Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Development of Novel Rhodanine Analogs as Anticancer Agents: Design, Synthesis, Evaluation and CoMSIA Study

Author(s): Uma Krithika, Prabhakaran Prabitha, Subhankar P. Mandal, Sivamani Yuvaraj, Durai Priya, Ashish D. Wadhwani and Bommenahally Ravanappa Prashantha Kumar*

Volume 17, Issue 3, 2021

Published on: 10 June, 2020

Page: [216 - 229] Pages: 14

DOI: 10.2174/1573406416666200610191002

Price: $65

Abstract

Background: A series of novel 5-substituted benzylidene rhodanine derivatives using four different amines were designed based on our previously developed CoMSIA (Comparative molecular similarity indices analysis) model for the anticancer activity.

Methods: The designed rhodanines were synthesized via dithiocarbamate formation, cyclization and Knoevenagel condensation. The structures of the synthesized compounds were confirmed and analyzed by spectral studies.

Results: The synthesized rhodanines were investigated for in vitro anticancer activities and the analogs have displayed mild to significant cytotoxicity against MCF-7 breast cancer cells. The compounds with benzyloxy substitution at the fifth position of rhodanine ring (Compounds 20, 33 and 38) system showed significant cytotoxic activity against MCF-7 cells. CoMSIA, a three-dimensional quantitative structureactivity relationship (3D-QSAR) technique was accomplished to elucidate structure-activity relationships.

Conclusion: Based on the information derived from CoMSIA contour plots, some key features for increasing the activity of compounds have been identified and used to design new anti-cancer agents. The present developed CoMSIA model displayed good external predictability, r2pred of 0.841 and good statistical robustness.

Keywords: Rhodanine, Knoevenagel condensation, MCF-7 cells, anticancer activity, CoMSIA, 3D QSAR.

Graphical Abstract

[1]
El-Sayed, S.; Metwally, K.; El-Shanawani, A.A.; Abdel-Aziz, L.M.; Pratsinis, H.; Kletsas, D. Synthesis and anticancer activity of novel quinazolinone-based rhodanines. Chem. Cent. J., 2017, 11(1), 102.
[http://dx.doi.org/10.1186/s13065-017-0333-x] [PMID: 29086906]
[2]
Metwally, K.; Pratsinis, H.; Kletsas, D.; Quattrini, L.; Coviello, V.; Motta, C.; El-Rashedy, A.A.; Soliman, M.E. Novel quinazolinone-based 2,4-thiazolidinedione-3-acetic acid derivatives as potent aldose reductase inhibitors. Future Med. Chem., 2017, 9(18), 2147-2166.
[http://dx.doi.org/10.4155/fmc-2017-0149] [PMID: 29098865]
[3]
Ruddarraju, R.R.; Murugulla, A.C.; Kotla, R.; Tirumalasetty, M.C.B.; Wudayagiri, R.; Donthabakthuni, S.; Maroju, R. Design, synthesis, anticancer activity and docking studies of theophylline containing 1,2,3-triazoles with variant amide derivatives. MedChemComm, 2016, 8(1), 176-183.
[http://dx.doi.org/10.1039/C6MD00479B] [PMID: 30108703]
[4]
Ahmed, M.F.; Belal, A.; Youns, M. Design, synthesis, molecular modeling and anti-breast cancer activity of novel quinazolin-4-one derivatives linked to thiazolidinone, oxadiazole or pyrazole moieties. Med. Chem. Res., 2015, 24(7), 2993-3007.
[http://dx.doi.org/10.1007/s00044-015-1357-1]
[5]
Asati, V.; Mahapatra, D.K.; Bharti, S.K. Thiazolidine-2,4-diones as multi-targeted scaffold in medicinal chemistry: Potential anticancer agents. Eur. J. Med. Chem., 2014, 87, 814-833.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.025] [PMID: 25440883]
[6]
Jain, A.K.; Vaidya, A.; Ravichandran, V.; Kashaw, S.K.; Agrawal, R.K. Recent developments and biological activities of thiazolidinone derivatives: a review. Bioorg. Med. Chem., 2012, 20(11), 3378-3395.
[http://dx.doi.org/10.1016/j.bmc.2012.03.069] [PMID: 22546204]
[7]
Naim, M.J.; Alam, M.J.; Ahmad, S.; Nawaz, F.; Shrivastava, N.; Sahu, M.; Alam, O. Therapeutic journey of 2,4-thiazolidinediones as a versatile scaffold: An insight into structure activity relationship. Eur. J. Med. Chem., 2017, 129, 218-250.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.031] [PMID: 28231521]
[8]
Muhammad, S.A.; Ravi, S.; Thangamani, A. Synthesis and evaluation of some novel N-substituted rhodanines for their anticancer activity. Med. Chem. Res., 2016, 25(5), 994-1004.
[http://dx.doi.org/10.1007/s00044-016-1545-7]
[9]
Bhatti, R.S.; Shah, S.; Krishan, P.; Sandhu, J.S. Recent pharmacological developments on rhodanines and 2, 4-thiazolidinediones. Int. J. Med. Chem., 2013, 2013, 793260.
[10]
Murugan, R.; Anbazhagan, S. Lingeshwaran; Narayanan, S.S. Synthesis and in vivo antidiabetic activity of novel dispiropyrrolidines through [3+2] cycloaddition reactions with thiazolidinedione and rhodanine derivatives. Eur. J. Med. Chem., 2009, 44(8), 3272-3279.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.035] [PMID: 19395129]
[11]
Patel, N.B.; Patel, S.D. Synthesis and antimicrobial study of fluoroquinolone-based 4-thiazolidinones. Med. Chem. Res., 2010, 19(8), 757-770.
[http://dx.doi.org/10.1007/s00044-009-9228-2]
[12]
Rostamnia, S.; Doustkhah, E. Synthesis and synthetic applications of biologically interesting rhodanine and rhodanine-based scaffolds. Green Chemistry: Synthesis of Bioactive Heterocycles; Springer, 2014, pp. 253-275.
[13]
Alegaon, S.G.; Alagawadi, K.R.; Sonkusare, P.V.; Chaudhary, S.M.; Dadwe, D.H.; Shah, A.S. Novel imidazo[2,1-b][1,3,4] thiadiazole carrying rhodanine-3-acetic acid as potential antitubercular agents. Bioorg. Med. Chem. Lett., 2012, 22(5), 1917-1921.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.052] [PMID: 22325950]
[14]
Moorthy, B.T.; Ravi, S.; Srivastava, M.; Chiruvella, K.K.; Hemlal, H.; Joy, O.; Raghavan, S.C. Novel rhodanine derivatives induce growth inhibition followed by apoptosis. Bioorg. Med. Chem. Lett., 2010, 20(21), 6297-6301.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.084] [PMID: 20832305]
[15]
Sharma, S.R.; Sharma, N. Epalrestat, an aldose reductase inhibitor, in diabetic neuropathy: an Indian perspective. Ann. Indian Acad. Neurol., 2008, 11(4), 231-235.
[http://dx.doi.org/10.4103/0972-2327.44558] [PMID: 19893679]
[16]
Hotta, N.; Sakamoto, N.; Shigeta, Y.; Kikkawa, R.; Goto, Y. Diabetic Neuropathy Study Group in Japan. Clinical investigation of epalrestat, an aldose reductase inhibitor, on diabetic neuropathy in Japan: multicenter study. J. Diabetes Complications, 1996, 10(3), 168-172.
[http://dx.doi.org/10.1016/1056-8727(96)00113-4] [PMID: 8807467]
[17]
Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol., 1997, 21(1), A-3B.
[18]
Tsai, K.C.; Chen, Y.C.; Hsiao, N.W.; Wang, C.L.; Lin, C.L.; Lee, Y.C.; Li, M.; Wang, B. A comparison of different electrostatic potentials on prediction accuracy in CoMFA and CoMSIA studies. Eur. J. Med. Chem., 2010, 45(4), 1544-1551.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.063] [PMID: 20110138]
[19]
Cramer, R.D.; Patterson, D.E.; Bunce, J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110(18), 5959-5967.
[http://dx.doi.org/10.1021/ja00226a005] [PMID: 22148765]
[20]
Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron, 1980, 36(22), 3219-3228.
[http://dx.doi.org/10.1016/0040-4020(80)80168-2]
[21]
Clark, M.; Cramer, R.D.; Van Opdenbosch, N. Validation of the general purpose Tripos 5.2 force field. J. Comput. Chem., 1989, 10(8), 982-1012.
[http://dx.doi.org/10.1002/jcc.540100804]
[22]
Lino, C.I.; Gonçalves de Souza, I.; Borelli, B.M.; Silvério Matos, T.T.; Santos Teixeira, I.N.; Ramos, J.P.; Maria de Souza Fagundes, E.; de Oliveira Fernandes, P.; Maltarollo, V.G.; Johann, S.; de Oliveira, R.B. Synthesis, molecular modeling studies and evaluation of antifungal activity of a novel series of thiazole derivatives. Eur. J. Med. Chem., 2018, 151, 248-260.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.083] [PMID: 29626797]
[23]
Mandal, S.P.; Garg, A.; Sahetya, S.S.; Nagendra, S.R.; Sripad, H.S.; Manjunath, M.M.; Kumar, B.P. Novel rhodanines with anticancer activity: design, synthesis and CoMSIA study. RSC Advances, 2016, 6(63), 58641-58653.
[http://dx.doi.org/10.1039/C6RA08785J]
[24]
Wang, A.; Yang, Y.; Jun, Y.; Wang, B.; Lv, K.; Liu, M.; Guo, H.; Lu, Y. Synthesis, evaluation and CoMFA/CoMSIA study of nitrofuranyl methyl N-heterocycles as novel antitubercular agents. Bioorg. Med. Chem., 2018, 26(8), 2073-2084.
[http://dx.doi.org/10.1016/j.bmc.2018.03.004] [PMID: 29551372]
[25]
Jain, S.V.; Ghate, M. Atom-based pharmacophore modeling, CoMFA/CoMSIA-based 3D-QSAR studies and lead optimization of DPP-4 inhibitors for the treatment of type 2 diabetes. Med. Chem. Res., 2014, 23(7), 3436-3450.
[http://dx.doi.org/10.1007/s00044-014-0923-2]
[26]
Fu, H.; Hou, X.; Wang, L.; Dun, Y.; Yang, X.; Fang, H. Design, synthesis and biological evaluation of 3-aryl-rhodanine benzoic acids as anti-apoptotic protein Bcl-2 inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(22), 5265-5269.
[http://dx.doi.org/10.1016/j.bmcl.2015.09.051] [PMID: 26421995]
[27]
Bernardo, P.H.; Sivaraman, T.; Wan, K.F.; Xu, J.; Krishnamoorthy, J.; Song, C.M.; Tian, L.; Chin, J.S.; Lim, D.S.; Mok, H.Y.; Victor, C.Y. Synthesis of a rhodanine-based compound library targeting Bcl-XL and Mcl-1. Pure Appl. Chem., 2011, 83(3), 723-731.
[http://dx.doi.org/10.1351/PAC-CON-10-10-29]
[28]
Prashantha Kumar, B.R.; Baig, N.R.; Sudhir, S.; Kar, K.; Kiranmai, M.; Pankaj, M.; Joghee, N.M. Discovery of novel glitazones incorporated with phenylalanine and tyrosine: synthesis, antidiabetic activity and structure-activity relationships. Bioorg. Chem., 2012, 45, 12-28.
[http://dx.doi.org/10.1016/j.bioorg.2012.08.002] [PMID: 23064124]
[29]
Shafii, N.; Khoobi, M.; Amini, M.; Sakhteman, A.; Nadri, H.; Moradi, A.; Emami, S.; Saeedian Moghadam, E.; Foroumadi, A.; Shafiee, A. Synthesis and biological evaluation of 5-benzylidenerhodanine-3-acetic acid derivatives as AChE and 15-LOX inhibitors. J. Enzyme Inhib. Med. Chem., 2015, 30(3), 389-395.
[http://dx.doi.org/10.3109/14756366.2014.940935] [PMID: 26095345]
[30]
Kumar, B.R.; Nanjan, M.J. Novel glitazones: design, synthesis, glucose uptake and structure-activity relationships. Bioorg. Med. Chem. Lett., 2010, 20(6), 1953-1956.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.125] [PMID: 20167487]
[31]
Patil, V.; Tilekar, K.; Mehendale-Munj, S.; Mohan, R.; Ramaa, C.S. Synthesis and primary cytotoxicity evaluation of new 5-benzylidene-2,4-thiazolidinedione derivatives. Eur. J. Med. Chem., 2010, 45(10), 4539-4544.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.014] [PMID: 20667627]
[32]
Nathiya, K.; Nath, S.S.; Angayarkanni, J.; Palaniswamy, M. In vitro cytotoxicity of L-glutaminase against MCF-7 cell line. Asian J. Pharm. Clin. Res., 2012, 5, 171-173.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy