Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

NPalmitoylDeep-PseAAC: A Predictor of N-Palmitoylation Sites in Proteins Using Deep Representations of Proteins and PseAAC via Modified 5-Steps Rule

Author(s): Sheraz Naseer*, Waqar Hussain, Yaser Daanial Khan and Nouman Rasool

Volume 16, Issue 2, 2021

Published on: 05 June, 2020

Page: [294 - 305] Pages: 12

DOI: 10.2174/1574893615999200605142828

Price: $65

Abstract

Background: Among all the major Post-translational modification, lipid modifications possess special significance due to their widespread functional importance in eukaryotic cells. There exist multiple types of lipid modifications and Palmitoylation, among them, is one of the broader types of modification, having three different types. The N-Palmitoylation is carried out by attachment of palmitic acid to an N-terminal cysteine. Due to the association of N-Palmitoylation with various biological functions and diseases such as Alzheimer’s and other neurodegenerative diseases, its identification is very important.

Objective: The in vitro, ex vivo and in vivo identification of Palmitoylation is laborious, time-taking and costly. There is a dire need for an efficient and accurate computational model to help researchers and biologists identify these sites, in an easy manner. Herein, we propose a novel prediction model for the identification of N-Palmitoylation sites in proteins.

Methods: The proposed prediction model is developed by combining the Chou’s Pseudo Amino Acid Composition (PseAAC) with deep neural networks. We used well-known deep neural networks (DNNs) for both the tasks of learning a feature representation of peptide sequences and developing a prediction model to perform classification.

Results: Among different DNNs, Gated Recurrent Unit (GRU) based RNN model showed the highest scores in terms of accuracy, and all other computed measures, and outperforms all the previously reported predictors.

Conclusion: The proposed GRU based RNN model can help to identify N-Palmitoylation in a very efficient and accurate manner which can help scientists understand the mechanism of this modification in proteins.

Keywords: N-Palmitoylation, DNNs, deep features, 5-steps rule, pseAAC, in vivo.

Graphical Abstract

[1]
Stevens TJ, Arkin IT. Do more complex organisms have a greater proportion of membrane proteins in their genomes? Proteins 2000; 39(4): 417-20.
[http://dx.doi.org/10.1002/(SICI)1097-0134(20000601)39:4<417:AID-PROT140>3.0.CO;2-Y] [PMID: 10813823]
[2]
Terry KL, Casey PJ, Beese LS. Conversion of protein farnesyltransferase to a geranylgeranyltransferase. Biochemistry 2006; 45(32): 9746-55.
[http://dx.doi.org/10.1021/bi060295e] [PMID: 16893176]
[3]
Fields TA, Casey PJ. Signalling functions and biochemical properties of pertussis toxin-resistant G-proteins. Biochem J 1997; 321(Pt 3): 561-71.
[http://dx.doi.org/10.1042/bj3210561] [PMID: 9032437]
[4]
Higgins JB, Casey PJ. The role of prenylation in G-protein assembly and function. Cell Signal 1996; 8(6): 433-7.
[http://dx.doi.org/10.1016/S0898-6568(96)00071-X] [PMID: 8958445]
[5]
Hu L-L, Wan S-B, Niu S, et al. Prediction and analysis of protein palmitoylation sites. Biochimie 2011; 93(3): 489-96.
[http://dx.doi.org/10.1016/j.biochi.2010.10.022] [PMID: 21075167]
[6]
Daniotti JL, Pedro MP, Valdez Taubas J. The role of S-acylation in protein trafficking. Traffic 2017; 18(11): 699-710.
[http://dx.doi.org/10.1111/tra.12510] [PMID: 28837239]
[7]
Li Y, Qi B. Progress toward understanding protein S-acylation: prospective in plants. Front Plant Sci 2017; 8: 346.
[http://dx.doi.org/10.3389/fpls.2017.00346] [PMID: 28392791]
[8]
Lobo S, Greentree WK, Linder ME, Deschenes RJ. Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae. J Biol Chem 2002; 277(43): 41268-73.
[http://dx.doi.org/10.1074/jbc.M206573200] [PMID: 12193598]
[9]
Roth AF, Feng Y, Chen L, Davis NG. The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase. J Cell Biol 2002; 159(1): 23-8.
[http://dx.doi.org/10.1083/jcb.200206120] [PMID: 12370247]
[10]
Yokoi N, Fukata Y, Sekiya A, Murakami T, Kobayashi K, Fukata M. Identification of PSD-95 depalmitoylating enzymes. J Neurosci 2016; 36(24): 6431-44.
[http://dx.doi.org/10.1523/JNEUROSCI.0419-16.2016] [PMID: 27307232]
[11]
Cho E, Park M. Palmitoylation in Alzheimer’s disease and other neurodegenerative diseases. Pharmacol Res 2016; 111: 133-51.
[http://dx.doi.org/10.1016/j.phrs.2016.06.008] [PMID: 27293050]
[12]
Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120(3): 885-90.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4] [PMID: 6375662]
[13]
Alonso AM, Coceres VM, De Napoli MG, Nieto Guil AF, Angel SO, Corvi MM. Protein palmitoylation inhibition by 2-bromopalmitate alters gliding, host cell invasion and parasite morphology in Toxoplasma gondii. Mol Biochem Parasitol 2012; 184(1): 39-43.
[http://dx.doi.org/10.1016/j.molbiopara.2012.03.006] [PMID: 22484029]
[14]
Jones ML, Collins MO, Goulding D, Choudhary JS, Rayner JC. Analysis of protein palmitoylation reveals a pervasive role in Plasmodium development and pathogenesis. Cell Host Microbe 2012; 12(2): 246-58.
[http://dx.doi.org/10.1016/j.chom.2012.06.005] [PMID: 22901544]
[15]
Awais M, Hussain W, Khan YD, Rasool N, Khan SA, Chou K-C. iPhosH-PseAAC: Identify phosphohistidine sites in proteins by blending statistical moments and position relative features according to the Chou’s 5-step rule and general pseudo amino acid composition. IEEE/ACM Trans Comput Biol Bioinformatics 2019.
[http://dx.doi.org/10.1109/TCBB.2019.2919025] [PMID: 31144645]
[16]
Hussain W, Khan YD, Rasool N, Khan SA, Chou K-C. SPalmitoylC-PseAAC: A sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-palmitoylation sites in proteins. Anal Biochem 2019; 568: 14-23.
[http://dx.doi.org/10.1016/j.ab.2018.12.019] [PMID: 30593778]
[17]
Hussain W, Khan YD, Rasool N, Khan SA, Chou K-C. SPrenylC-PseAAC: A sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins. J Theor Biol 2019; 468: 1-11.
[http://dx.doi.org/10.1016/j.jtbi.2019.02.007] [PMID: 30768975]
[18]
Ilyas S, Hussain W, Ashraf A, Khan YD, Khan SA, Chou K-C. iMethylK_PseAAC: improving accuracy of lysine methylation sites identification by incorporating statistical moments and position relative features into general PseAAC via Chou’s 5-steps rule. Curr Genomics 2019; 20(4): 275-92.
[http://dx.doi.org/10.2174/1389202920666190809095206] [PMID: 32030087]
[19]
Khan YD, Amin N, Hussain W, Rasool N, Khan SA, Chou K-C. iProtease-PseAAC(2L): A two-layer predictor for identifying proteases and their types using Chou’s 5-step-rule and general PseAAC. Anal Biochem 2020; 588, 113477.
[http://dx.doi.org/10.1016/j.ab.2019.113477] [PMID: 31654612]
[20]
Khan YD, Jamil M, Hussain W, Rasool N, Khan SA, Chou KC. pSSbond-PseAAC: Prediction of disulfide bonding sites by integration of PseAAC and statistical moments. J Theor Biol 2019; 463: 47-55.
[http://dx.doi.org/10.1016/j.jtbi.2018.12.015] [PMID: 30550863]
[21]
Khan YD, Rasool N, Hussain W, Khan SA, Chou K-C. iPhosT-PseAAC: Identify phosphothreonine sites by incorporating sequence statistical moments into PseAAC. Anal Biochem 2018; 550: 109-16.
[http://dx.doi.org/10.1016/j.ab.2018.04.021] [PMID: 29704476]
[22]
Khan YD, Rasool N, Hussain W, Khan SA, Chou K-C. iPhosY-PseAAC: identify phosphotyrosine sites by incorporating sequence statistical moments into PseAAC. Mol Biol Rep 2018; 45(6): 2501-9.
[http://dx.doi.org/10.1007/s11033-018-4417-z] [PMID: 30311130]
[23]
Zhou F, Xue Y, Yao X, Xu Y. CSS-Palm: palmitoylation site prediction with a clustering and scoring strategy (CSS). Bioinformatics 2006; 22(7): 894-6.
[http://dx.doi.org/10.1093/bioinformatics/btl013] [PMID: 16434441]
[24]
Xue Y, Chen H, Jin C, Sun Z, Yao X. NBA-Palm: prediction of palmitoylation site implemented in Naïve Bayes algorithm. BMC Bioinformatics 2006; 7(1): 458.
[http://dx.doi.org/10.1186/1471-2105-7-458] [PMID: 17044919]
[25]
Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X. CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel 2008; 21(11): 639-44.
[http://dx.doi.org/10.1093/protein/gzn039] [PMID: 18753194]
[26]
Wang X-B, Wu L-Y, Wang Y-C, Deng N-Y. Prediction of palmitoylation sites using the composition of k-spaced amino acid pairs. Protein Eng Des Sel 2009; 22(11): 707-12.
[http://dx.doi.org/10.1093/protein/gzp055] [PMID: 19783671]
[27]
Shi S-P, Sun X-Y, Qiu J-D, et al. The prediction of palmitoylation site locations using a multiple feature extraction method. J Mol Graph Model 2013; 40: 125-30.
[http://dx.doi.org/10.1016/j.jmgm.2012.12.006] [PMID: 23419766]
[28]
Kumari B, Kumar R, Kumar M. PalmPred: an SVM based palmitoylation prediction method using sequence profile information. PLoS One 2014; 9(2), e89246.
[http://dx.doi.org/10.1371/journal.pone.0089246] [PMID: 24586628]
[29]
Blanc M, David F, Abrami L, et al. SwissPalm: protein palmitoylation database. F1000 Res 2015; 4: 261.
[http://dx.doi.org/10.12688/f1000research.6464.1] [PMID: 26339475]
[30]
Xie Y, Zheng Y, Li H, et al. GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites. Sci Rep 2016; 6: 28249.
[http://dx.doi.org/10.1038/srep28249] [PMID: 27306108]
[31]
Weng S-L, Kao H-J, Huang C-H, Lee T-Y. MDD-Palm: Identification of protein S-palmitoylation sites with substrate motifs based on maximal dependence decomposition. PLoS One 2017; 12(6), e0179529.
[http://dx.doi.org/10.1371/journal.pone.0179529] [PMID: 28662047]
[32]
Goodfellow I, Bengio Y, Courville A. Deep learning. MIT press 2016.
[33]
Chou K-C. Using subsite coupling to predict signal peptides. Protein Eng 2001; 14(2): 75-9.
[http://dx.doi.org/10.1093/protein/14.2.75] [PMID: 11297664]
[34]
Chou K-C. Some remarks on protein attribute prediction and pseudo amino acid composition. J Theor Biol 2011; 273(1): 236-47.
[http://dx.doi.org/10.1016/j.jtbi.2010.12.024] [PMID: 21168420]
[35]
Cai L, Huang T, Su J, et al. Implications of newly identified brain eQTL genes and their interactors in Schizophrenia. Mol Ther Nucleic Acids 2018; 12: 433-42.
[http://dx.doi.org/10.1016/j.omtn.2018.05.026] [PMID: 30195780]
[36]
Chen W, Ding H, Zhou X, Lin H, Chou K-C. iRNA(m6A)-PseDNC: Identifying N6-methyladenosine sites using pseudo dinucleotide composition. Anal Biochem 2018; 561-562: 59-65.
[http://dx.doi.org/10.1016/j.ab.2018.09.002] [PMID: 30201554]
[37]
Chen W, Feng P, Yang H, Ding H, Lin H, Chou K-C. iRNA-3typeA: identifying three types of modification at RNA’s adenosine sites. Mol Ther Nucleic Acids 2018; 11: 468-74.
[http://dx.doi.org/10.1016/j.omtn.2018.03.012] [PMID: 29858081]
[38]
Cheng X, Xiao X, Chou K-C. pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Genomics 2018; 110(1): 50-8.
[PMID: 28818512]
[39]
Cheng X, Xiao X, Chou K-C. pLoc-mPlant: predict subcellular localization of multi-location plant proteins by incorporating the optimal GO information into general PseAAC. Mol Biosyst 2017; 13(9): 1722-7.
[http://dx.doi.org/10.1039/C7MB00267J] [PMID: 28702580]
[40]
Cheng X, Xiao X, Chou K-C. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC. Gene 2017; 628: 315-21.
[http://dx.doi.org/10.1016/j.gene.2017.07.036] [PMID: 28728979]
[41]
Cheng X, Xiao X, Chou K-C. pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics 2018; 34(9): 1448-56.
[http://dx.doi.org/10.1093/bioinformatics/btx711] [PMID: 29106451]
[42]
Cheng X, Xiao X, Chou K-C. pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC. Genomics 2017; 110(4): 231-9.
[http://dx.doi.org/10.1016/j.ygeno.2017.10.002] [PMID: 28989035]
[43]
Cheng X, Zhao S-G, Lin W-Z, Xiao X, Chou K-C. pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites. Bioinformatics 2017; 33(22): 3524-31.
[http://dx.doi.org/10.1093/bioinformatics/btx476] [PMID: 29036535]
[44]
Jia J, Li X, Qiu W, Xiao X, Chou K-C. iPPI-PseAAC(CGR): Identify protein-protein interactions by incorporating chaos game representation into PseAAC. J Theor Biol 2019; 460: 195-203.
[http://dx.doi.org/10.1016/j.jtbi.2018.10.021] [PMID: 30312687]
[45]
Li F, Li C, Marquez-Lago TT, et al. Quokka: a comprehensive tool for rapid and accurate prediction of kinase family-specific phosphorylation sites in the human proteome. Bioinformatics 2018; 34(24): 4223-31.
[http://dx.doi.org/10.1093/bioinformatics/bty522] [PMID: 29947803]
[46]
Song J, Li F, Takemoto K, et al. PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework. J Theor Biol 2018; 443: 125-37.
[http://dx.doi.org/10.1016/j.jtbi.2018.01.023] [PMID: 29408627]
[47]
Song J, Wang Y, Li F, et al. iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites. Brief Bioinform 2019; 20(2): 638-58.
[PMID: 29897410]
[48]
Wang J, Li J, Yang B, et al. Bastion3: a two-layer ensemble predictor of type III secreted effectors. Bioinformatics 2019; 35(12): 2017-28.
[PMID: 30388198]
[49]
Xiao X, Cheng X, Su S, Mao Q, Chou K-C. pLoc-mGpos: incorporate key gene ontology information into general PseAAC for predicting subcellular localization of Gram-positive bacterial proteins. Nat Sci 2017; 9(09): 330.
[http://dx.doi.org/10.4236/ns.2017.99032]
[50]
Xiao X, Xu Z-C, Qiu W-R, Wang P, Ge H-T, Chou K-C. iPSW (2L)-PseKNC: A two-layer predictor for identifying promoters and their strength by hybrid features via pseudo K-tuple nucleotide composition. Genomics 2019; 111(6): 1785-93.
[PMID: 30529532]
[51]
Zhang Y, Xie R, Wang J, et al. Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework. Brief Bioinform 2019; 20(6): 2185-99.
[PMID: 30351377]
[52]
Chou K-CJp; Prediction of signal peptides using scaled window 2001; 22(12): 1973-1979.
[http://dx.doi.org/10.1016/S0196-9781(01)00540-X]
[53]
LeCun Y, Bengio Y. Hinton GJn 2015.
[54]
Cho K, Van Merriënboer B, Bahdanau D, et al. On the properties of neural machine translation: Encoder-decoder approaches.; . Long short-term memory 1997; 9(8): 1735-1780..
[http://dx.doi.org/10.1162/neco.1997.9.8.1735]
[55]
Hochreiter S. Schmidhuber JJNc 1997.
[56]
Srivastava N, Hinton G, Krizhevsky A, Sutskever I. Salakhutdinov RJTjomlr . Dropout: a simple way to prevent neural networks from overfitting 2014; 15(1): 1929-1958..
[57]
Kingma DP. Ba Japa . Adam: A method for stochastic optimization. 2014.
[58]
Weng S-L, Kao H-J, Huang C-H. , Lee T-YJPo. MDD-palm: identification of protein S-palmitoylation sites with substrate motifs based on maximal dependence decomposition 2017; 12(6):. , , e0179529..
[http://dx.doi.org/10.1371/journal.pone.0179529]
[59]
Chou K-C. Impacts of bioinformatics to medicinal chemistry. Med Chem 2015; 11(3): 218-34.
[http://dx.doi.org/10.2174/1573406411666141229162834] [PMID: 25548930]
[60]
Chou K-C. An unprecedented revolution in medicinal chemistry driven by the progress of biological science. Curr Top Med Chem 2017; 17(21): 2337-58.
[http://dx.doi.org/10.2174/1568026617666170414145508] [PMID: 28413951]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy