Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

A Review of AEG-1 Oncogene Regulating MicroRNA Expression in Colon Cancer Progression

Author(s): Sarubala Malayaperumal*, Sushmitha Sriramulu, Ganesan Jothimani, Antara Banerjee and Surajit Pathak*

Volume 21, Issue 1, 2021

Published on: 18 June, 2020

Page: [27 - 34] Pages: 8

DOI: 10.2174/1871530320666200618104116

Price: $65

Abstract

MicroRNAs are a class of small non-coding RNAs that perform a crucial function in posttranscriptional gene regulation. Dysregulation of these microRNAs is associated with many types of cancer progression. In tumorigenesis, downregulated microRNAs might function as a tumour suppressor by repressing oncogenes, whereas overexpressed miRs might function as oncogenes by suppressing tumour suppressor. Similarly, Metadherin (also known as AEG-1/ LYRIC), is an oncogene, the levels of which are found to be very high in various cancers and play a crucial role in the proliferation of cells and invasion. Our review focuses on the study, which shows the alteration of microRNA expression profile and suppression of carcinogenesis when MTDH/AEG-1 is targeted. It summarises the studies where downregulation and upregulation of AEG-1 and microRNAs, respectively, alter the biological functions of the cell, such as proliferation and apoptosis. Studies have reported that AEG-1 can be direct or indirect target of microRNA, which could provide a new-insight to know the underlying molecular mechanism and might contribute to the progress of new therapeutic strategies for the disease.

Keywords: Colorectal cancer, oncogene, microRNA, AEG-1/MTDH/LYRIC, biomarker.

Graphical Abstract

[1]
Hu, G.; Wei, Y.; Kang, Y. The multifaceted role of MTDH/AEG-1 in cancer progression. Clin. Cancer Res., 2009, 15(18), 5615-5620.
[http://dx.doi.org//10.1158/1078-0432.CCR-09-0049] [PMID: 19723648]
[2]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org//10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[3]
Steeg, P.S. Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med., 2006, 12(8), 895-904.
[http://dx.doi.org//10.1038/nm1469] [PMID: 16892035]
[4]
Tariq, K.; Ghias, K. Colorectal cancer carcinogenesis: A review of mechanisms. Cancer Biol. Med., 2016, 13(1), 120-135.
[http://dx.doi.org//10.20892/j.issn.2095-3941.2015.0103] [PMID: 27144067]
[5]
Tan, W.; Liu, B.; Qu, S.; Liang, G.; Luo, W.; Gong, C. MicroRNAs and cancer: Key paradigms in molecular therapy. Oncol. Lett., 2018, 15(3), 2735-2742.
[PMID: 29434998]
[6]
Mattick, J.S.; Gagen, M.J. The evolution of controlled multitasked gene networks: The role of introns and other noncoding RNAs in the development of complex organisms. Mol. Biol. Evol., 2001, 18(9), 1611-1630.
[http://dx.doi.org//10.1093/oxfordjournals.molbev.a003951] [PMID: 11504843]
[7]
Di Leva, G.; Garofalo, M.; Croce, C.M. MicroRNAs in cancer. Annu. Rev. Pathol., 2014, 9, 287-314.
[http://dx.doi.org//10.1146/annurev-pathol-012513-104715] [PMID: 24079833]
[8]
Plank, M.; Maltby, S.; Mattes, J.; Foster, P.S. Targeting translational control as a novel way to treat inflammatory disease: the emerging role of microRNAs. Clin. Exp. Allergy, 2013, 43(9), 981-999.
[http://dx.doi.org//10.1111/cea.12135] [PMID: 23957346]
[9]
Fernández-Hernando, C.; Ramírez, C.M.; Goedeke, L.; Suárez, Y. MicroRNAs in metabolic disease. Arterioscler. Thromb. Vasc. Biol., 2013, 33(2), 178-185.
[http://dx.doi.org//10.1161/ATVBAHA.112.300144] [PMID: 23325474]
[10]
Wang, W.; Kwon, E.J.; Tsai, L.H. MicroRNAs in learning, memory, and neurological diseases. Learn. Mem., 2012, 19(9), 359-368.
[http://dx.doi.org//10.1101/lm.026492.112] [PMID: 22904366]
[11]
Rossi, S.; Di Narzo, A.F.; Mestdagh, P.; Jacobs, B.; Bosman, F.T.; Gustavsson, B.; Majoie, B.; Roth, A.; Vandesompele, J.; Rigoutsos, I.; Delorenzi, M.; Tejpar, S. microRNAs in colon cancer: A roadmap for discovery. FEBS Lett., 2012, 586(19), 3000-3007.
[http://dx.doi.org//10.1016/j.febslet.2012.07.048] [PMID: 23166923]
[12]
Emdad, L.; Sarkar, D.; Su, Z.Z.; Lee, S.G.; Kang, D.C.; Bruce, J.N.; Volsky, D.J.; Fisher, P.B. Astrocyte elevated gene-1: Recent insights into a novel gene involved in tumor progression, metastasis and neurodegeneration. Pharmacol. Ther., 2007, 114(2), 155-170.
[http://dx.doi.org//10.1016/j.pharmthera.2007.01.010] [PMID: 17397930]
[13]
Kwong, L.N.; Chin, L. The metastasis problem gets stickier. Cancer Cell, 2009, 15(1), 1-2.
[http://dx.doi.org//10.1016/j.ccr.2008.12.007] [PMID: 19111873]
[14]
Gnosa, S.; Shen, Y-M.; Wang, C-J.; Zhang, H.; Stratmann, J.; Arbman, G.; Sun, X-F. Expression of AEG-1 mRNA and protein in colorectal cancer patients and colon cancer cell lines. J. Transl. Med., 2012, 10, 109.
[http://dx.doi.org//10.1186/1479-5876-10-109] [PMID: 22643064]
[15]
Emdad, L.; Das, S.K.; Dasgupta, S.; Hu, B.; Sarkar, D.; Fisher, P.B. AEG 1/MTDH/LYRIC: Signaling Pathways, Downstream Genes, Interacting Proteins, and Regulation of Tumor Angiogenesis Advances in Cancer Research; Elsevier Inc, 2013, 120(0065-230X)
[16]
Lee, S.G.; Su, Z.Z.; Emdad, L.; Sarkar, D.; Fisher, P.B. Astrocyte elevated gene-1 (AEG-1) is a target gene of oncogenic Ha-ras requiring phosphatidylinositol 3-kinase and c-Myc. Proc. Natl. Acad. Sci. USA, 2006, 103(46), 17390-17395.
[http://dx.doi.org//10.1073/pnas.0608386103] [PMID: 17088530]
[17]
Guo, Y.; Bao, Y.; Yang, W. Regulatory miRNAs in colorectal carcinogenesis and metastasis. Int. J. Mol. Sci., 2017, 18(4), 890.
[http://dx.doi.org//10.3390/ijms18040890] [PMID: 28441730]
[18]
Kim, N.H.; Kim, H.S.; Kim, N.G.; Lee, I.; Choi, H.S.; Li, X.Y.; Kang, S.E.; Cha, S.Y.; Ryu, J.K.; Na, J.M.; Park, C.; Kim, K.; Lee, S.; Gumbiner, B.M.; Yook, J.I.; Weiss, S.J. p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci. Signal., 2011, 4(197), ra71.
[http://dx.doi.org//10.1126/scisignal.2001744] [PMID: 22045851]
[19]
Subramanian, M.; Rao, S.R.; Thacker, P.; Chatterjee, S.; Karunagaran, D. MiR-29b downregulates canonical Wnt signaling by suppressing coactivators of β-catenin in human colorectal cancer cells. J. Cell. Biochem., 2014, 115(11), 1974-1984.
[PMID: 24913975]
[20]
Zhang, J.X.; Mai, S.J.; Huang, X.X.; Wang, F.W.; Liao, Y.J.; Lin, M.C.; Kung, H.F.; Zeng, Y.X.; Xie, D. MiR-29c mediates epithelial-to-mesenchymal transition in human colorectal carcinoma metastasis via PTP4A and GNA13 regulation of β-catenin signaling. Ann. Oncol., 2014, 25(11), 2196-2204.
[http://dx.doi.org//10.1093/annonc/mdu439] [PMID: 25193986]
[21]
Chen, X.; Guo, X.; Zhang, H.; Xiang, Y.; Chen, J.; Yin, Y.; Cai, X.; Wang, K.; Wang, G.; Ba, Y.; Zhu, L.; Wang, J.; Yang, R.; Zhang, Y.; Ren, Z.; Zen, K.; Zhang, J.; Zhang, C.Y. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene, 2009, 28(10), 1385-1392.
[http://dx.doi.org//10.1038/onc.2008.474] [PMID: 19137007]
[22]
Kent, O.A.; Mendell, J.T.; Rottapel, R. Transcriptional regulation of miR-31 by oncogenic KRAS mediates metastatic phenotypes by repressing RASA1. Mol. Cancer Res., 2016, 14(3), 267-277.
[http://dx.doi.org//10.1158/1541-7786.MCR-15-0456] [PMID: 26747707]
[23]
Su, J.; Liang, H.; Yao, W.; Wang, N.; Zhang, S.; Yan, X.; Feng, H.; Pang, W.; Wang, Y.; Wang, X.; Fu, Z.; Liu, Y.; Zhao, C.; Zhang, J.; Zhang, C.Y.; Zen, K.; Chen, X.; Wang, Y. MiR-143 and MiR-145 regulate IGF1R to suppress cell proliferation in colorectal cancer. PLoS One, 2014, 9(12)e114420
[http://dx.doi.org/http://dx.doi.org/10.1371/journal.pone.0114420] [PMID: 25474488]
[24]
Wang, B.; Shen, Z.L.; Gao, Z.D.; Zhao, G.; Wang, C.Y.; Yang, Y.; Zhang, J.Z.; Yan, Y.C.; Shen, C.; Jiang, K.W.; Ye, Y.J.; Wang, S. MiR-194, commonly repressed in colorectal cancer, suppresses tumor growth by regulating the MAP4K4/c-Jun/MDM2 signaling pathway. Cell Cycle, 2015, 14(7), 1046-1058.
[http://dx.doi.org//10.1080/15384101.2015.1007767] [PMID: 25602366]
[25]
Guo, C.; Sah, J.F.; Beard, L.; Willson, J.K.; Markowitz, S.D.; Guda, K. The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer, 2008, 47(11), 939-946.
[http://dx.doi.org//10.1002/gcc.20596] [PMID: 18663744]
[26]
Li, Y.; Sun, Z.; Liu, B.; Shan, Y.; Zhao, L.; Jia, L. Tumor-suppressive miR-26a and miR-26b inhibit cell aggressiveness by regulating FUT4 in colorectal cancer. Cell Death Dis., 2017, 8(6)e2892
[http://dx.doi.org//10.1038/cddis.2017.281] [PMID: 28640257]
[27]
Ye, J.; Wu, X.; Wu, D.; Wu, P.; Ni, C.; Zhang, Z.; Chen, Z.; Qiu, F.; Xu, J.; Huang, J. miRNA-27b targets vascular endothelial growth factor C to inhibit tumor progression and angiogenesis in colorectal cancer PLoS One, 2013, 8(4) e60687
[http://dx.doi.org//10.1371/journal.pone.0060687] [PMID: 23593282]
[28]
Suto, T.; Yokobori, T.; Yajima, R.; Morita, H.; Fujii, T.; Yamaguchi, S.; Altan, B.; Tsutsumi, S.; Asao, T.; Kuwano, H. MicroRNA-7 expression in colorectal cancer is associated with poor prognosis and regulates cetuximab sensitivity via EGFR regulation. Carcinogenesis, 2015, 36(3), 338-345.
[http://dx.doi.org//10.1093/carcin/bgu242] [PMID: 25503932]
[29]
Tsang, W.P.; Kwok, T.T. The miR-18a* microRNA functions as a potential tumor suppressor by targeting on K-Ras. Carcinogenesis, 2009, 30(6), 953-959.
[http://dx.doi.org//10.1093/carcin/bgp094] [PMID: 19372139]
[30]
Strillacci, A.; Griffoni, C.; Sansone, P.; Paterini, P.; Piazzi, G.; Lazzarini, G.; Spisni, E.; Pantaleo, M.A.; Biasco, G.; Tomasi, V. MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells. Exp. Cell Res., 2009, 315(8), 1439-1447.
[http://dx.doi.org//10.1016/j.yexcr.2008.12.010] [PMID: 19133256]
[31]
Iwaya, T.; Yokobori, T.; Nishida, N.; Kogo, R.; Sudo, T.; Tanaka, F.; Shibata, K.; Sawada, G.; Takahashi, Y.; Ishibashi, M.; Wakabayashi, G.; Mori, M.; Mimori, K. Downregulation of miR-144 is associated with colorectal cancer progression via activation of mTOR signaling pathway. Carcinogenesis, 2012, 33(12), 2391-2397.
[http://dx.doi.org//10.1093/carcin/bgs288] [PMID: 22983984]
[32]
Sun, J.Y.; Huang, Y.; Li, J.P.; Zhang, X.; Wang, L.; Meng, Y.L.; Yan, B.; Bian, Y.Q.; Zhao, J.; Wang, W.Z.; Yang, A.G.; Zhang, R. MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting β-catenin. Biochem. Biophys. Res. Commun., 2012, 420(4), 787-792.
[http://dx.doi.org//10.1016/j.bbrc.2012.03.075] [PMID: 22459450]
[33]
Li, Y.; Zhu, X.; Xu, W.; Wang, D.; Yan, J. miR-330 regulates the proliferation of colorectal cancer cells by targeting Cdc42. Biochem. Biophys. Res. Commun., 2013, 431(3), 560-565.
[http://dx.doi.org//10.1016/j.bbrc.2013.01.016] [PMID: 23337504]
[34]
Wang, B.; Shen, Z.L.; Jiang, K.W.; Zhao, G.; Wang, C.Y.; Yan, Y.C.; Yang, Y.; Zhang, J.Z.; Shen, C.; Gao, Z.D.; Ye, Y.J.; Wang, S. MicroRNA-217 functions as a prognosis predictor and inhibits colorectal cancer cell proliferation and invasion via an AEG-1 dependent mechanism. BMC Cancer, 2015, 15, 437.
[http://dx.doi.org//10.1186/s12885-015-1438-z] [PMID: 26016795]
[35]
Huang, S.; Wu, B.; Li, D.; Zhou, W.; Deng, G.; Zhang, K.; Li, Y. Knockdown of astrocyte elevated gene-1 inhibits tumor growth and modifies microRNAs expression profiles in human colorectal cancer cells. Biochem. Biophys. Res. Commun., 2014, 444(3), 338-345.
[http://dx.doi.org//10.1016/j.bbrc.2014.01.046] [PMID: 24462870]
[36]
Zhang, S.; Liu, L.; Lv, Z.; Li, Q.; Gong, W.; Wu, H. MicroRNA-342-3p Inhibits the Proliferation, Migration, and Invasion of Osteosarcoma Cells by Targeting Astrocyte-Elevated Gene-1 (AEG-1). Oncol. Res., 2017, 25(9), 1505-1515.
[http://dx.doi.org//10.3727/096504017X14886485417426] [PMID: 28276315]
[37]
He, X-X.; Chang, Y.; Meng, F-Y.; Wang, M-Y.; Xie, Q-H.; Tang, F. P-Y Li, Y-H Song and J-S Lin: MicroRNA-375 targets AEG-1 in hepatocellular carcinoma and suppresses liver cancer cell growth in vitro and in vivo Oncogene, 2011, 1-13.
[38]
Yan, J-J.; Chang, Y.; Zhang, Y-N.; Lin, J-S.; He, X.X.; Huang, H.J. miR-195 inhibits cell proliferation via targeting AEG-1 in hepatocellular carcinoma. Oncol. Lett., 2017, 13(5), 3118-3126.
[http://dx.doi.org//10.3892/ol.2017.5826] [PMID: 28529562]
[39]
Yan, J.J.; Zhang, Y.N.; Liao, J.Z.; Ke, K.P.; Chang, Y.; Li, P.Y.; Wang, M.; Lin, J.S.; He, X.X. MiR-497 suppresses angiogenesis and metastasis of hepatocellular carcinoma by inhibiting VEGFA and AEG-1. Oncotarget, 2015, 6(30), 29527-29542.
[http://dx.doi.org//10.18632/oncotarget.5012] [PMID: 26336827]
[40]
Zhao, J.; Wang, W.; Huang, Y.; Wu, J.; Chen, M.; Cui, P.; Zhang, W.; Zhang, Y. HBx elevates oncoprotein AEG-1 expression to promote cell migration by downregulating miR-375 and miR-136 in malignant hepatocytes. DNA Cell Biol., 2014, 33(10), 715-722.
[http://dx.doi.org//10.1089/dna.2014.2376] [PMID: 25050974]
[41]
Nohata, N.; Hanazawa, T.; Kikkawa, N.; Mutallip, M.; Sakurai, D.; Fujimura, L.; Kawakami, K.; Chiyomaru, T.; Yoshino, H.; Enokida, H.; Nakagawa, M.; Okamoto, Y.; Seki, N. Tumor suppressive microRNA-375 regulates oncogene AEG-1/MTDH in head and neck squamous cell carcinoma (HNSCC). J. Hum. Genet., 2011, 56(8), 595-601.
[http://dx.doi.org//10.1038/jhg.2011.66] [PMID: 21753766]
[42]
Guo, J.; Xia, B.; Meng, F.; Lou, G. miR-137 suppresses cell growth in ovarian cancer by targeting AEG-1. Biochem. Biophys. Res. Commun., 2013, 441(2), 357-363.
[http://dx.doi.org//10.1016/j.bbrc.2013.10.052] [PMID: 24144591]
[43]
Meng, F.; Zhang, L.; Shao, Y.; Ma, Q.; Lv, H. MicroRNA-377 inhibits non-small-cell lung cancer through targeting AEG-1. Int. J. Clin. Exp. Pathol., 2015, 8(11), 13853-13863.
[PMID: 26823698]
[44]
Zhang, Y.; Wang, X.; Zhao, Y. MicroRNA 874 prohibits the proliferation and invasion of retinoblastoma cells by directly targeting metadherin. Mol. Med. Rep., 2018, 18(3), 3099-3105.
[http://dx.doi.org//10.3892/mmr.2018.9295] [PMID: 30015932]
[45]
Yang, Y.; Wu, J.; Guan, H.; Cai, J.; Fang, L.; Li, J.; Li, M. MiR-136 promotes apoptosis of glioma cells by targeting AEG-1 and Bcl-2. FEBS Lett., 2012, 586(20), 3608-3612.
[http://dx.doi.org//10.1016/j.febslet.2012.08.003] [PMID: 22967897]
[46]
Shen, X.; Si, Y.; Yang, Z.; Wang, Q.; Yuan, J.; Zhang, X. MicroRNA-542-3p suppresses cell growth of gastric cancer cells via targeting oncogene astrocyte-elevated gene-1. Med. Oncol., 2015, 32(1), 361.
[http://dx.doi.org//10.1007/s12032-014-0361-5] [PMID: 25432696]
[47]
Zhang, X.; Cai, D.; Meng, L.; Wang, B. MicroRNA-124 inhibits proliferation, invasion, migration and epithelial-mesenchymal transition of cervical carcinoma cells by targeting astrocyte-elevated gene-1. Oncol. Rep., 2016, 36(4), 2321-2328.
[http://dx.doi.org//10.3892/or.2016.5025] [PMID: 27571703]
[48]
Liang, X.; Li, H.; Fu, D.; Chong, T.; Wang, Z.; Li, Z. MicroRNA-1297 inhibits prostate cancer cell proliferation and invasion by targeting the AEG-1/Wnt signaling pathway. Biochem. Biophys. Res. Commun., 2016, 480(2), 208-214.
[http://dx.doi.org//10.1016/j.bbrc.2016.10.029] [PMID: 27746178]
[49]
Zhang, N.; Wang, X.; Huo, Q.; Sun, M.; Cai, C.; Liu, Z.; Hu, G.; Yang, Q. MicroRNA-30a suppresses breast tumor growth and metastasis by targeting metadherin. Oncogene, 2014, 33(24), 3119-3128.
[http://dx.doi.org//10.1038/onc.2013.286] [PMID: 23851509]
[50]
He, R.; Yang, L.; Lin, X.; Chen, X.; Lin, X.; Wei, F.; Liang, X.; Luo, Y.; Wu, Y.; Gan, T.; Dang, Y.; Chen, G. MiR-30a-5p suppresses cell growth and enhances apoptosis of hepatocellular carcinoma cells via targeting AEG-1. Int. J. Clin. Exp. Pathol., 2015, 8(12), 15632-15641.
[PMID: 26884832]
[51]
Masuda, T.; Hayashi, N.; Kuroda, Y.; Ito, S.; Eguchi, H.; Mimori, K. MicroRNAs as biomarkers in colorectal cancer. Cancers (Basel), 2017, 9(9), 124.
[http://dx.doi.org//10.3390/cancers9090124] [PMID: 28902152]
[52]
Schnekenburger, M.; Diederich, M. Epigenetics Offer New Horizons for Colorectal Cancer Prevention. Curr. Colorectal Cancer Rep., 2012, 8(1), 66-81.
[http://dx.doi.org//10.1007/s11888-011-0116-z] [PMID: 22389639]
[53]
Zhang, Z.J.; Zheng, Z.J.; Kan, H.; Song, Y.; Cui, W.; Zhao, G.; Kip, K.E. Reduced risk of colorectal cancer with metformin therapy in patients with type 2 diabetes: A meta-analysis. Diabetes Care, 2011, 34(10), 2323-2328.
[http://dx.doi.org//10.2337/dc11-0512] [PMID: 21949223]
[54]
Bultman, S.J. Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Mol. Nutr. Food Res., 2017, 61(1)
[http://dx.doi.org//10.1002/mnfr.201500902] [PMID: 27138454]
[55]
Lasry, A.; Zinger, A.; Ben-Neriah, Y. Inflammatory networks underlying colorectal cancer. Nat. Immunol., 2016, 17(3), 230-240.
[56]
Mármol, I.; Sánchez-de-Diego, C.; Dieste, A.P.; Cerrada, E.; Yoldi, M.J.R. Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer. Int. J. Mol. Sci., 2017, 18(1), 197.
[http://dx.doi.org//10.3390/ijms18010197] [PMID: 28106826]
[57]
Blackburn, E.H.; Tlsty, T.D.; Lippman, S.M. Unprecedented opportunities and promise for cancer prevention research. Cancer Prev. Res., 2010, 3(4), 394-402.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy