Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

The TRPM7 Channel in the Nervous and Cardiovascular Systems

Author(s): Koichi Inoue*, Zhi-Gang Xiong and Takatoshi Ueki

Volume 21, Issue 10, 2020

Page: [985 - 992] Pages: 8

DOI: 10.2174/1389203721666200605170938

Price: $65

Abstract

Transient receptor potential melastatin 7 (TRPM7), along with the closely related TRPM6, are unique channels that have dual operations: cation permeability and kinase activity. In contrast to the limited tissue distribution of TRPM6, TRPM7 is widely expressed among tissues and is therefore implicated in a variety of cellular functions physiologically and pathophysiologically. The discovery of TRPM7’s unique structure imparting dual ion channel and kinase activities shed light onto novel and peculiar biological functions, such as Mg2+ homeostasis, cellular Ca2+ flickering, and even intranuclear transcriptional regulation by a cleaved kinase domain translocated to nuclei. Interestingly, at a higher level, TRPM7 participates in several biological processes in the nervous and cardiovascular systems, in which excitatory responses in neurons and cardiomyocytes are critical for their function. Here, we review the roles of TRPM7 in cells involved in the nervous and cardiovascular systems and discuss its potential as a future therapeutic target.

Keywords: TRPM7, nervous system, cardiovascular system, stroke, ion channel, kinase.

« Previous
Graphical Abstract

[1]
Cosens, D.J.; Manning, A. Abnormal electroretinogram from a Drosophila mutant. Nature, 1969, 224(5216), 285-287.
[http://dx.doi.org/10.1038/224285a0] [PMID: 5344615]
[2]
Cosens, D. Blindness in a Drosophila mutant. J. Insect Physiol., 1971, 17, 285-302.
[http://dx.doi.org/10.1016/0022-1910(71)90213-7]
[3]
Minke, B.; Cook, B. TRP channel proteins and signal transduction. Physiol. Rev., 2002, 82(2), 429-472.
[http://dx.doi.org/10.1152/physrev.00001.2002] [PMID: 11917094]
[4]
Montell, C.; Rubin, G.M. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron, 1989, 2(4), 1313-1323.
[http://dx.doi.org/10.1016/0896-6273(89)90069-X] [PMID: 2516726]
[5]
Nilius, B.; Owsianik, G. The transient receptor potential family of ion channels. Genome Biol., 2011, 12(3), 218.
[http://dx.doi.org/10.1186/gb-2011-12-3-218] [PMID: 21401968]
[6]
Kedei, N.; Szabo, T.; Lile, J.D.; Treanor, J.J.; Olah, Z.; Iadarola, M.J.; Blumberg, P.M. Analysis of the native quaternary structure of vanilloid receptor 1. J. Biol. Chem., 2001, 276(30), 28613-28619.
[http://dx.doi.org/10.1074/jbc.M103272200] [PMID: 11358970]
[7]
Clapham, D.E. TRP channels as cellular sensors. Nature, 2003, 426(6966), 517-524.
[http://dx.doi.org/10.1038/nature02196] [PMID: 14654832]
[8]
Kaneko, Y.; Szallasi, A. Transient receptor potential (TRP) channels: a clinical perspective. Br. J. Pharmacol., 2014, 171(10), 2474-2507.
[http://dx.doi.org/10.1111/bph.12414] [PMID: 24102319]
[9]
Mochizuki, T.; Wu, G.; Hayashi, T.; Xenophontos, S.L.; Veldhuisen, B.; Saris, J.J.; Reynolds, D.M.; Cai, Y.; Gabow, P.A.; Pierides, A.; Kimberling, W.J.; Breuning, M.H.; Deltas, C.C.; Peters, D.J.; Somlo, S. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science, 1996, 272(5266), 1339-1342.
[http://dx.doi.org/10.1126/science.272.5266.1339] [PMID: 8650545]
[10]
Peters, D.J.; Spruit, L.; Saris, J.J.; Ravine, D.; Sandkuijl, L.A.; Fossdal, R.; Boersma, J.; van Eijk, R.; Nørby, S.; Constantinou-Deltas, C.D. Chromosome 4 localization of a second gene for autosomal dominant polycystic kidney disease. Nat. Genet., 1993, 5(4), 359-362.
[http://dx.doi.org/10.1038/ng1293-359] [PMID: 8298643]
[11]
Dong, X.P.; Cheng, X.; Mills, E.; Delling, M.; Wang, F.; Kurz, T.; Xu, H. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature, 2008, 455(7215), 992-996.
[http://dx.doi.org/10.1038/nature07311] [PMID: 18794901]
[12]
Runnels, L.W.; Yue, L.; Clapham, D.E. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science, 2001, 291(5506), 1043-1047.
[http://dx.doi.org/10.1126/science.1058519] [PMID: 11161216]
[13]
Clapham, D.E.; Runnels, L.W.; Strübing, C. The TRP ion channel family. Nat. Rev. Neurosci., 2001, 2(6), 387-396.
[http://dx.doi.org/10.1038/35077544] [PMID: 11389472]
[14]
Nadler, M.J.; Hermosura, M.C.; Inabe, K.; Perraud, A.L.; Zhu, Q.; Stokes, A.J.; Kurosaki, T.; Kinet, J.P.; Penner, R.; Scharenberg, A.M.; Fleig, A. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature, 2001, 411(6837), 590-595.
[http://dx.doi.org/10.1038/35079092] [PMID: 11385574]
[15]
Schmitz, C.; Perraud, A.L.; Johnson, C.O.; Inabe, K.; Smith, M.K.; Penner, R.; Kurosaki, T.; Fleig, A.; Scharenberg, A.M. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell, 2003, 114(2), 191-200.
[http://dx.doi.org/10.1016/S0092-8674(03)00556-7] [PMID: 12887921]
[16]
Takezawa, R.; Schmitz, C.; Demeuse, P.; Scharenberg, A.M.; Penner, R.; Fleig, A. Receptor-mediated regulation of the TRPM7 channel through its endogenous protein kinase domain. Proc. Natl. Acad. Sci. USA, 2004, 101(16), 6009-6014.
[http://dx.doi.org/10.1073/pnas.0307565101] [PMID: 15069188]
[17]
Dorovkov, M.V.; Ryazanov, A.G. Phosphorylation of annexin I by TRPM7 channel-kinase. J. Biol. Chem., 2004, 279(49), 50643-50646.
[http://dx.doi.org/10.1074/jbc.C400441200] [PMID: 15485879]
[18]
Clark, K.; Langeslag, M.; van Leeuwen, B.; Ran, L.; Ryazanov, A.G.; Figdor, C.G.; Moolenaar, W.H.; Jalink, K.; van Leeuwen, F.N. TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J., 2006, 25(2), 290-301.
[http://dx.doi.org/10.1038/sj.emboj.7600931] [PMID: 16407977]
[19]
Krapivinsky, G.; Krapivinsky, L.; Manasian, Y.; Clapham, D.E. The TRPM7 chanzyme is cleaved to release a chromatin-modifying kinase. Cell, 2014, 157(5), 1061-1072.
[http://dx.doi.org/10.1016/j.cell.2014.03.046] [PMID: 24855944]
[20]
Liu, Y.; Chen, C.; Liu, Y.; Li, W.; Wang, Z.; Sun, Q.; Zhou, H.; Chen, X.; Yu, Y.; Wang, Y.; Abumaria, N. TRPM7 is equired for normal synapse density, learning, and memory at different dvelopmental stages. Cell Rep., 2018, 23(12), 3480-3491.
[http://dx.doi.org/10.1016/j.celrep.2018.05.069] [PMID: 29924992]
[21]
Gotru, S.K.; Chen, W.; Kraft, P.; Becker, I.C.; Wolf, K.; Stritt, S.; Zierler, S.; Hermanns, H.M.; Rao, D.; Perraud, A.L.; Schmitz, C.; Zahedi, R.P.; Noy, P.J.; Tomlinson, M.G.; Dandekar, T.; Matsushita, M.; Chubanov, V.; Gudermann, T.; Stoll, G.; Nieswandt, B.; Braun, A. TRPM7 kinase controls calcium responses in arterial thrombosis and stroke in mice. Arterioscler. Thromb. Vasc. Biol., 2018, 38(2), 344-352.
[http://dx.doi.org/10.1161/ATVBAHA.117.310391] [PMID: 29146750]
[22]
Li, M.; Du, J.; Jiang, J.; Ratzan, W.; Su, L.T.; Runnels, L.W.; Yue, L. Molecular determinants of Mg2+ and Ca2+ permeability and pH sensitivity in TRPM6 and TRPM7. J. Biol. Chem., 2007, 282(35), 25817-25830.
[http://dx.doi.org/10.1074/jbc.M608972200] [PMID: 17599911]
[23]
Monteilh-Zoller, M.K.; Hermosura, M.C.; Nadler, M.J.; Scharenberg, A.M.; Penner, R.; Fleig, A. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J. Gen. Physiol., 2003, 121(1), 49-60.
[http://dx.doi.org/10.1085/jgp.20028740] [PMID: 12508053]
[24]
Inoue, K.; Branigan, D.; Xiong, Z.G. Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J. Biol. Chem., 2010, 285(10), 7430-7439.
[http://dx.doi.org/10.1074/jbc.M109.040485] [PMID: 20048154]
[25]
Martineau, C.; Abed, E.; Médina, G.; Jomphe, L.A.; Mantha, M.; Jumarie, C.; Moreau, R. Involvement of transient receptor potential melastatin-related 7 (TRPM7) channels in cadmium uptake and cytotoxicity in MC3T3-E1 osteoblasts. Toxicol. Lett., 2010, 199(3), 357-363.
[http://dx.doi.org/10.1016/j.toxlet.2010.09.019] [PMID: 20932883]
[26]
Aarts, M.; Iihara, K.; Wei, W.L.; Xiong, Z.G.; Arundine, M.; Cerwinski, W.; MacDonald, J.F.; Tymianski, M. A key role for TRPM7 channels in anoxic neuronal death. Cell, 2003, 115(7), 863-877.
[http://dx.doi.org/10.1016/S0092-8674(03)01017-1] [PMID: 14697204]
[27]
Jin, J.; Desai, B.N.; Navarro, B.; Donovan, A.; Andrews, N.C.; Clapham, D.E. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science, 2008, 322(5902), 756-760.
[http://dx.doi.org/10.1126/science.1163493] [PMID: 18974357]
[28]
Hanano, T.; Hara, Y.; Shi, J.; Morita, H.; Umebayashi, C.; Mori, E.; Sumimoto, H.; Ito, Y.; Mori, Y.; Inoue, R. Involvement of TRPM7 in cell growth as a spontaneously activated Ca2+ entry pathway in human retinoblastoma cells. J. Pharmacol. Sci., 2004, 95(4), 403-419.
[http://dx.doi.org/10.1254/jphs.FP0040273] [PMID: 15286426]
[29]
Jiang, J.; Li, M.H.; Inoue, K.; Chu, X.P.; Seeds, J.; Xiong, Z.G. Transient receptor potential melastatin 7-like current in human head and neck carcinoma cells: role in cell proliferation. Cancer Res., 2007, 67(22), 10929-10938.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1121] [PMID: 18006838]
[30]
Liu, M.; Inoue, K.; Leng, T.; Guo, S.; Xiong, Z.G. TRPM7 channels regulate glioma stem cell through STAT3 and Notch signaling pathways. Cell. Signal., 2014, 26(12), 2773-2781.
[http://dx.doi.org/10.1016/j.cellsig.2014.08.020] [PMID: 25192910]
[31]
Patel, S.H.; Edwards, M.J.; Ahmad, S.A. Intracellular ion channels in pancreas cancer. Cell. Physiol. Biochem., 2019, 53(S1), 44-51.
[http://dx.doi.org/10.33594/000000193] [PMID: 31834994]
[32]
Inoue, K.; Xiong, Z.G. Silencing TRPM7 promotes growth/proliferation and nitric oxide production of vascular endothelial cells via the ERK pathway. Cardiovasc. Res., 2009, 83(3), 547-557.
[http://dx.doi.org/10.1093/cvr/cvp153] [PMID: 19454490]
[33]
Sun, H.; Leng, T.; Zeng, Z.; Gao, X.; Inoue, K.; Xiong, Z.G. Role of TRPM7 channels in hyperglycemia-mediated injury of vascular endothelial cells. PLoS One, 2013, 8(11)e79540
[http://dx.doi.org/10.1371/journal.pone.0079540] [PMID: 24223965]
[34]
Zeng, Z.; Inoue, K.; Sun, H.; Leng, T.; Feng, X.; Zhu, L.; Xiong, Z.G. TRPM7 regulates vascular endothelial cell adhesion and tube formation. Am. J. Physiol. Cell Physiol., 2015, 308(4), C308-C318.
[http://dx.doi.org/10.1152/ajpcell.00275.2013] [PMID: 25472964]
[35]
Huang, Y.; Leng, T.D.; Inoue, K.; Yang, T.; Liu, M.; Horgen, F.D.; Fleig, A.; Li, J.; Xiong, Z.G. TRPM7 channels play a role in high glucose-induced endoplasmic reticulum stress and neuronal cell apoptosis. J. Biol. Chem., 2018, 293(37), 14393-14406.
[http://dx.doi.org/10.1074/jbc.RA117.001032] [PMID: 30076216]
[36]
Hermosura, M.C.; Nayakanti, H.; Dorovkov, M.V.; Calderon, F.R.; Ryazanov, A.G.; Haymer, D.S.; Garruto, R.M.A. TRPM7 variant shows altered sensitivity to magnesium that may contribute to the pathogenesis of two Guamanian neurodegenerative disorders. Proc. Natl. Acad. Sci. USA, 2005, 102(32), 11510-11515.
[http://dx.doi.org/10.1073/pnas.0505149102] [PMID: 16051700]
[37]
Krapivinsky, G.; Mochida, S.; Krapivinsky, L.; Cibulsky, S.M.; Clapham, D.E. The TRPM7 ion channel functions in cholinergic synaptic vesicles and affects transmitter release. Neuron, 2006, 52(3), 485-496.
[http://dx.doi.org/10.1016/j.neuron.2006.09.033] [PMID: 17088214]
[38]
Middelbeek, J.; Vrenken, K.; Visser, D.; Lasonder, E.; Koster, J.; Jalink, K.; Clark, K.; van Leeuwen, F.N. The TRPM7 interactome defines a cytoskeletal complex linked to neuroblastoma progression. Eur. J. Cell Biol., 2016, 95(11), 465-474.
[http://dx.doi.org/10.1016/j.ejcb.2016.06.008] [PMID: 27402209]
[39]
Turlova, E.; Bae, C.Y.J.; Deurloo, M.; Chen, W.; Barszczyk, A.; Horgen, F.D.; Fleig, A.; Feng, Z.P.; Sun, H.S. TRPM7 regulates axonal outgrowth and maturation of primary hippocampal neurons. Mol. Neurobiol., 2016, 53(1), 595-610.
[http://dx.doi.org/10.1007/s12035-014-9032-y] [PMID: 25502295]
[40]
Zierler, S.; Yao, G.; Zhang, Z.; Kuo, W.C.; Pörzgen, P.; Penner, R.; Horgen, F.D.; Fleig, A. Waixenicin A inhibits cell proliferation through magnesium-dependent block of transient receptor potential melastatin 7 (TRPM7) channels. J. Biol. Chem., 2011, 286(45), 39328-39335.
[http://dx.doi.org/10.1074/jbc.M111.264341] [PMID: 21926172]
[41]
Detels, R.; Breslow, L. Current scope and concerns in public health3rd Ed; Oxford Textbook of Public Health; , 1997, 1, pp. 3-17.
[42]
Amuna, P.; Zotor, F.B. Epidemiological and nutrition transition in developing countries: impact on human health and development. Proc. Nutr. Soc., 2008, 67(1), 82-90.
[http://dx.doi.org/10.1017/S0029665108006058] [PMID: 18234135]
[43]
Harukuni, I.; Bhardwaj, A. Mechanisms of brain injury after global cerebral ischemia. Neurol. Clin., 2006, 24(1), 1-21.
[http://dx.doi.org/10.1016/j.ncl.2005.10.004] [PMID: 16443127]
[44]
Rose, E.M.; Koo, J.C.; Antflick, J.E.; Ahmed, S.M.; Angers, S.; Hampson, D.R. Glutamate transporter coupling to Na,K-ATPase. J. Neurosci., 2009, 29(25), 8143-8155.
[http://dx.doi.org/10.1523/JNEUROSCI.1081-09.2009] [PMID: 19553454]
[45]
Ikonomidou, C.; Turski, L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol., 2002, 1(6), 383-386.
[http://dx.doi.org/10.1016/S1474-4422(02)00164-3] [PMID: 12849400]
[46]
Birmingham, K. Future of neuroprotective drugs in doubt. Nat. Med., 2002, 8(1), 5.
[http://dx.doi.org/10.1038/nm0102-5a] [PMID: 11786882]
[47]
Sun, H.S.; Jackson, M.F.; Martin, L.J.; Jansen, K.; Teves, L.; Cui, H.; Kiyonaka, S.; Mori, Y.; Jones, M.; Forder, J.P.; Golde, T.E.; Orser, B.A.; Macdonald, J.F.; Tymianski, M. Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat. Neurosci., 2009, 12(10), 1300-1307.
[http://dx.doi.org/10.1038/nn.2395] [PMID: 19734892]
[48]
Melia, T.J., Jr Putting the clamps on membrane fusion: how complexin sets the stage for calcium-mediated exocytosis. FEBS Lett., 2007, 581(11), 2131-2139.
[http://dx.doi.org/10.1016/j.febslet.2007.02.066] [PMID: 17350005]
[49]
Stork, C.J.; Li, Y.V. Intracellular zinc elevation measured with a “calcium-specific” indicator during ischemia and reperfusion in rat hippocampus: a question on calcium overload. J. Neurosci., 2006, 26(41), 10430-10437.
[http://dx.doi.org/10.1523/JNEUROSCI.1588-06.2006] [PMID: 17035527]
[50]
Koh, J.Y.; Suh, S.W.; Gwag, B.J.; He, Y.Y.; Hsu, C.Y.; Choi, D.W. The role of zinc in selective neuronal death after transient global cerebral ischemia. Science, 1996, 272(5264), 1013-1016.
[http://dx.doi.org/10.1126/science.272.5264.1013] [PMID: 8638123]
[51]
Zeng, Z.; Leng, T.; Feng, X.; Sun, H.; Inoue, K.; Zhu, L.; Xiong, Z.G. Silencing TRPM7 in mouse cortical astrocytes impairs cell proliferation and migration via ERK and JNK signaling pathways. PLoS One, 2015, 10(3)e0119912
[http://dx.doi.org/10.1371/journal.pone.0119912] [PMID: 25799367]
[52]
Kamermans, A.; Planting, K.E.; Jalink, K.; van Horssen, J.; de Vries, H.E. Reactive astrocytes in multiple sclerosis impair neuronal outgrowth through TRPM7-mediated chondroitin sulfate proteoglycan production. Glia, 2019, 67(1), 68-77.
[http://dx.doi.org/10.1002/glia.23526] [PMID: 30453391]
[53]
Jiang, X.; Newell, E.W.; Schlichter, L.C. Regulation of a TRPM7-like current in rat brain microglia. J. Biol. Chem., 2003, 278(44), 42867-42876.
[http://dx.doi.org/10.1074/jbc.M304487200] [PMID: 12904301]
[54]
Siddiqui, T.; Lively, S.; Ferreira, R.; Wong, R.; Schlichter, L.C. Expression and contributions of TRPM7 and KCa2.3/SK3 channels to the increased migration and invasion of microglia in anti-inflammatory activation states. PLoS One, 2014, 9(8)e106087
[http://dx.doi.org/10.1371/journal.pone.0106087] [PMID: 25148577]
[55]
Sato-Kasai, M.; Kato, T.A.; Ohgidani, M.; Mizoguchi, Y.; Sagata, N.; Inamine, S.; Horikawa, H.; Hayakawa, K.; Shimokawa, N.; Kyuragi, S.; Seki, Y.; Monji, A.; Kanba, S. Aripiprazole inhibits polyI:C-induced microglial activation possibly via TRPM7. Schizophr. Res., 2016, 178(1-3), 35-43.
[http://dx.doi.org/10.1016/j.schres.2016.08.022] [PMID: 27614570]
[56]
Monji, A.; Kato, T.A.; Mizoguchi, Y.; Horikawa, H.; Seki, Y.; Kasai, M.; Yamauchi, Y.; Yamada, S.; Kanba, S. Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 42, 115-121.
[http://dx.doi.org/10.1016/j.pnpbp.2011.12.002] [PMID: 22192886]
[57]
Schappe, M.S.; Szteyn, K.; Stremska, M.E.; Mendu, S.K.; Downs, T.K.; Seegren, P.V.; Mahoney, M.A.; Dixit, S.; Krupa, J.K.; Stipes, E.J.; Rogers, J.S.; Adamson, S.E.; Leitinger, N.; Desai, B.N. Chanzyme TRPM7 Mediates the Ca2+ Influx Essential for Lipopolysaccharide-Induced Toll-Like Receptor 4 Endocytosis and Macrophage Activation. Immunity, 2018, 48(1), 59-74.e5.
[http://dx.doi.org/10.1016/j.immuni.2017.11.026] [PMID: 29343440]
[58]
Inoue, K.; Sakuma, E.; Morimoto, H.; Asai, H.; Koide, Y.; Leng, T.; Wada, I.; Xiong, Z.G.; Ueki, T. Serum- and glucocorticoid-inducible kinases in microglia. Biochem. Biophys. Res. Commun., 2016, 478(1), 53-59.
[http://dx.doi.org/10.1016/j.bbrc.2016.07.094] [PMID: 27457803]
[59]
Kacimi, R.; Giffard, R.G.; Yenari, M.A. Endotoxin-activated microglia injure brain derived endothelial cells via NF-κB, JAK-STAT and JNK stress kinase pathways. J. Inflamm. (Lond.), 2011, 8, 7.
[http://dx.doi.org/10.1186/1476-9255-8-7] [PMID: 21385378]
[60]
Buckingham, M.; Meilhac, S.; Zaffran, S. Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet., 2005, 6(11), 826-835.
[http://dx.doi.org/10.1038/nrg1710] [PMID: 16304598]
[61]
He, Y.; Yao, G.; Savoia, C.; Touyz, R.M. Transient receptor potential melastatin 7 ion channels regulate magnesium homeostasis in vascular smooth muscle cells: role of angiotensin II. Circ. Res., 2005, 96(2), 207-215.
[http://dx.doi.org/10.1161/01.RES.0000152967.88472.3e] [PMID: 15591230]
[62]
Kirabo, A.; Sayeski, P.P. Jak2 tyrosine kinase: a potential therapeutic target for AT1 receptor mediated cardiovascular disease. Pharmaceuticals, 2010, 3, 3478-3493.
[http://dx.doi.org/10.3390/ph3113478]
[63]
Wynne, B.M.; Chiao, C.W.; Webb, R.C. Vascular smooth muscle cell signaling mechanisms for contraction to Angiotensin II and Endothelin-1. J. Am. Soc. Hypertens., 2009, 3(2), 84-95.
[http://dx.doi.org/10.1016/j.jash.2008.09.002] [PMID: 20161229]
[64]
Mehta, P.K.; Griendling, K.K. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell Physiol., 2007, 292(1), C82-C97.
[http://dx.doi.org/10.1152/ajpcell.00287.2006] [PMID: 16870827]
[65]
Montezano, A.C.; Zimmerman, D.; Yusuf, H.; Burger, D.; Chignalia, A.Z.; Wadhera, V.; van Leeuwen, F.N.; Touyz, R.M. Vascular smooth muscle cell differentiation to an osteogenic phenotype involves TRPM7 modulation by magnesium. Hypertension, 2010, 56(3), 453-462.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.152058] [PMID: 20696983]
[66]
Johnson, R.C.; Leopold, J.A.; Loscalzo, J. Vascular calcification: pathobiological mechanisms and clinical implications. Circ. Res., 2006, 99(10), 1044-1059.
[http://dx.doi.org/10.1161/01.RES.0000249379.55535.21] [PMID: 17095733]
[67]
Demer, L.L.; Tintut, Y. Vascular calcification: pathobiology of a multifaceted disease. Circulation, 2008, 117(22), 2938-2948.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.743161] [PMID: 18519861]
[68]
Antunes, T.T.; Callera, G.E.; He, Y.; Yogi, A.; Ryazanov, A.G.; Ryazanova, L.V.; Zhai, A.; Stewart, D.J.; Shrier, A.; Touyz, R.M. Transient receptor potential melastatin 7 cation channel (TRPM7) kinase: new player in angiotensin II-induced hypertension. Hypertension, 2016, 67(4), 763-773.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.07021] [PMID: 26928801]
[69]
Baldoli, E.; Castiglioni, S.; Maier, J.A. Regulation and function of TRPM7 in human endothelial cells: TRPM7 as a potential novel regulator of endothelial function. PLoS One, 2013, 8(3)e59891
[http://dx.doi.org/10.1371/journal.pone.0059891] [PMID: 23533657]
[70]
Gao, Y.; Raj, J.U. Regulation of the pulmonary circulation in the fetus and newborn. Physiol. Rev., 2010, 90(4), 1291-1335.
[http://dx.doi.org/10.1152/physrev.00032.2009] [PMID: 20959617]
[71]
Oancea, E.; Wolfe, J.T.; Clapham, D.E. Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow. Circ. Res., 2006, 98(2), 245-253.
[http://dx.doi.org/10.1161/01.RES.0000200179.29375.cc] [PMID: 16357306]
[72]
Malek, A.M.; Alper, S.L.; Izumo, S. Hemodynamic shear stress and its role in atherosclerosis. JAMA, 1999, 282(21), 2035-2042.
[http://dx.doi.org/10.1001/jama.282.21.2035] [PMID: 10591386]
[73]
Fonfria, E.; Murdock, P.R.; Cusdin, F.S.; Benham, C.D.; Kelsell, R.E.; McNulty, S. Tissue distribution profiles of the human TRPM cation channel family. J. Recept. Signal Transduct. Res., 2006, 26(3), 159-178.
[http://dx.doi.org/10.1080/10799890600637506] [PMID: 16777713]
[74]
Sah, R.; Mesirca, P.; Van den Boogert, M.; Rosen, J.; Mably, J.; Mangoni, M.E.; Clapham, D.E. Ion channel-kinase TRPM7 is required for maintaining cardiac automaticity. Proc. Natl. Acad. Sci. USA, 2013, 110(32), E3037-E3046.
[http://dx.doi.org/10.1073/pnas.1311865110] [PMID: 23878236]
[75]
Liang, X.; Wang, G.; Lin, L.; Lowe, J.; Zhang, Q.; Bu, L.; Chen, Y.; Chen, J.; Sun, Y.; Evans, S.M. HCN4 dynamically marks the first heart field and conduction system precursors. Circ. Res., 2013, 113(4), 399-407.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301588] [PMID: 23743334]
[76]
Du, J.; Xie, J.; Zhang, Z.; Tsujikawa, H.; Fusco, D.; Silverman, D.; Liang, B.; Yue, L. TRPM7-mediated Ca2+ signals confer fibrogenesis in human atrial fibrillation. Circ. Res., 2010, 106(5), 992-1003.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.206771] [PMID: 20075334]
[77]
WHO. World Health Organization, Geneva. , 2018.
[78]
Coombes, E.; Jiang, J.; Chu, X.P.; Inoue, K.; Seeds, J.; Branigan, D.; Simon, R.P.; Xiong, Z.G. Pathophysiologically relevant levels of hydrogen peroxide induce glutamate-independent neurodegeneration that involves activation of transient receptor potential melastatin 7 channels. Antioxid. Redox Signal., 2011, 14(10), 1815-1827.
[http://dx.doi.org/10.1089/ars.2010.3549] [PMID: 20812867]
[79]
Moran, M.M.; McAlexander, M.A.; Bíró, T.; Szallasi, A. Transient receptor potential channels as therapeutic targets. Nat. Rev. Drug Discov., 2011, 10(8), 601-620.
[http://dx.doi.org/10.1038/nrd3456] [PMID: 21804597]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy