 29663416]
[41]
Gao, J.; Fan, M.; Peng, S.; Zhang, M.; Xiang, G.; Li, X.; Guo, W.; Sun, Y.; Wu, X.; Wu, X.; Liang, G.; Shen, Y.; Xu, Q. Small-molecule RL71-triggered excessive autophagic cell death as a potential therapeutic strategy in triple-negative breast cancer. Cell Death Dis., 2017, 8(9)e3049
[http://dx.doi.org/10.1038/cddis.2017.444] [PMID: 28906486]
[42]
Cao, C.; Huang, W.; Zhang, N.; Wu, F.; Xu, T.; Pan, X.; Peng, C.; Han, B. Narciclasine induces autophagy-dependent apoptosis in triple-negative breast cancer cells by regulating the AMPK-ULK1 axis. Cell Prolif., 2018, 51(6)e12518
[http://dx.doi.org/10.1111/cpr.12518] [PMID: 30152053]
[43]
Castellanos-Esparza, Y.C.; Wu, S.; Huang, L.; Buquet, C.; Shen, R.; Sanchez-Gonzalez, B.; García Latorre, E.A.; Boyer, O.; Varin, R.; Jiménez-Zamudio, L.A.; Janin, A.; Vannier, J.P.; Li, H.; Lu, H. Synergistic promoting effects of pentoxifylline and simvastatin on the apoptosis of triple-negative MDA-MB-231 breast cancer cells. Int. J. Oncol., 2018, 52(4), 1246-1254.
[http://dx.doi.org/10.3892/ijo.2018.4272] [PMID: 29436616]
[44]
Chang, L-C.; Hsieh, M-T.; Yang, J-S.; Lu, C-C.; Tsai, F-J.; Tsao, J-W.; Chiu, Y-J.; Kuo, S-C.; Lee, K-H. Effect of bis(hydroxymethyl) alkanoate curcuminoid derivative MTH-3 on cell cycle arrest, apoptotic and autophagic pathway in triple-negative breast adenocarcinoma MDA-MB-231 cells: An in vitro study. Int. J. Oncol., 2018, 52(1), 67-76.
[PMID: 29138806]
[45]
Hamurcu, Z.; Delibaşı, N.; Geçene, S.; Şener, E.F.; Dönmez-Altuntaş, H.; Özkul, Y.; Canatan, H.; Ozpolat, B. Targeting LC3 and Beclin-1 autophagy genes suppresses proliferation, survival, migration and invasion by inhibition of Cyclin-D1 and uPAR/Integrin β1/Src signaling in triple negative breast cancer cells. J. Cancer Res. Clin. Oncol., 2018, 144(3), 415-430.
[http://dx.doi.org/10.1007/s00432-017-2557-5] [PMID: 29288363]
[46]
Khorsandi, K.; Hosseinzadeh, R.; Shahidi, F.K. Photodynamic treatment with anionic nanoclays containing curcumin on human triple-negative breast cancer cells: Cellular and biochemical studies. J. Cell. Biochem., 2019, 120(4), 4998-5009.
[PMID: 30302810]
[47]
Milczarek, M.; Wiktorska, K.; Mielczarek, L.; Koronkiewicz, M.; Dąbrowska, A.; Lubelska, K.; Matosiuk, D.; Chilmonczyk, Z. Autophagic cell death and premature senescence: New mechanism of 5-fluorouracil and sulforaphane synergistic anticancer effect in MDA-MB-231 triple negative breast cancer cell line. Food Chem. Toxicol., 2018, 111, 1-8.
[http://dx.doi.org/10.1016/j.fct.2017.10.056] [PMID: 29104175]
[48]
Liu, Y.; Long, Y-H.; Wang, S-Q.; Zhang, Y-Y.; Li, Y-F.; Mi, J-S.; Yu, C-H.; Li, D-Y.; Zhang, J-H.; Zhang, X-J. JMJD6 regulates histone H2A. X phosphorylation and promotes autophagy in triple-negative breast cancer cells via a novel tyrosine kinase activity. Oncogene, 2019, 38(7), 980-997.
[PMID: 30185813]
[49]
Perri, M.; Yap, J.L.; Fletcher, S.; Cione, E.; Kane, M.A. Therapeutic potential of Bcl-xL/Mcl-1 synthetic inhibitor JY-1-106 and retinoids for human triple-negative breast cancer treatment. Oncol. Lett., 2018, 15(5), 7231-7236.
[http://dx.doi.org/10.3892/ol.2018.8258] [PMID: 29849791]
[50]
Zhou, Z.R.; Yang, Z.Z.; Wang, S.J.; Zhang, L.; Luo, J.R.; Feng, Y.; Yu, X.L.; Chen, X.X.; Guo, X.M. The Chk1 inhibitor MK-8776 increases the radiosensitivity of human triple-negative breast cancer by inhibiting autophagy. Acta Pharmacol. Sin., 2017, 38(4), 513-523.
[http://dx.doi.org/10.1038/aps.2016.136] [PMID: 28042876]
[51]
Yang, F.; Wang, F.; Liu, Y.; Wang, S.; Li, X.; Huang, Y.; Xia, Y.; Cao, C. Sulforaphane induces autophagy by inhibition of HDAC6-mediated PTEN activation in triple negative breast cancer cells. Life Sci., 2018, 213, 149-157.
[http://dx.doi.org/10.1016/j.lfs.2018.10.034] [PMID: 30352240]
[52]
Vidal, R.L.; Matus, S.; Bargsted, L.; Hetz, C. Targeting autophagy in neurodegenerative diseases. Trends Pharmacol. Sci., 2014, 35(11), 583-591.
[http://dx.doi.org/10.1016/j.tips.2014.09.002] [PMID: 25270767]
[53]
Aydinlik, S.; Erkisa, M.; Cevatemre, B.; Sarimahmut, M.; Dere, E.; Ari, F.; Ulukaya, E. Enhanced cytotoxic activity of doxorubicin through the inhibition of autophagy in triple negative breast cancer cell line. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(2), 49-57.
[http://dx.doi.org/10.1016/j.bbagen.2016.11.013] [PMID: 27842219]
[54]
Cerrito, M.G.; De Giorgi, M.; Pelizzoni, D.; Bonomo, S.M.; Digiacomo, N.; Scagliotti, A.; Bugarin, C.; Gaipa, G.; Grassilli, E.; Lavitrano, M.; Giovannoni, R.; Bidoli, P.; Cazzaniga, M.E. Metronomic combination of Vinorelbine and 5Fluorouracil is able to inhibit triple-negative breast cancer cells. Results from the proof-of-concept VICTOR-0 study. Oncotarget, 2018, 9(44), 27448-27459.
[http://dx.doi.org/10.18632/oncotarget.25422] [PMID: 29937997]
[55]
Librizzi, M.; Caradonna, F.; Cruciata, I.; Dębski, J.; Sansook, S.; Dadlez, M.; Spencer, J.; Luparello, C. Molecular signatures associated with treatment of triple-negative MDA-MB231 breast cancer cells with histone deacetylase inhibitors JAHA and SAHA. Chem. Res. Toxicol., 2017, 30(12), 2187-2196.
[http://dx.doi.org/10.1021/acs.chemrestox.7b00269] [PMID: 29129070]
[56]
Luna-Dulcey, L.; Tomasin, R.; Naves, M.A.; da Silva, J.A.; Cominetti, M.R. Autophagy-dependent apoptosis is triggered by a semi-synthetic [6]-gingerol analogue in triple negative breast cancer cells. Oncotarget, 2018, 9(56), 30787-30804.
[http://dx.doi.org/10.18632/oncotarget.25704] [PMID: 30112107]
[57]
Maxfield, K.; Macion, J.; Vankayalapati, H.; Whitehurst, A.W. SIK2 restricts autophagic flux to support triple negative breast cancer survival. Mol. Cell. Biol., 2016, 36(24), 3048-3057.
[http://dx.doi.org/10.1128/MCB.00380-16]
[58]
Tian, S.; Chen, Y.; Yang, B.; Lou, C.; Zhu, R.; Zhao, Y.; Zhao, H. F1012-2 inhibits the growth of triple negative breast cancer through induction of cell cycle arrest, apoptosis, and autophagy. Phytother. Res., 2018, 32(5), 908-922.
[http://dx.doi.org/10.1002/ptr.6030] [PMID: 29468753]
[59]
Guo, L.; Chi, Y.; Xue, J.; Ma, L.; Shao, Z.; Wu, J. Phosphorylated eIF2α predicts disease-free survival in triple-negative breast cancer patients. Sci. Rep., 2017, 7, 44674.
[http://dx.doi.org/10.1038/srep44674] [PMID: 28294178]
[60]
Bowie, M.; Pilie, P.; Wulfkuhle, J.; Lem, S.; Hoffman, A.; Desai, S.; Petricoin, E.; Carter, A.; Ambrose, A.; Seewaldt, V.; Yu, D.; Ibarra Drendall, C. Fluoxetine induces cytotoxic endoplasmic reticulum stress and autophagy in triple negative breast cancer. World J. Clin. Oncol., 2015, 6(6), 299-311.
[http://dx.doi.org/10.5306/wjco.v6.i6.299] [PMID: 26677444]
[61]
Chang, C-T.; Korivi, M.; Huang, H-C.; Thiyagarajan, V.; Lin, K-Y.; Huang, P-J.; Liu, J-Y.; Hseu, Y-C.; Yang, H-L. Inhibition of ROS production, autophagy or apoptosis signaling reversed the anticancer properties of Antrodia salmonea in triple-negative breast cancer (MDA-MB-231) cells. Food Chem. Toxicol., 2017, 103, 1-17.
[http://dx.doi.org/10.1016/j.fct.2017.02.019] [PMID: 28219700]
[62]
Chen, X.; Ma, N.; Zhou, Z.; Wang, Z.; Hu, Q.; Luo, J.; Mei, X.; Yang, Z.; Zhang, L.; Wang, X.; Feng, Y.; Yu, X.; Ma, J.; Guo, X. Estrogen receptor mediates the radiosensitivity of triple-negative breast cancer cells. Med. Sci. Monit., 2017, 23, 2674-2683.
[http://dx.doi.org/10.12659/MSM.904810] [PMID: 28570501]
[63]
Dávila-González, D.; Choi, D.S.; Rosato, R.R.; Granados-Principal, S.; Kuhn, J.G.; Li, W-F.; Qian, W.; Chen, W.; Kozielski, A.J.; Wong, H.H. Pharmacological inhibition of NOS activates ASK1/JNK pathway augmenting docetaxel-mediated apoptosis in triple negative breast cancer. Clin. Cancer Res., 2018, 24(5), 1152-1162.
[64]
Garbar, C.; Mascaux, C.; Giustiniani, J.; Merrouche, Y.; Bensussan, A. Chemotherapy treatment induces an increase of autophagy in the luminal breast cancer cell MCF7, but not in the triple-negative MDA-MB231. Sci. Rep., 2017, 7(1), 7201.
[http://dx.doi.org/10.1038/s41598-017-07489-x] [PMID: 28775276]
[65]
García-Castillo, V.; López-Urrutia, E.; Villanueva-Sánchez, O.; Ávila-Rodríguez, M.Á.; Zentella-Dehesa, A.; Cortés-González, C.; López-Camarillo, C.; Jacobo-Herrera, N.J.; Pérez-Plasencia, C. Targeting metabolic remodeling in triple negative breast cancer in a murine model. J. Cancer, 2017, 8(2), 178-189.
[http://dx.doi.org/10.7150/jca.16387] [PMID: 28243322]
[66]
Kou, X.; Yang, Y.; Jiang, X.; Liu, H.; Sun, F.; Wang, X.; Liu, L.; Liu, H.; Lin, Z.; Jiang, L. Vorinostat and Simvastatin have synergistic effects on triple-negative breast cancer cells via abrogating Rab7 prenylation. Eur. J. Pharmacol., 2017, 813, 161-171.
[http://dx.doi.org/10.1016/j.ejphar.2017.08.022] [PMID: 28826913]
[67]
Yao, D.; Zhou, Y.; Zhu, L.; Ouyang, L.; Zhang, J.; Jiang, Y.; Zhao, Y.; Sun, D.; Yang, S.; Yu, Y.; Wang, J. Design, synthesis and structure-activity relationship studies of a focused library of pyrimidine moiety with anti-proliferative and anti-metastasis activities in triple negative breast cancer. Eur. J. Med. Chem., 2017, 140, 155-171.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.067] [PMID: 28923383]
[68]
Garza-Morales, R.; Gonzalez-Ramos, R.; Chiba, A.; Montes de Oca-Luna, R.; McNally, L.R.; McMasters, K.M.; Gomez-Gutierrez, J.G. Temozolomide enhances triple-negative breast cancer virotherapy in vitro. Cancers (Basel), 2018, 10(5), 144.
[http://dx.doi.org/10.3390/cancers10050144] [PMID: 29772755]
[69]
Vijayan, V.; Verstreken, P. Autophagy in the presynaptic compartment in health and disease. J. Cell Biol., 2017, 216(7), 1895-1906.
[http://dx.doi.org/10.1083/jcb.201611113] [PMID: 28515275]
[70]
Dice, J.F. Chaperone-mediated autophagy. Autophagy, 2007, 3(4), 295-299.
[http://dx.doi.org/10.4161/auto.4144] [PMID: 17404494]
[71]
Wang, G.; Mao, Z. Chaperone-mediated autophagy: Roles in neurodegeneration. Transl. Neurodegener., 2014, 3, 20.
[http://dx.doi.org/10.1186/2047-9158-3-20] [PMID: 25276349]
[72]
Delbridge, L.M.D.; Mellor, K.M.; Taylor, D.J.; Gottlieb, R.A. Myocardial stress and autophagy: Mechanisms and potential therapies. Nat. Rev. Cardiol., 2017, 14(7), 412-425.
[http://dx.doi.org/10.1038/nrcardio.2017.35] [PMID: 28361977]
[73]
Nakamura, S.; Yoshimori, T. Autophagy and longevity. Mol. Cells, 2018, 41(1), 65-72.
[PMID: 29370695]
[74]
Shirakabe, A.; Ikeda, Y.; Sciarretta, S.; Zablocki, D.K.; Sadoshima, J. Aging and autophagy in the heart. Circ. Res., 2016, 118(10), 1563-1576.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.307474] [PMID: 27174950]
[75]
Zhang, Y.; Sowers, J.R.; Ren, J. Targeting autophagy in obesity: From pathophysiology to management. Nat. Rev. Endocrinol., 2018, 14(6), 356-376.
[http://dx.doi.org/10.1038/s41574-018-0009-1] [PMID: 29686432]
[76]
Amaravadi, R.; Kimmelman, A.C.; White, E. Recent insights into the function of autophagy in cancer. Genes Dev., 2016, 30(17), 1913-1930.
[http://dx.doi.org/10.1101/gad.287524.116] [PMID: 27664235]
[77]
Bestebroer, J.; V’kovski, P.; Mauthe, M.; Reggiori, F. Hidden behind autophagy: The unconventional roles of ATG proteins. Traffic, 2013, 14(10), 1029-1041.
[http://dx.doi.org/10.1111/tra.12091] [PMID: 23837619]
[78]
Kimmelman, A.C.; White, E. Autophagy and tumor metabolism. Cell Metab., 2017, 25(5), 1037-1043.
[http://dx.doi.org/10.1016/j.cmet.2017.04.004] [PMID: 28467923]
[79]
Mizushima, N.; Yoshimori, T.; Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol., 2011, 27, 107-132.
[http://dx.doi.org/10.1146/annurev-cellbio-092910-154005] [PMID: 21801009]
[80]
Nyfeler, B.; Eng, C.H. Revisiting autophagy addiction of tumor cells. Autophagy, 2016, 12(7), 1206-1207.
[http://dx.doi.org/10.1080/15548627.2016.1170265] [PMID: 27097231]
[81]
White, E. The role for autophagy in cancer. J. Clin. Invest., 2015, 125(1), 42-46.
[http://dx.doi.org/10.1172/JCI73941] [PMID: 25654549]
[82]
Kroemer, G. Autophagy: A druggable process that is deregulated in aging and human disease. J. Clin. Invest., 2015, 125(1), 1-4.
[http://dx.doi.org/10.1172/JCI78652] [PMID: 25654544]
[83]
Zachari, M.; Ganley, I.G. The mammalian ULK1 complex and autophagy initiation. Essays Biochem., 2017, 61(6), 585-596.
[http://dx.doi.org/10.1042/EBC20170021] [PMID: 29233870]
[84]
Ahmadi, Z.; Mohammadinejad, R.; Ashrafizadeh, M. Drug delivery systems for resveratrol, a non-flavonoid polyphenol: Emerging evidence in last decades. J. Drug Deliv. Sci. Technol., 2019, 51, 591-604.
[http://dx.doi.org/10.1016/j.jddst.2019.03.017]
[85]
Luchetti, F.; Crinelli, R.; Cesarini, E.; Canonico, B.; Guidi, L.; Zerbinati, C.; Di Sario, G.; Zamai, L.; Magnani, M.; Papa, S.; Iuliano, L. Endothelial cells, endoplasmic reticulum stress and oxysterols. Redox Biol., 2017, 13, 581-587.
[http://dx.doi.org/10.1016/j.redox.2017.07.014] [PMID: 28783588]
[86]
Manalo, R.V.M.; Medina, P.M.B. The endoplasmic reticulum stress response in disease pathogenesis and pathophysiology. Egypt. J. Med. Hum. Genet., 2018, 19, 59-68.
[http://dx.doi.org/10.1016/j.ejmhg.2017.07.004]
[87]
Rahmati, M.; Moosavi, M.A.; McDermott, M.F.E.R.E.R. Stress: A therapeutic target in rheumatoid arthritis? Trends Pharmacol. Sci., 2018, 39(7), 610-623.
[http://dx.doi.org/10.1016/j.tips.2018.03.010] [PMID: 29691058]
[88]
Ashrafizadeh, M.; Mohammadinejad, R.; Tavakol, S.; Ahmadi, Z.; Roomiani, S.; Katebi, M. Autophagy, anoikis, ferroptosis, necroptosis, and endoplasmic reticulum stress: Potential applications in melanoma therapy. J. Cell. Physiol., 2019, 234(11), 19471-19479.
[http://dx.doi.org/10.1002/jcp.28740] [PMID: 31032940]
[89]
Lin, J.H.; Walter, P.; Yen, T.S. Endoplasmic reticulum stress in disease pathogenesis. Annu. Rev. Pathol., 2008, 3, 399-425.
[http://dx.doi.org/10.1146/annurev.pathmechdis.3.121806.151434] [PMID: 18039139]
[90]
van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol., 2008, 9(2), 112-124.
[http://dx.doi.org/10.1038/nrm2330] [PMID: 18216768]
[91]
Al-Bahlani, S.M.; Al-Bulushi, K.H.; Al-Alawi, Z.M.; Al-Abri, N.Y.; Al-Hadidi, Z.R.; Al-Rawahi, S.S. Cisplatin induces apoptosis through the endoplasmic reticulum-mediated, calpain 1 pathway in triple-negative breast cancer cells. Clin. Breast Cancer, 2017, 17(3), e103-e112.
[http://dx.doi.org/10.1016/j.clbc.2016.12.001] [PMID: 28089626]
[92]
Chen, X.; Iliopoulos, D.; Zhang, Q.; Tang, Q.; Greenblatt, M.B.; Hatziapostolou, M.; Lim, E.; Tam, W.L.; Ni, M.; Chen, Y.; Mai, J.; Shen, H.; Hu, D.Z.; Adoro, S.; Hu, B.; Song, M.; Tan, C.; Landis, M.D.; Ferrari, M.; Shin, S.J.; Brown, M.; Chang, J.C.; Liu, X.S.; Glimcher, L.H. XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature, 2014, 508(7494), 103-107.
[http://dx.doi.org/10.1038/nature13119] [PMID: 24670641]
[93]
Duan, H.; Li, Y.; Lim, H-Y.; Wang, W. Identification of 5-nitrofuran-2-amide derivatives that induce apoptosis in triple negative breast cancer cells by activating C/EBP-homologous protein expression. Bioorg. Med. Chem., 2015, 23(15), 4514-4521.
[http://dx.doi.org/10.1016/j.bmc.2015.06.011] [PMID: 26116180]
[94]
Park, I.A.; Heo, S-H.; Song, I.H.; Kim, Y-A.; Park, H.S.; Bang, W.S.; Park, S.Y.; Jo, J-H.; Lee, H.J.; Gong, G. Endoplasmic reticulum stress induces secretion of high-mobility group proteins and is associated with tumor-infiltrating lymphocytes in triple-negative breast cancer. Oncotarget, 2016, 7(37), 59957-59964.
[http://dx.doi.org/10.18632/oncotarget.11010] [PMID: 27494867]
[95]
Tripathi, R.; Singh, P.; Singh, A.; Chagtoo, M.; Khan, S.; Tiwari, S.; Agarwal, G.; Meeran, S.M.; Godbole, M.M. Zoledronate and molecular iodine cause synergistic cell death in triple negative breast cancer through endoplasmic reticulum stress. Nutr. Cancer, 2016, 68(4), 679-688.
[http://dx.doi.org/10.1080/01635581.2016.1158293] [PMID: 27116040]
[96]
Wang, S.; Chen, X.A.; Hu, J.; Jiang, J-K.; Li, Y.; Chen-Salis, K.Y.; Gu, Y.; Chen, G.; Thomas, C.; Pugh, B.F. ATF4 gene network mediates cellular response to the anticancer PAD inhibitor YW3-56 in triple negative breast cancer cells. Mol. Cancer Ther., 2015, 14(4), 877-888.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-1093-T]
[97]
Wu, Y-M.; Chen, Z-J.; Jiang, G-M.; Zhang, K-S.; Liu, Q.; Liang, S-W.; Zhou, Y.; Huang, H-B.; Du, J.; Wang, H-S. Inverse agonist of estrogen-related receptor α suppresses the growth of triple negative breast cancer cells through ROS generation and interaction with multiple cell signaling pathways. Oncotarget, 2016, 7(11), 12568-12581.
[http://dx.doi.org/10.18632/oncotarget.7276] [PMID: 26871469]
[98]
Fewell, S.W.; Travers, K.J.; Weissman, J.S.; Brodsky, J.L. The action of molecular chaperones in the early secretory pathway. Annu. Rev. Genet., 2001, 35, 149-191.
[http://dx.doi.org/10.1146/annurev.genet.35.102401.090313] [PMID: 11700281]
[99]
Liu, Z.; He, K.; Ma, Q.; Yu, Q.; Liu, C.; Ndege, I.; Wang, X.; Yu, Z. Autophagy inhibitor facilitates gefitinib sensitivity in vitro and in vivo by activating mitochondrial apoptosis in triple negative breast cancer. PLoS One, 2017, 12(5)e0177694
[http://dx.doi.org/10.1371/journal.pone.0177694] [PMID: 28531218]
[100]
Rao, R.; Balusu, R.; Fiskus, W.; Mudunuru, U.; Venkannagari, S.; Chauhan, L.; Smith, J.E.; Hembruff, S.L.; Ha, K.; Atadja, P.W. Combination of pan-histone deacetylase inhibitor and autophagy inhibitor exerts superior efficacy against triple-negative human breast cancer cells. Mol. Cancer Ther., 2012, 11(4), 973-983.
[101]
Thomas, S.; Sharma, N.; Golden, E.B.; Cho, H.; Agarwal, P.; Gaffney, K.J.; Petasis, N.A.; Chen, T.C.; Hofman, F.M.; Louie, S.G.; Schönthal, A.H. Preferential killing of triple-negative breast cancer cells in vitro and in vivo when pharmacological aggravators of endoplasmic reticulum stress are combined with autophagy inhibitors. Cancer Lett., 2012, 325(1), 63-71.
[http://dx.doi.org/10.1016/j.canlet.2012.05.030] [PMID: 22664238]
[102]
Xiong, A.; Yu, W.; Tiwary, R.; Sanders, B.G.; Kline, K. Distinct roles of different forms of vitamin E in DHA-induced apoptosis in triple-negative breast cancer cells. Mol. Nutr. Food Res., 2012, 56(6), 923-934.
[http://dx.doi.org/10.1002/mnfr.201200027] [PMID: 22707267]
[103]
Yuan, X.; Kho, D.; Xu, J.; Gajan, A.; Wu, K.; Wu, G.S. ONC201 activates ER stress to inhibit the growth of triple-negative breast cancer cells. Oncotarget, 2017, 8(13), 21626-21638.
[http://dx.doi.org/10.18632/oncotarget.15451] [PMID: 28423492]
[104]
Ellgaard, L.; Helenius, A. Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol., 2003, 4(3), 181-191.
[http://dx.doi.org/10.1038/nrm1052] [PMID: 12612637]
[105]
Berridge, M.J. The endoplasmic reticulum: A multifunctional signaling organelle. Cell Calcium, 2002, 32(5-6), 235-249.
[http://dx.doi.org/10.1016/S0143416002001823] [PMID: 12543086]
[106]
Vitale, A.; Boston, R.S. Endoplasmic reticulum quality control and the unfolded protein response: Insights from plants. Traffic, 2008, 9(10), 1581-1588.
[http://dx.doi.org/10.1111/j.1600-0854.2008.00780.x] [PMID: 18557840]
[107]
Lin, Z.; Zhang, Z.; Jiang, X.; Kou, X.; Bao, Y.; Liu, H.; Sun, F.; Ling, S.; Qin, N.; Jiang, L.; Yang, Y. Mevastatin blockade of autolysosome maturation stimulates LBH589-induced cell death in triple-negative breast cancer cells. Oncotarget, 2017, 8(11), 17833-17848.
[http://dx.doi.org/10.18632/oncotarget.14868] [PMID: 28147319]
[108]
Walter, P.; Ron, D. The unfolded protein response: From stress pathway to homeostatic regulation. Science, 2011, 334(6059), 1081-1086.
[http://dx.doi.org/10.1126/science.1209038] [PMID: 22116877]
[109]
Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol., 2012, 13(2), 89-102.
[http://dx.doi.org/10.1038/nrm3270] [PMID: 22251901]
[110]
Hollien, J.; Weissman, J.S. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science, 2006, 313(5783), 104-107.
[http://dx.doi.org/10.1126/science.1129631] [PMID: 16825573]
[111]
Yoshida, H.; Okada, T.; Haze, K.; Yanagi, H.; Yura, T.; Negishi, M.; Mori, K. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol. Cell. Biol., 2000, 20(18), 6755-6767.
[http://dx.doi.org/10.1128/MCB.20.18.6755-6767.2000] [PMID: 10958673]
[112]
Mollazadeh, H.; Atkin, S.L.; Butler, A.E.; Ruscica, M.; Sirtori, C.R.; Sahebkar, A. The effect of statin therapy on endoplasmic reticulum stress. Pharmacol. Res., 2018, 137, 150-158.
[http://dx.doi.org/10.1016/j.phrs.2018.10.006] [PMID: 30312664]
[113]
Deegan, S.; Saveljeva, S.; Gorman, A.M.; Samali, A. Stress-induced self-cannibalism: On the regulation of autophagy by endoplasmic reticulum stress. Cell. Mol. Life Sci., 2013, 70(14), 2425-2441.
[http://dx.doi.org/10.1007/s00018-012-1173-4] [PMID: 23052213]
[114]
Senft, D.; Ronai, Z.A. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem. Sci., 2015, 40(3), 141-148.
[http://dx.doi.org/10.1016/j.tibs.2015.01.002] [PMID: 25656104]
[115]
Haberzettl, P.; Hill, B.G. Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response. Redox Biol., 2013, 1, 56-64.
[http://dx.doi.org/10.1016/j.redox.2012.10.003] [PMID: 24024137]
[116]
B’chir, W.; Maurin, A-C.; Carraro, V.; Averous, J.; Jousse, C.; Muranishi, Y.; Parry, L.; Stepien, G.; Fafournoux, P.; Bruhat, A. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res., 2013, 41(16), 7683-7699.
[http://dx.doi.org/10.1093/nar/gkt563] [PMID: 23804767]
[117]
Houck, S.A.; Ren, H.Y.; Madden, V.J.; Bonner, J.N.; Conlin, M.P.; Janovick, J.A.; Conn, P.M.; Cyr, D.M. Quality control autophagy degrades soluble ERAD-resistant conformers of the misfolded membrane protein GnRHR. Mol. Cell, 2014, 54(1), 166-179.
[http://dx.doi.org/10.1016/j.molcel.2014.02.025] [PMID: 24685158]
[118]
de Brito, O.M.; Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature, 2008, 456(7222), 605-610.
[http://dx.doi.org/10.1038/nature07534] [PMID: 19052620]
[119]
Hailey, D.W.; Rambold, A.S.; Satpute-Krishnan, P.; Mitra, K.; Sougrat, R.; Kim, P.K.; Lippincott-Schwartz, J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell, 2010, 141(4), 656-667.
[http://dx.doi.org/10.1016/j.cell.2010.04.009] [PMID: 20478256]
[120]
Sun, D.; Zhu, L.; Zhao, Y.; Jiang, Y.; Chen, L.; Yu, Y.; Ouyang, L. Fluoxetine induces autophagic cell death via eEF2K-AMPK-mTOR-ULK complex axis in triple negative breast cancer. Cell Prolif., 2018, 51(2)e12402
[http://dx.doi.org/10.1111/cpr.12402] [PMID: 29094413]
[121]
Zhang, L.; Fu, L.; Zhang, S.; Zhang, J.; Zhao, Y.; Zheng, Y.; He, G.; Yang, S.; Ouyang, L.; Liu, B. Discovery of a small molecule targeting ULK1-modulated cell death of triple negative breast cancer in vitro and in vivo. Chem. Sci. (Camb.), 2017, 8(4), 2687-2701.
[http://dx.doi.org/10.1039/C6SC05368H] [PMID: 28553505]
[122]
Qiao, Z.; Li, X.; Kang, N.; Yang, Y.; Chen, C.; Wu, T.; Zhao, M.; Liu, Y.; Ji, X. A novel specific anti-CD73 antibody inhibits triple-negative breast cancer cell motility by regulating autophagy. Int. J. Mol. Sci., 2019, 20(5), 1057.
[http://dx.doi.org/10.3390/ijms20051057] [PMID: 30823477]
[123]
Zhang, H.; Zhang, N.; Liu, Y.; Su, P.; Liang, Y.; Li, Y.; Wang, X.; Chen, T.; Song, X.; Sang, Y. Epigenetic regulation of NAMPT by NAMPT-AS drives metastatic progression in triple-negative breast cancer. Cancer Res., 2019, 79(13), 3347-3359.
[124]
Zóia, M.A.P.; Azevedo, F.V.P.; Vecchi, L.; Mota, S.T.S.; Rodovalho, V.D.R.; Cordeiro, A.O.; Correia, L.I.V.; Silva, A.C.A.; Ávila, V.D.M.R.; Araújo, T.G.D. Inhibition of triple-negative breast cancer cell aggressiveness by Cathepsin D blockage: Role of annexin A1. Int. J. Mol. Sci., 2019, 20, 1337.
[http://dx.doi.org/10.3390/ijms20061337]
[125]
Luparello, C.; Asaro, D.M.L.; Cruciata, I.; Hassell-Hart, S.; Sansook, S.; Spencer, J.; Caradonna, F. Cytotoxic activity of the histone deacetylase 3-Selective inhibitor Pojamide on MDA-MB-231 triple-negative breast cancer cells. Int. J. Mol. Sci., 2019, 20(4), 804.
[http://dx.doi.org/10.3390/ijms20040804] [PMID: 30781804]
[126]
Chang, C-H.; Bijian, K.; Wernic, D.; Su, J.; da Silva, S.D.; Yu, H.; Qiu, D.; Asslan, M.; Alaoui-Jamali, M.A. A novel orally available seleno-purine molecule suppresses triple-negative breast cancer cell proliferation and progression to metastasis by inducing cytostatic autophagy. Autophagy, 2019, 15(8), 1376-1390.
[http://dx.doi.org/10.1080/15548627.2019.1582951] [PMID: 30773992]
[127]
Hamurcu, Z.; Delibaşı, N.; Nalbantoglu, U.; Sener, E.F.; Nurdinov, N.; Tascı, B.; Taheri, S.; Özkul, Y.; Donmez-Altuntas, H.; Canatan, H.; Ozpolat, B. FOXM1 plays a role in autophagy by transcriptionally regulating Beclin-1 and LC3 genes in human triple-negative breast cancer cells. J. Mol. Med. (Berl.), 2019, 97(4), 491-508.
[http://dx.doi.org/10.1007/s00109-019-01750-8] [PMID: 30729279]
[128]
Guo, Y.; Pei, X. Tetrandrine-induced autophagy in MDA-MB-231 triple-negative breast cancer cell through the inhibition of PI3K/AKT/mTOR signaling. Evid. Based Complement. Alternat. Med., 2019, 20197517431
[http://dx.doi.org/10.1155/2019/7517431] [PMID: 30713576]
[129]
Masso-Welch, P.; Girald Berlingeri, S.; King-Lyons, N.D.; Mandell, L.; Hu, J.; Greene, C.J.; Federowicz, M.; Cao, P.; Connell, T.D.; Heakal, Y. LT-IIc, A bacterial Type II heat-labile enterotoxin, induces specific lethality in triple negative breast cancer cells by modulation of autophagy and induction of apoptosis and necroptosis. Int. J. Mol. Sci., 2018, 20(1), 20.
[http://dx.doi.org/10.3390/ijms20010085] [PMID: 30587795]
[130]
Li, Y.; Wang, S.; Wei, X.; Zhang, S.; Song, Z.; Chen, X.; Zhang, J. Role of inhibitor of yes-associated protein 1 in triple-negative breast cancer with taxol-based chemoresistance. Cancer Sci., 2019, 110(2), 561-567.
[http://dx.doi.org/10.1111/cas.13888] [PMID: 30467925]
[131]
Khorsandi, K.; Hosseinzadeh, R.; Shahidi, F.K. Photodynamic treatment with anionic nanoclays containing curcumin on human triple-negative breast cancer cells: Cellular and biochemical studies. J. Cell. Biochem., 2019, 120(4), 4998-5009.
[http://dx.doi.org/10.1002/jcb.27775] [PMID: 30302810]
[132]
Liu, Y.; Long, Y.H.; Wang, S.Q.; Zhang, Y.Y.; Li, Y.F.; Mi, J.S.; Yu, C.H.; Li, D.Y.; Zhang, J.H.; Zhang, X.J. JMJD6 regulates histone H2A.X phosphorylation and promotes autophagy in triple-negative breast cancer cells via a novel tyrosine kinase activity. Oncogene, 2019, 38(7), 980-997.
[http://dx.doi.org/10.1038/s41388-018-0466-y] [PMID: 30185813]
[133]
Guntuku, L.; Gangasani, J.K.; Thummuri, D.; Borkar, R.M.; Manavathi, B.; Ragampeta, S.; Vaidya, J.R.; Sistla, R.; Vegi, N.G.M. IITZ-01, a novel potent lysosomotropic autophagy inhibitor, has single-agent antitumor efficacy in triple-negative breast cancer in vitro and in vivo. Oncogene, 2019, 38(4), 581-595.
[http://dx.doi.org/10.1038/s41388-018-0446-2] [PMID: 30166591]
[134]
Wu, C-L.; Zhang, S.M.; Lin, L.; Gao, S-S.; Fu, K-F.; Liu, X-D.; Liu, Y.; Zhou, L-J.; Zhou, P-K. BECN1-knockout impairs tumor growth, migration and invasion by suppressing the cell cycle and partially suppressing the epithelial-mesenchymal transition of human triple-negative breast cancer cells. Int. J. Oncol., 2018, 53(3), 1301-1312.
[http://dx.doi.org/10.3892/ijo.2018.4472] [PMID: 30015871]
[135]
Li, W.; Tanikawa, T.; Kryczek, I.; Xia, H.; Li, G.; Wu, K.; Wei, S.; Zhao, L.; Vatan, L.; Wen, B. Aerobic glycolysis controls myeloid-derived suppressor cells and tumor immunity via a specific CEBPB isoform in triple-negative breast cancer. Cell Metab., 2018, 28, 87-103.
[http://dx.doi.org/10.1016/j.cmet.2018.04.022]
[136]
Chang, C-T.; Hseu, Y-C.; Thiyagarajan, V.; Huang, H-C.; Hsu, L-S.; Huang, P-J.; Liu, J-Y.; Liao, J-W.; Yang, H-L. Antrodia salmonea induces G2 cell-cycle arrest in human triple-negative breast cancer (MDA-MB-231) cells and suppresses tumor growth in athymic nude mice. J. Ethnopharmacol., 2017, 196, 9-19.
[http://dx.doi.org/10.1016/j.jep.2016.12.018] [PMID: 27986611]
[137]
Rai, G.; Suman, S.; Mishra, S.; Shukla, Y. Evaluation of growth inhibitory response of Resveratrol and Salinomycin combinations against triple negative breast cancer cells. Biomed. Pharmacother., 2017, 89, 1142-1151.
[http://dx.doi.org/10.1016/j.biopha.2017.02.110] [PMID: 28298074]
[138]
Bouchard, G.; Therriault, H.; Geha, S.; Bérubé-Lauzière, Y.; Bujold, R.; Saucier, C.; Paquette, B. Stimulation of triple negative breast cancer cell migration and metastases formation is prevented by chloroquine in a pre-irradiated mouse model. BMC Cancer, 2016, 16, 361.
[http://dx.doi.org/10.1186/s12885-016-2393-z] [PMID: 27282478]
[139]
Chiu, H-W.; Yeh, Y-L.; Wang, Y-C.; Huang, W-J.; Ho, S-Y.; Lin, P.; Wang, Y-J. Combination of the novel histone deacetylase inhibitor YCW1 and radiation induces autophagic cell death through the downregulation of BNIP3 in triple-negative breast cancer cells in vitro and in an orthotopic mouse model. Mol. Cancer, 2016, 15(1), 46.
[http://dx.doi.org/10.1186/s12943-016-0531-5] [PMID: 27286975]
[140]
Liang, D.H.; Choi, D.S.; Ensor, J.E.; Kaipparettu, B.A.; Bass, B.L.; Chang, J.C. The autophagy inhibitor chloroquine targets cancer stem cells in triple negative breast cancer by inducing mitochondrial damage and impairing DNA break repair. Cancer Lett., 2016, 376(2), 249-258.
[http://dx.doi.org/10.1016/j.canlet.2016.04.002] [PMID: 27060208]
[141]
Cano-González, A.; Mauro-Lizcano, M.; Iglesias-Serret, D.; Gil, J.; López-Rivas, A. Involvement of both caspase-8 and Noxa-activated pathways in endoplasmic reticulum stress-induced apoptosis in triple-negative breast tumor cells. Cell Death Dis., 2018, 9(2), 134.
[http://dx.doi.org/10.1038/s41419-017-0164-7] [PMID: 29374147]
[142]
Hung, C-M.; Liu, L-C.; Ho, C-T.; Lin, Y-C.; Way, T-D. Pterostilbene enhances TRAIL-induced apoptosis through the induction of death receptors and downregulation of cell survival proteins in TRAIL-resistance triple negative breast cancer cells. J. Agric. Food Chem., 2017, 65(51), 11179-11191.
[http://dx.doi.org/10.1021/acs.jafc.7b02358] [PMID: 29164887]
[143]
Zou, W.; Bai, Y.; Wang, X.; Cheng, K.; Sun, H.; Zhang, G.; Wang, X.; Yang, Z. PERK-phosphorylated eIF2α pathway suppresses tumor metastasis through downregulating expression of programmed death ligand 1 and CXCL5 in triple-negative breast cancer. Cancer Biother. Radiopharm., 2017, 32(8), 282-287.
[http://dx.doi.org/10.1089/cbr.2017.2237] [PMID: 29053414]
[144]
Li, X-H.; He, X-R.; Zhou, Y-Y.; Zhao, H-Y.; Zheng, W-X.; Jiang, S-T.; Zhou, Q.; Li, P-P.; Han, S-Y. Taraxacum mongolicum extract induced endoplasmic reticulum stress associated-apoptosis in triple-negative breast cancer cells. J. Ethnopharmacol., 2017, 206, 55-64.
[http://dx.doi.org/10.1016/j.jep.2017.04.025] [PMID: 28461119]
[145]
Ghosh, S.; Adhikary, A.; Chakraborty, S.; Bhattacharjee, P.; Mazumder, M.; Putatunda, S.; Gorain, M.; Chakraborty, A.; Kundu, G.C.; Das, T.; Sen, P.C. Cross-talk between Endoplasmic Reticulum (ER) stress and the MEK/ERK pathway potentiates apoptosis in human triple negative breast carcinoma cells: Role of a dihydropyrimidone, nifetepimine. J. Biol. Chem., 2015, 290(7), 3936-3949.
[http://dx.doi.org/10.1074/jbc.M114.594028] [PMID: 25527500]
[146]
Singha, P.K.; Pandeswara, S.; Venkatachalam, M.A.; Saikumar, P. Manumycin A inhibits triple-negative breast cancer growth through LC3-mediated cytoplasmic vacuolation death. Cell Death Dis., 2013, 4e457
[http://dx.doi.org/10.1038/cddis.2012.192] [PMID: 23328664]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy