Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

General Research Article

Evaluation of Anti-Diabetic Potential of Corn Silk in High-Fat Diet/ Streptozotocin-Induced Type 2 Diabetes Mice Model

Author(s): Li Sheng, Qian Chen, Lei Di and Ning Li*

Volume 21, Issue 1, 2021

Published on: 06 June, 2020

Page: [131 - 138] Pages: 8

DOI: 10.2174/1871530320666200606224708

Price: $65

Abstract

Background: Corn silk is the elongated stigma of the female flower of Zea mays and traditionally used to treat diabetes mellitus (DM).

Objective: To investigate the beneficial effects of corn silk extract (CSE) on HFD/STZ-induced diabetic C56BL/6J mice.

Methods: Establishment of a T2DM model through feeding HFD combined with STZ. T2DM was randomly divided into 5 groups: diabetic control mice treated with vehicle (model group, n=10), metformin- treated group (metformin: 150 mg/kg.d, n=10), three CS-treated groups (CS: 300, 600 and 1200 mg/kg.d, n=10). After four weeks of CS treatment, the body weight, FBG, IR, TC, TG, LDL-C, MDA and SOD levels of mice were measured. In addition, the liver tissue was histomorphologically analyzed by HE stain followed a light microscopy observation.

Results: 4-week CSE treatment significantly reduced FBG and enhanced the glucose tolerance; improved IR indicated by decreased HOMA-IR and elevated ISI; alleviated hyperlipidemia indicated by decreased TC, TG, LDL-C, and increased HDL-C; reduced oxidative stress by decreased MDA and elevated SOD activity; decreased hepatic lipid accumulation and prevented liver tissue morphological change in T2DM. In addition, CSE treatments effectively prevent the weight gain loss of diabetic mice.

Conclusion: These results confirmed the traditionally claimed benefits of corn silk on DM, which suggested that the corn silk possessed the anti-diabetic potential and could be further developed as a cheap and plant-derived agent for the treatment of type 2 diabetes mellitus.

Keywords: Corn silk, diabetes, high blood glucose, hyperlipidemia, insulin resistance, oxidative stress.

Graphical Abstract

[1]
Zimmet, P.; Alberti, K.G.; Shaw, J. Global and societal implications of the diabetes epidemic. Nature, 2001, 414(6865), 782-787.
[http://dx.doi.org/10.1038/414782a] [PMID: 11742409]
[2]
International Diabetes Federation. IDF Diabetes Atlas, International Diabetes Federation, Brussels, Belgium, 8th edition. 2017. Available at: https://www.idf.org/e-library/ (Accessed on April 4, 2019)
[3]
Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract., 2010, 87(1), 4-14.
[http://dx.doi.org/10.1016/j.diabres.2009.10.007] [PMID: 19896746]
[4]
American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care, 2020, 43(Suppl. 1), S14-S31.
[http://dx.doi.org/10.2337/dc20-S002] [PMID: 31862745]
[5]
Moller, D.E. New drug targets for type 2 diabetes and the metabolic syndrome. Nature, 2001, 414(6865), 821-827.
[http://dx.doi.org/10.1038/414821a] [PMID: 11742415]
[6]
Xu, L.; Li, Y.; Dai, Y.; Peng, J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol. Res., 2018, 130, 451-465.
[http://dx.doi.org/10.1016/j.phrs.2018.01.015] [PMID: 29395440]
[7]
Nakamura, S.; Matsuda, H.; Yoshikawa, M. Search for antidiabetic constituents of medicinal food. Yakugaku Zasshi, 2011, 131(6), 909-915.
[http://dx.doi.org/10.1248/yakushi.131.909] [PMID: 21628977]
[8]
Editorial Board of China Herbal. China Herbal; Shanghai Science and Technology Press: Shanghai, China, 1999, Vol. 23, pp. 434-435.
[9]
Chang, C.C.; Yuan, W.; Roan, H.Y.; Chang, J.L.; Huang, H.C.; Lee, Y.C.; Tsay, H.J.; Liu, H.K. The ethyl acetate fraction of corn silk exhibits dual antioxidant and anti-glycation activities and protects insulin-secreting cells from glucotoxicity. BMC Complement. Altern. Med., 2016, 16(1), 432.
[http://dx.doi.org/10.1186/s12906-016-1382-8] [PMID: 27809830]
[10]
Wang, K.J.; Zhao, J.L. Corn silk (Zea mays L.), a source of natural antioxidants with α-amylase, α-glucosidase, advanced glycation and diabetic nephropathy inhibitory activities. Biomed. Pharmacother., 2019, 110, 510-517.
[http://dx.doi.org/10.1016/j.biopha.2018.11.126] [PMID: 30530231]
[11]
Chaiittianan, R.; Chayopas, P.; Rattanathongkom, A.; Tippayawat, P.; Sutthanut, K. Anti-obesity potential of corn silks: relationships of phytochemicals and anti-oxidation, anti-preadipocyte proliferation, anti-adipogenesis, and lipolysis induction. J. Funct. Foods, 2016, 23, 497-510.
[http://dx.doi.org/10.1016/j.jff.2016.03.010]
[12]
Wang, G.Q.; Xu, T.; Bu, X.M.; Liu, B.Y. Anti-inflammation effects of corn silk in a rat model of carrageenin-induced pleurisy. Inflammation, 2012, 35(3), 822-827.
[http://dx.doi.org/10.1007/s10753-011-9382-9] [PMID: 21898269]
[13]
Choi, D.J.; Kim, S.L.; Choi, J.W.; Park, Y.I. Neuroprotective effects of corn silk maysin via inhibition of H2O2-induced apoptotic cell death in SK-N-MC cells. Life Sci., 2014, 109(1), 57-64.
[http://dx.doi.org/10.1016/j.lfs.2014.05.020] [PMID: 24928367]
[14]
Lee, J.; Lee, S.; Kim, S.L.; Choi, J.W.; Seo, J.Y.; Choi, D.J.; Park, Y.I. Corn silk maysin induces apoptotic cell death in PC-3 prostate cancer cells via mitochondria-dependent pathway. Life Sci., 2014, 119(1-2), 47-55.
[http://dx.doi.org/10.1016/j.lfs.2014.10.012] [PMID: 25445226]
[15]
Hasanudin, K.; Hashim, P.; Mustafa, S. Corn silk (Stigma maydis) in healthcare: a phytochemical and pharmacological review. Molecules, 2012, 17(8), 9697-9715.
[http://dx.doi.org/10.3390/molecules17089697] [PMID: 22890173]
[16]
Guo, J.; Liu, T.; Han, L.; Liu, Y. The effects of corn silk on glycaemic metabolism. Nutr. Metab. (Lond.), 2009, 6, 47.
[http://dx.doi.org/10.1186/1743-7075-6-47] [PMID: 19930631]
[17]
World Health Organization. WHO traditional medicine strategy: 2014-2023. 2013. https://doi.org/www.who.int
[18]
Reaven, G.M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes, 1988, 37(12), 1595-1607.
[http://dx.doi.org/10.2337/diab.37.12.1595] [PMID: 3056758]
[19]
Khan, R.M.M.; Chua, Z.J.Y.; Tan, J.C.; Yang, Y.; Liao, Z.; Zhao, Y. From pre-diabetes to diabetes: diagnosis, treatments and translational research. Medicina (Kaunas), 2019, 55(9), 546.
[http://dx.doi.org/10.3390/medicina55090546] [PMID: 31470636]
[20]
Lebovitz, H.E. Insulin resistance: definition and consequences. Exp. Clin. Endocrinol. Diabetes, 2001, 109(Suppl. 2), S135-S148.
[http://dx.doi.org/10.1055/s-2001-18576] [PMID: 11460565]
[21]
Chen, Y.; Ma, H.; Zhu, D.; Zhao, G.; Wang, L.; Fu, X.; Chen, W. Discovery of novel insulin sensitizers: promising approaches and targets. PPAR Res., 2017.20178360919
[http://dx.doi.org/10.1155/2017/8360919] [PMID: 28659972]
[22]
Russo, B.; Picconi, F.; Malandrucco, I.; Frontoni, S. Flavonoids and insulin-resistance: from molecular evidences to clinical trials. Int. J. Mol. Sci., 2019, 20(9), 2061.
[http://dx.doi.org/10.3390/ijms20092061] [PMID: 31027340]
[23]
Ding, L.; Jin, D.; Chen, X. Luteolin enhances insulin sensitivity via activation of PPARγ transcriptional activity in adipocytes. J. Nutr. Biochem., 2010, 21(10), 941-947.
[http://dx.doi.org/10.1016/j.jnutbio.2009.07.009] [PMID: 19954946]
[24]
Chen, L.; Teng, H.; Cao, H. Chlorogenic acid and caffeic acid from Sonchus oleraceus Linn synergistically attenuate insulin resistance and modulate glucose uptake in HepG2 cells. Food Chem. Toxicol., 2019, 127, 182-187.
[http://dx.doi.org/10.1016/j.fct.2019.03.038] [PMID: 30914352]
[25]
Vergès, B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia, 2015, 58(5), 886-899.
[http://dx.doi.org/10.1007/s00125-015-3525-8] [PMID: 25725623]
[26]
Farmer, J.A. Diabetic dyslipidemia and atherosclerosis: evidence from clinical trials. Curr. Diab. Rep., 2008, 8(1), 71-77.
[http://dx.doi.org/10.1007/s11892-008-0013-2] [PMID: 18367002]
[27]
Jialal, I.; Singh, G. Management of diabetic dyslipidemia: An update. World J. Diabetes, 2019, 10(5), 280-290.
[http://dx.doi.org/10.4239/wjd.v10.i5.280] [PMID: 31139315]
[28]
Chehade, J.M.; Gladysz, M.; Mooradian, A.D. Dyslipidemia in type 2 diabetes: prevalence, pathophysiology, and management. Drugs, 2013, 73(4), 327-339.
[http://dx.doi.org/10.1007/s40265-013-0023-5] [PMID: 23479408]
[29]
Rains, J.L.; Jain, S.K. Oxidative stress, insulin signaling, and diabetes. Free Radic. Biol. Med., 2011, 50(5), 567-575.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.12.006] [PMID: 21163346]
[30]
Ceriello, A. Oxidative stress and glycemic regulation. Metabolism, 2000, 49(2)(Suppl. 1), 27-29.
[http://dx.doi.org/10.1016/S0026-0495(00)80082-7] [PMID: 10693917]
[31]
Lewandowski, Ł.; Kepinska, M.; Milnerowicz, H. The copper-zinc superoxide dismutase activity in selected diseases. Eur. J. Clin. Invest., 2019, 49(1)e13036
[http://dx.doi.org/10.1111/eci.13036] [PMID: 30316201]
[32]
Tabatabaei-Malazy, O.; Ramezani, A.; Atlasi, R.; Larijani, B.; Abdollahi, M. Scientometric study of academic publications on antioxidative herbal medicines in type 2 diabetes mellitus. J. Diabetes Metab. Disord., 2016, 15, 48.
[http://dx.doi.org/10.1186/s40200-016-0273-3] [PMID: 27785446]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy