Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Chitin, Characteristic, Sources, and Biomedical Application

Author(s): Umar Shahbaz *

Volume 21, Issue 14, 2020

Page: [1433 - 1443] Pages: 11

DOI: 10.2174/1389201021666200605104939

Price: $65

Abstract

Background: Chitin stands at second, after cellulose, as the most abundant polysaccharide in the world. Chitin is found naturally in marine environments as it is a crucial structural component of various marine organisms.

Methods: Different amounts of waste chitin and chitosan can be discovered in the environment. Chitinase producing microbes help to hydrolyze chitin waste to play an essential function for the removal of chitin pollution in the Marine Atmosphere. Chitin can be converted by using chemical and biological methods into prominent derivate chitosan. Numerous bacteria naturally have chitin degrading ability.

Results: Chitin shows promise in terms of biocompatibility, low toxicity, complete biodegradability, nontoxicity, and film-forming capability. The application of these polymers in the different sectors of biomedical, food, agriculture, cosmetics, pharmaceuticals could be lucrative. Moreover, the most recent achievement in nanotechnology is based on chitin and chitosan-based materials.

Conclusion: In this review, we examine chitin in terms of its natural sources and different extraction methods, chitinase producing microbes and chitin, chitosan together with its derivatives for use in biomedical and agricultural applications.

Keywords: Chitin, chitosan, chito-oligosaccharides, antioxidant, deproteinization, demineralization, kojic acid, cosmetics.

Graphical Abstract

[1]
Diasty, A. Using of chitosan as antifungal agent in kariesh Cheese N Y Sci J, 2012.
[2]
Muzzarelli, R.A. Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr. Polym., 2012, 87, 995-1012.
[http://dx.doi.org/10.1016/j.carbpol.2011.09.063]
[3]
Azuma, K.; Ifuku, S.; Osaki, T.; Okamoto, Y.; Minami, S. Preparation and biomedical applications of chitin and chitosan nanofibers. J. Biomed. Nanotechnol., 2014, 10(10), 2891-2920.
[http://dx.doi.org/10.1166/jbn.2014.1882] [PMID: 25992423]
[4]
Rudall, K.; Kenchington, W. The chitin system. Biol. Rev. Camb. Philos. Soc., 1973, 48, 597-633.
[http://dx.doi.org/10.1111/j.1469-185X.1973.tb01570.x]
[5]
Rudall, K. Chitin and its association with other molecules. J. Polym. Sci. Part C Polym. Symposia, 2007, 28, 83-102.
[http://dx.doi.org/10.1002/polc.5070280110]
[6]
Atkins, E. Conformations in polysaccharides and complex carbohydrates. J. Biosci., 1985, 8, 375-387.
[http://dx.doi.org/10.1007/BF02703990]
[7]
Pighinelli, L. Methods of chitin production a short review. Am. J. Biomed. Sci. Res., 2019, 3, 307-314.
[http://dx.doi.org/10.34297/AJBSR.2019.03.000682]
[8]
Hajji, S.; Younes, I.; Ghorbel-Bellaaj, O.; Hajji, R.; Rinaudo, M.; Nasri, M.; Jellouli, K. Structural differences between chitin and chitosan extracted from three different marine sources. Int. J. Biol. Macromol., 2014, 65, 298-306.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.01.045] [PMID: 24468048]
[9]
Flores-Albino, B.; Arias, L.; Gómez, J.; Castillo, A.; Gimeno, M.; Shirai, K. Chitin and L(+)-lactic acid production from crab (Callinectes bellicosus) wastes by fermentation of Lactobacillus sp. B2 using sugar cane molasses as carbon source. Bioprocess Biosyst. Eng., 2012, 35(7), 1193-1200.
[http://dx.doi.org/10.1007/s00449-012-0706-4] [PMID: 22367529]
[10]
Jaganathan, K.; Raffi, S.; Soundarapandian, P. Extraction and characterization of chitin from marine bycatch crustaceans employing fermentation method. World J. Pharm. Pharm. Sci., 2015, 1(1), 94-102.
[11]
Gortari, M.; Hours, R. Biotechnological processes for chitin recovery out of crustacean waste: A mini-review. Electron. J. Biotechnol., 2013, 16.
[12]
Hamdi, M.; Hammami, A.; Hajji, S.; Jridi, M.; Nasri, M.; Nasri, R. Chitin extraction from blue crab (Portunus segnis) and shrimp (Penaeus kerathurus) shells using digestive alkaline proteases from P. segnis viscera. Int. J. Biol. Macromol., 2017, 101, 455-463.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.103 ] [PMID: 28336276]
[13]
Maruthiah, T.; Palavesam, A. Characterization of haloalkalophilic organic solvent tolerant protease for chitin extraction from shrimp shell waste. Int. J. Biol. Macromol., 2017, 97, 552-560.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.021 ] [PMID: 28065749]
[14]
Dhillon, G.S.; Kaur, S.; Brar, S.K.; Verma, M. Green synthesis approach: Extraction of chitosan from fungus mycelia. Crit. Rev. Biotechnol., 2013, 33(4), 379-403.
[http://dx.doi.org/10.3109/07388551.2012.717217] [PMID: 23078670]
[15]
Jafari, A.; Gharibi, S.; Farjadmand, F.; Sadighara, P. Extraction of shrimp waste pigments by enzymatic and alkaline treatment: Evaluation by inhibition of lipid peroxidation. J. Mater. Cycles Waste, 2012, 14, 411-413.
[16]
Yadav, M. Seafood waste: A source for preparation of commercially employable chitin/chitosan materials. Bioresour. Bioprocess., 2019, 6, 8.
[http://dx.doi.org/10.1186/s40643-019-0243-y]
[17]
Tharanathan, R.N.; Kittur, F.S. Chitin--the undisputed biomolecule of great potential. Crit. Rev. Food Sci. Nutr., 2003, 43(1), 61-87.
[http://dx.doi.org/10.1080/10408690390826455] [PMID: 12587986]
[18]
Ramakrishnan, C.; Prasad, N. Rigid-body refinement and conformation of α-chitin Biochimica Et Biophysica Acta Bba - Gen Subj, 1972, 261, 123-125.
[http://dx.doi.org/10.1016/0304-4165(72)90321-2]
[19]
Winterowd, J. G.; Sandford, P. A. Chitin and chitosan Food Science and Technology-New York-Marcel Dekker, 1995, 441-441.
[20]
Roy, J.C.; Salaün, F.; Giraud, S.; Ferri, A.; Chen, G.; Guan, J. (2017). Solubility of Chitin. Solvents, Solution Behaviors and Their Related Mechanisms. In In: Solubility of Polysaccharides. InTech; , 2017.
[http://dx.doi.org/10.5772/intechopen.71385.]
[21]
Kaur, S.; Dhillon, G.S. The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Crit. Rev. Microbiol., 2014, 40(2), 155-175.
[http://dx.doi.org/10.3109/1040841X.2013.770385 ] [PMID: 23488873]
[22]
Blackwell, J.; Parker, K.; Rudall, K. Chitin in pogonophore tubes. J. Mar. Biol. Assoc. U. K., 1965, 45, 659.
[http://dx.doi.org/10.1017/S0025315400016489]
[23]
Gaill, F.; Persson, J.; Sugiyama, J.; Vuong, R.; Chanzy, H. The chitin system in the tubes of deep sea hydrothermal vent worms. J. Struct. Biol., 1992, 109, 116-128.
[http://dx.doi.org/10.1016/1047-8477(92)90043-A]
[24]
João, C.; Silva, J.; Borges, J. Chitin-based nanocomposites: Biomedical applications; Adv. Struct. Mats, 2015, pp. 439-457.
[25]
Kurita, K.; Tomita, K.; Ishii, S.; Nishimura, S-I.; Shimoda, K. β-chitin as a convenient starting material for acetolysis for efficient preparation of N-acetylchitooligosaccharides. J. Polym. Sci. Part Polym. Chem., 1993, 31, 2393-2395.
[http://dx.doi.org/10.1002/pola.1993.080310923]
[26]
Horst, M.N.; Walker, A.N.; Klar, E. The pathway of crustacean chitin synthesis; Crust. Integument Morphol. Biochem, 1993, pp. 113-149.
[27]
Liu, S.; Sun, J.; Yu, L.; Zhang, C.; Bi, J.; Zhu, F.; Qu, M.; Jiang, C.; Yang, Q. Extraction and characterization of chitin from the beetle Holotrichia parallela Motschulsky. Molecules, 2012, 17(4), 4604-4611.
[http://dx.doi.org/10.3390/molecules17044604] [PMID: 22510609]
[28]
Kaya, M.; Sargin, I.; Tozak, K.Ö.; Baran, T.; Erdogan, S.; Sezen, G. Chitin extraction and characterization from Daphnia magna resting eggs. Int. J. Biol. Macromol., 2013, 61, 459-464.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.08.016 ] [PMID: 23973492]
[29]
Elieh-Ali-Komi, D.; Hamblin, M.R. Chitin and chitosan: Production and application of versatile biomedical nanomaterials. Int. J. Adv. Res. (Indore), 2016, 4(3), 411-427.
[PMID: 27819009]
[30]
No, H.; Hur, E. Control of foam formation by antifoam during demineralization of crustacean shell in preparation of chitin. J. Agric. Food Chem., 1998, 46, 3844-3846.
[http://dx.doi.org/10.1021/jf9802676]
[31]
Percot, A.; Viton, C.; Domard, A. Characterization of shrimp shell deproteinization. Biomacromolecules, 2003, 4(5), 1380-1385.
[http://dx.doi.org/10.1021/bm034115h] [PMID: 12959609]
[32]
Mohammed, M.H.; Mohammed, M.H.; Williams, P.A.; Tverezovskaya, O. Extraction of chitin from prawn shells and conversion to low molecular mass chitosan. Food Hydrocoll., 2013, 31(2), 166-171.
[http://dx.doi.org/10.1016/j.foodhyd.2012.10.021]
[33]
Khanafari, S.A. Recovery of chitin and chitosan from shrimp waste by chemical and microbial methods. Iran. J. Environ. Health Sci. Eng., 2020, 5, 19-24.
[34]
Arbia, W.; Arbia, L. Chitin extraction from crustacean shells using biological methods - a review. Food Technol. Biotechnol., 2013, 51(1), 12-25.
[35]
Younes, I.; Hajji, S.; Frachet, V.; Rinaudo, M.; Jellouli, K.; Nasri, M. Chitin extraction from shrimp shell using enzymatic treatment. Antitumor, antioxidant and antimicrobial activities of chitosan. Int. J. Biol. Macromol., 2014, 69, 489-498.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.06.013 ] [PMID: 24950313]
[36]
Prameela, K.; Mohan, M.C.; Smitha, P.; Hemalatha, K. Bioremediation of shrimp biowaste by using natural probiotic for chitin and carotenoid production an alternative method to hazardous chemical method. Int. J. Appl. Biol. Pharm. Technol., 2010, 1, 903-910.
[37]
Ghorbel-Bellaaj, O.; Younes, I.; Maâlej, H.; Hajji, S.; Nasri, M. Chitin extraction from shrimp shell waste using Bacillus bacteria. Int. J. Biol. Macromol., 2012, 51(5), 1196-1201.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.08.034] [PMID: 22981824]
[38]
Sini, T.K.; Santhosh, S.; Mathew, P.T. Study on the production of chitin and chitosan from shrimp shell by using Bacillus subtilis fermentation. Carbohydr. Res., 2007, 342(16), 2423-2429.
[http://dx.doi.org/10.1016/j.carres.2007.06.028] [PMID: 17707781]
[39]
Cira, L.A.; Huerta, S.; Hall, G.M.; Shirai, K. Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process Biochem., 2002, 37, 1359-1366.
[http://dx.doi.org/10.1016/S0032-9592(02)00008-0]
[40]
Ghorbel-Bellaaj, O.; Jellouli, K.; Younes, I.; Manni, L.; Ouled Salem, M.; Nasri, M. A solvent-stable metalloprotease produced by Pseudomonas aeruginosa A2 grown on shrimp shell waste and its application in chitin extraction. Appl. Biochem. Biotechnol., 2011, 164(4), 410-425.
[http://dx.doi.org/10.1007/s12010-010-9144-4] [PMID: 21221843]
[41]
Healy, M.; Romo, C.; Bustos, R. Bioconversion of marine crustacean shell waste. Resour. Conserv. Recycling, 1994, 11, 139-147.
[http://dx.doi.org/10.1016/0921-3449(94)90085-X]
[42]
Bhaskar, N.; Suresh, P.; Sakhare, P. Enzyme Microb. Technol., 2007, 40, 1427-1434.
[http://dx.doi.org/10.1016/j.enzmictec.2006.10.019]
[43]
Khorrami, M.; Najafpour, G.D.; Younesi, H.; Amini, G.H. Growth kinetics and demineralization of shrimp shell using Lactobacillus plantarum PTCC 1058 on various carbon sources. Iran. J. Energy Environ., 2011, 2(4), 320-325.
[http://dx.doi.org/10.5829/idosi.ijee.2011.02.04.2391]
[44]
Zakaria, Z.; Hall, G.; Shama, G. Lactic acid fermentation of scampi waste in a rotating horizontal bioreactor for chitin recovery. Process Biochem., 1998, 33, 1-6.
[http://dx.doi.org/10.1016/S0032-9592(97)00069-1]
[45]
Rao, M.S.; Muñoz, J.; Stevens, W.F. Critical factors in chitin production by fermentation of shrimp biowaste. Appl. Microbiol. Biotechnol., 2000, 54(6), 808-813.
[http://dx.doi.org/10.1007/s002530000449] [PMID: 11152073]
[46]
Khorrami, B.; Najafpour, G.D.; Younesi, H.; Hosseinpour, M.N. Production of chitin and chitosan from shrimp shell in batch culture of Lactobacillus plantarum Chem. Biochem. Eng., 2012, 26(3), 217.
[47]
Cremades, O.; Ponce, E.; Corpas, R.; Gutierrez, J.F.; Jover, M.; Alvarez-Ossorio, M.C.; Parrado, J.; Bautista, J. Processing of crawfish (Procambarus clarkii) for the preparation of carotenoproteins and chitin. J. Agric. Food Chem., 2001, 49(11), 5468-5472.
[http://dx.doi.org/10.1021/jf0104174] [PMID: 11714345]
[48]
Bautista, J. Preparation of crayfish chitin by in situ lactic acid production. Process Biochem., 2001, 37, 229-234.
[http://dx.doi.org/10.1016/S0032-9592(01)00202-3]
[49]
Jung, W.J.; Kuk, J.H.; Kim, K.Y.; Park, R.D. Demineralization of red crab shell waste by lactic acid fermentation. Appl. Microbiol. Biotechnol., 2005, 67(6), 851-854.
[http://dx.doi.org/10.1007/s00253-004-1871-4 ] [PMID: 15700125]
[50]
Adour, L.; Arbia, W.; Amrane, A.; Mameri, N. Combined use of waste materials-recovery of chitin from shrimp shells by lactic acid fermentation supplemented with date juice waste or glucose. J. Chem. Technol. Biotechnol., 2008, 83, 1664-1669.
[http://dx.doi.org/10.1002/jctb.1980]
[51]
Wang, S-L.; Chio, S-H. Deproteinization of shrimp and crab shell with the protease of Pseudomonas aeruginosa K-187. Enzyme Microb. Technol., 1998, 22, 629-633.
[http://dx.doi.org/10.1016/S0141-0229(97)00264-0]
[52]
Oh, Y.; Shih, I.; Tzeng, Y.; Wang, S. Protease produced by Pseudomonas aeruginosa K-187 and its application in the deproteinization of shrimp and crab shell wastes. Enzyme Microb. Technol., 2000, 27(1-2), 3-10.
[http://dx.doi.org/10.1016/S0141-0229(99)00172-6 ] [PMID: 10862895]
[53]
Oh, K-T.; Kim, Y-J.; Nguyen, V.; Jung, W-J.; Park, R-D. Demineralization of crab shell waste by Pseudomonas aeruginosa F722. Process Biochem., 2007, 42, 1069-1074.
[http://dx.doi.org/10.1016/j.procbio.2007.04.007]
[54]
Sorokulova, I.; Krumnow, A.; Globa, L.; Vodyanoy, V. Efficient decomposition of shrimp shell waste using Bacillus cereus and Exiguobacterium acetylicum. J. Ind. Microbiol. Biotechnol., 2009, 36(8), 1123-1126.
[http://dx.doi.org/10.1007/s10295-009-0587-y] [PMID: 19471983]
[55]
Pachapur, V.; Guemiza, K.; Rouissi, T.; Sarma, S.; Brar, S. Novel biological and chemical methods of chitin extraction from crustacean waste using saline water. J. Chem. Technol. Biotechnol., 2015, 91, 2331-2339.
[http://dx.doi.org/10.1002/jctb.4821]
[56]
Sedaghat, F.; Yousefzadi, M.; Toiserkani, H.; Najafipour, S. Bioconversion of shrimp waste Penaeus merguiensis using lactic acid fermentation: An alternative procedure for chemical extraction of chitin and chitosan. Int. J. Biol. Macromol., 2017, 104(Pt A), 883-888.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.099] [PMID: 28663153]
[57]
Aranday-García, R.; Saimoto, H.; Shirai, K.; Ifuku, S. Chitin biological extraction from shrimp wastes and its fibrillation for elastic nanofiber sheets preparation. Carbohydr. Polym., 2019, 213, 112-120.
[http://dx.doi.org/10.1016/j.carbpol.2019.02.083] [PMID: 30879650]
[58]
Bhattacharya, D.; Nagpure, A.; Gupta, R.K. Bacterial chitinases: Properties and potential. Crit. Rev. Biotechnol., 2007, 27(1), 21-28.
[http://dx.doi.org/10.1080/07388550601168223] [PMID: 17364687]
[59]
Shiro, M.; Ueda, M.; Kawaguchi, T.; Arai, M. Cloning of a cluster of chitinase genes from Aeromonas sp. No. 10S-24 Biochimica Et Biophysica Acta Bba - Gene Struct. Expr., 1996, 1305, 44-48.
[60]
Mathivanan, N.; Kabilan, V.; Murugesan, K. Purification, characterization, and antifungal activity of chitinase from Fusarium chlamydosporum, a mycoparasite to groundnut rust, Puccinia arachidis. Can. J. Microbiol., 1998, 44(7), 646-651.
[http://dx.doi.org/10.1139/w98-043] [PMID: 9783424]
[61]
Sahai, A. Chitinases of fungi and plants: Their involvement in morphogenesis and host-parasite interaction. FEMS Microbiol. Rev., 1993, 11, 317-338.
[http://dx.doi.org/10.1111/j.1574-6976.1993.tb00004.x]
[62]
Lorito, M. Chitinolytic enzymes produced by trichoderma harzianum; Antifungal activity of purified endochitinase and chitobiosidase. Mol. Plant Pathol., 1993, 83(3), 301-307.
[63]
Watanabe, T.; Oyanagi, W.; Suzuki, K.; Tanaka, H. Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J. Bacteriol., 1990, 172(7), 4017-4022.
[64]
Ohno, T.; Armand, S.; Hata, T.; Nikaidou, N.; Henrissat, B.; Mitsutomi, M.; Watanabe, T. A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. J. Bacteriol., 1996, 178(17), 5065-5070.
[http://dx.doi.org/10.1128/JB.178.17.5065-5070.1996] [PMID: 8752320]
[65]
Cohen-Kupiec, R.; Chet, I. The molecular biology of chitin digestion. Curr. Opin. Biotechnol., 1998, 9(3), 270-277.
[http://dx.doi.org/10.1016/S0958-1669(98)80058-X ] [PMID: 9650272]
[66]
Chernin, L.S.; De la Fuente, L.; Sobolev, V.; Haran, S.; Vorgias, C.E.; Oppenheim, A.B.; Chet, I. Molecular cloning, structural analysis, and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans. Appl. Environ. Microbiol., 1997, 63(3), 834-839.
[http://dx.doi.org/10.1128/AEM.63.3.834-839.1997] [PMID: 9055404]
[67]
Downing, K.J.; Thomson, J.A. Introduction of the Serratia marcescens chiA gene into an endophytic Pseudomonas fluorescens for the biocontrol of phytopathogenic fungi. Can. J. Microbiol., 2000, 46(4), 363-369.
[http://dx.doi.org/10.1139/w99-147] [PMID: 10779873]
[68]
Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Meier-Kolthoff, J.P.; Klenk, H.P.; Clément, C.; Ouhdouch, Y.; van Wezel, G.P. Taxonomy, physiology, and natural products of actinobacteria. Microbiol. Mol. Biol. Rev., 2015, 80(1), 1-43.
[http://dx.doi.org/10.1128/MMBR.00019-15] [PMID: 26609051]
[69]
Gonzalez-Franco, A.C.; Deobald, L.A.; Spivak, A.; Crawford, D.L. Actinobacterial chitinase-like enzymes: Profiles of rhizosphere versus non-rhizosphere isolates. Can. J. Microbiol., 2003, 49(11), 683-698.
[http://dx.doi.org/10.1139/w03-089] [PMID: 14735218]
[70]
Metcalfe, A.C.; Krsek, M.; Gooday, G.W.; Prosser, J.I.; Wellington, E.M. Molecular analysis of a bacterial chitinolytic community in an upland pasture. Appl. Environ. Microbiol., 2002, 68(10), 5042-5050.
[http://dx.doi.org/10.1128/AEM.68.10.5042-5050.2002 ] [PMID: 12324355]
[71]
Bai, Y.; Eijsink, V.G.; Kielak, A.M.; van Veen, J.A.; de Boer, W. Genomic comparison of chitinolytic enzyme systems from terrestrial and aquatic bacteria. Environ. Microbiol., 2016, 18(1), 38-49.
[http://dx.doi.org/10.1111/1462-2920.12545] [PMID: 24947206]
[72]
Lee, S.Y.; Tindwa, H.; Lee, Y.S.; Naing, K.W.; Hong, S.H.; Nam, Y.; Kim, K.Y. Biocontrol of anthracnose in pepper using chitinase, β-1,3 glucanase, and 2-furancarboxaldehyde produced by Streptomyces cavourensis SY224. J. Microbiol. Biotechnol., 2012, 22(10), 1359-1366.
[http://dx.doi.org/10.4014/jmb.1203.02056] [PMID: 23075786]
[73]
Liu, D.; Cai, J.; Xie, C.; Liu, C.; Chen, Y. Purification and partial characterization of a 36-kDa chitinase from Bacillus thuringiensis subsp. colmeri, and its biocontrol potential. Enzyme Microb. Technol., 2010, 46, 252-256.
[http://dx.doi.org/10.1016/j.enzmictec.2009.10.007]
[74]
Chen, Y-L.; Lu, W.; Chen, Y-H.; Xiao, L.; Cai, J. Cloning, expression and sequence analysis of chiA, chiB in Bacillus thuringiensis subsp. colmeri 15A3. Wei Sheng Wu Xue Bao, 2007, 47(5), 843-848.
[PMID: 18062260]
[75]
Kramer, K.J.; Muthukrishnan, S. Insect chitinases: Molecular biology and potential use as biopesticides. Insect Biochem. Mol. Biol., 1997, 27(11), 887-900.
[http://dx.doi.org/10.1016/S0965-1748(97)00078-7] [PMID: 9501415]
[76]
Regev, A.; Keller, M.; Strizhov, N.; Sneh, B.; Prudovsky, E.; Chet, I.; Ginzberg, I.; Koncz-Kalman, Z.; Koncz, C.; Schell, J.; Zilberstein, A. Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl. Environ. Microbiol., 1996, 62(10), 3581-3586.
[http://dx.doi.org/10.1128/AEM.62.10.3581-3586.1996 ] [PMID: 8837413]
[77]
Liu, C.; Wu, K.; Wu, Y.; Gao, Y.; Ning, C.; Oppert, B. Reduction of Bacillus thuringiensis Cry1Ac toxicity against Helicoverpa armigera by a soluble toxin-binding cadherin fragment. J. Insect Physiol., 2009, 55(8), 686-693.
[http://dx.doi.org/10.1016/j.jinsphys.2009.05.001] [PMID: 19446559]
[78]
Beier, S.; Bertilsson, S. Bacterial chitin degradation-mechanisms and ecophysiological strategies. Front. Microbiol., 2013, 4, 149.
[http://dx.doi.org/10.3389/fmicb.2013.00149] [PMID: 23785358]
[79]
Suzuki, K.; Sugawara, N.; Suzuki, M.; Uchiyama, T.; Katouno, F.; Nikaidou, N.; Watanabe, T.; Chitinases, A. B, and C1 of Serratia marcescens 2170 produced by recombinant Escherichia coli: Enzymatic properties and synergism on chitin degradation. Biosci. Biotechnol. Biochem., 2002, 66(5), 1075-1083.
[http://dx.doi.org/10.1271/bbb.66.1075] [PMID: 12092818]
[80]
Vaaje-Kolstad, G.; Houston, D.R.; Riemen, A.H.; Eijsink, V.G.; van Aalten, D.M. Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP21. J. Biol. Chem., 2005, 280(12), 11313-11319.
[http://dx.doi.org/10.1074/jbc.M407175200] [PMID: 15590674]
[81]
Zhong, W.; Ding, S.; Guo, H. The chitinase C gene PsChiC from Pseudomonas sp. and its synergistic effects on larvicidal activity. Genet. Mol. Biol., 2015, 38(3), 366-372.
[http://dx.doi.org/10.1590/S1415-475738320140320 ] [PMID: 26500441]
[82]
Rahman, I.; Biswas, S.K.; Kode, A. Oxidant and antioxidant balance in the airways and airway diseases. Eur. J. Pharmacol., 2006, 533(1-3), 222-239.
[http://dx.doi.org/10.1016/j.ejphar.2005.12.087] [PMID: 16500642]
[83]
Chen, A-S.; Taguchi, T.; Sakai, K.; Kikuchi, K.; Wang, M.W.; Miwa, I. Antioxidant activities of chitobiose and chitotriose. Biol. Pharm. Bull., 2003, 26(9), 1326-1330.
[http://dx.doi.org/10.1248/bpb.26.1326] [PMID: 12951480]
[84]
Ngo, D-N.; Lee, S-H.; Kim, M-M.; Kim, S-K. Production of chitin oligosaccharides with different molecular weights and their antioxidant effect in RAW 264.7 cells. J. Funct. Foods, 2009, 1, 188-198.
[http://dx.doi.org/10.1016/j.jff.2009.01.008]
[85]
Je, J-Y.; Park, P-J.; Kim, S-K. Free radical scavenging properties of hetero-chitooligosaccharides using an ESR spectroscopy. Food Chem. Toxicol., 2004, 42(3), 381-387.
[http://dx.doi.org/10.1016/j.fct.2003.10.001] [PMID: 14871580]
[86]
Devlieghere, F.; Vermeulen, A.; Debevere, J. Chitosan: Antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol., 2004, 21(6), 703-714.
[http://dx.doi.org/10.1016/j.fm.2004.02.008]
[87]
da Silva Mira, P.C.; Souza-Flamini, L.E.; da Costa Guedes, D.F.; Da Cruz-Filho, A.M. Evaluation of the chelating effect of chitosan solubilized in different acids. J. Conserv. Dent., 2017, 20(5), 297-301.
[http://dx.doi.org/10.4103/JCD.JCD_265_16] [PMID: 29386774]
[88]
Chung, Y.C.; Su, Y.P.; Chen, C.C.; Jia, G.; Wang, H.L.; Wu, J.C.; Lin, J.G. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol. Sin., 2004, 25(7), 932-936.
[PMID: 15210068]
[89]
Wang, X.; Du, Y.; Liu, H. Preparation, characterization and antimicrobial activity of chitosan-Zn complex. Carbohydr. Polym., 2004, 56, 21-26.
[http://dx.doi.org/10.1016/j.carbpol.2003.11.007]
[90]
Synowiecki, J.; Al-Khateeb, N.A. Production, properties, and some new applications of chitin and its derivatives. Crit. Rev. Food Sci. Nutr., 2003, 43(2), 145-171.
[http://dx.doi.org/10.1080/10408690390826473] [PMID: 12705640]
[91]
Gomes, L.P.; Andrade, C.T. l Aguila, E., Alexander, C.; Paschoalin, V. Assessing the antimicrobial activity of chitosan nanoparticles by fluorescence-labeling. Int. J. Biotechnol. Bioeng., 2018, 12, 111-117.
[92]
Juliano, C.; Magrini, G. Methylglyoxal, the major antibacterial factor in Manuka honey: An alternative to preserve natural cosmetics? Cosmetics, 2018, 6, 1.
[http://dx.doi.org/10.3390/cosmetics6010001]
[93]
Liu, X.; Jiang, Q.; Xia, W. One-step procedure for enhancing the antibacterial and antioxidant properties of a polysaccharide polymer: Kojic acid grafted onto chitosan. Int. J. Biol. Macromol., 2018, 113, 1125-1133.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.007] [PMID: 29505872]
[94]
Jayakumar, R.; Menon, D.; Manzoor, K.; Nair, S.; Tamura, H. Biomedical applications of chitin and chitosan based nanomaterials-A short review. Carbohydr. Polym., 2010, 82, 227-232.
[http://dx.doi.org/10.1016/j.carbpol.2010.04.074]
[95]
Qi, L.; Xu, Z.; Chen, M. In vitro and in vivo suppression of hepatocellular carcinoma growth by chitosan nanoparticles. Eur. J. Cancer, 2007, 43(1), 184-193.
[http://dx.doi.org/10.1016/j.ejca.2006.08.029] [PMID: 17049839]
[96]
EON Y J. Antitumor activity of chitosan oligosaccharides produced in ultrafiltration membrane reactor system. J. Microbiol. Biotechnol., 2002, 12(3), 503-507.
[97]
Chen, W.R.; Adams, R.L.; Carubelli, R.; Nordquist, R.E. Laser-photosensitizer assisted immunotherapy: A novel modality for cancer treatment. Cancer Lett., 1997, 115(1), 25-30.
[http://dx.doi.org/10.1016/S0304-3835(97)04707-1] [PMID: 9097975]
[98]
Mathew, M. Folate conjugated carboxymethyl chitosan-manganese doped zinc sulphide nanoparticles for targeted drug delivery and imaging of cancer cells. Carbohydr. Polym., 2010, 80, 442-448.
[http://dx.doi.org/10.1016/j.carbpol.2009.11.047]
[99]
Masuda, S.; Azuma, K.; Kurozumi, S.; Kiyose, M.; Osaki, T.; Tsuka, T.; Itoh, N.; Imagawa, T.; Minami, S.; Sato, K.; Okamoto, Y. Anti-tumor properties of orally administered glucosamine and N-acetyl-D-glucosamine oligomers in a mouse model. Carbohydr. Polym., 2014, 111, 783-787.
[http://dx.doi.org/10.1016/j.carbpol.2014.04.102] [PMID: 25037416]
[100]
Feng, M.; Lu, X.; Zhang, J.; Li, Y.; Shi, C.; Lu, L.; Zhang, S. Direct conversion of shrimp shells to O-acylated chitin with antibacterial and anti-tumor effects by natural deep eutectic solvents. Green Chem., 2019, 87-98.
[101]
Srinivasan, H.; Kanayairam, V.; Ravichandran, R. Chitin and chitosan preparation from shrimp shells Penaeus monodon and its human ovarian cancer cell line, PA-1. Int. J. Biol. Macromol., 2018, 107(Pt A), 662-667.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.035] [PMID: 28923565]
[102]
Evans, M. Lung cancer: Needs assessment, treatment and therapies. Br. J. Nurs., 2013, 22(17), S15-S16, S18,-S20-S22.
[http://dx.doi.org/10.12968/bjon.2013.22.Sup17.S15] [PMID: 24067269]
[103]
Liu, X.; Zhang, Y.; Liu, Z.; Xie, X. Anti-tumor effect of chitin oligosaccharide plus cisplatin in vitro and in vivo. OncoTargets Ther., 2019, 12, 7581-7590.
[http://dx.doi.org/10.2147/OTT.S220619] [PMID: 31571909]
[104]
Madni, A. Fabrication and characterization of chitosan-vitamin clactic acid composite membrane for potential skin tissue engineering. Int. J. Polym. Sci., 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/4362395]
[105]
Rijal, N.P. Magnesium oxide-poly(ε-caprolactone)-chitosan-based composite nanofiber for tissue engineering applications. Mater. Sci. Eng. B, 2018, 228, 18-27.
[http://dx.doi.org/10.1016/j.mseb.2017.11.006]
[106]
Velásquez, C.; Pirela, M. Biochemical aspects of the chitin fungicidal activity in agricultural uses; Chitosan Preservat. Agricult. Commod, 2016, pp. 279-298.
[107]
Egusa, M.; Matsui, H.; Urakami, T.; Okuda, S.; Ifuku, S.; Nakagami, H.; Kaminaka, H. Chitin nanofiber elucidates the elicitor activity of polymeric chitin in plants. Front. Plant Sci., 2015, 6, 1098.
[http://dx.doi.org/10.3389/fpls.2015.01098] [PMID: 26697049]
[108]
Xue, W.; Han, Y.; Tan, J.; Wang, Y.; Wang, G.; Wang, H. Effects of nanochitin on the enhancement of the grain yield and quality of winter wheat. J. Agric. Food Chem., 2018, 66(26), 6637-6645.
[http://dx.doi.org/10.1021/acs.jafc.7b00641] [PMID: 28605197]
[109]
Hirano, S. Chitin biodegradation and wound healing in tree bark tissues. J. Environ. Polym. Degrad., 1996, 4, 261-265.
[http://dx.doi.org/10.1007/BF02070695]
[110]
Pusztahelyi, T. Chitin and chitin-related compounds in plant-fungal interactions. Mycology, 2018, 9(3), 189-201.
[http://dx.doi.org/10.1080/21501203.2018.1473299] [PMID: 30181925]
[111]
Sun, C.; Fu, D.; Jin, L.; Chen, M.; Zheng, X.; Yu, T. Chitin isolated from yeast cell wall induces the resistance of tomato fruit to Botrytis cinerea. Carbohydr. Polym., 2018, 199, 341-352.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.045] [PMID: 30143138]
[112]
Jimtaisong, A.; Saewan, N. Utilization of carboxymethyl chitosan in cosmetics. Int. J. Cosmet. Sci., 2014, 36(1), 12-21.
[http://dx.doi.org/10.1111/ics.12102] [PMID: 24152381]
[113]
Montenegro, R.; Freier, T. Tissue dressing kit including tissue dressing material and detachment solvent, and uses therefor. CA Patent, 2,771,490A1 June 7;2017
[114]
Ito, I.; Yoneda, T.; Omura, Y.; Osaki, T.; Ifuku, S.; Saimoto, H.; Azuma, K.; Imagawa, T.; Tsuka, T.; Murahata, Y.; Ito, N.; Okamoto, Y.; Minami, S. Protective effect of chitin urocanate nanofibers against ultraviolet radiation. Mar. Drugs, 2015, 13(12), 7463-7475.
[http://dx.doi.org/10.3390/md13127076] [PMID: 26703629]
[115]
Mahmud, T.; Abdul-Aziz, A.; Muda, R. A review on the potential use of chitosan-based delivery system in mild facial cleansing formulation. Int. J. Polym. Mater. Polym., 2015, 64, 432-437.
[http://dx.doi.org/10.1080/00914037.2014.958832]
[116]
Massaro, M.; Goldberg, J.; Subramanyan, K.; Johnson, A.; Slavtcheff, C. Liquid cleansing composition having simultaneous exfoliating and moisturizing properties. WO Patent 2,004,041218 May 21;2004
[117]
Assunção, C.M.; Lussi, A.; Rodrigues, J.A.; Carvalho, T.S. Efficacy of toothpastes in the prevention of erosive tooth wear in permanent and deciduous teeth. Clin. Oral Investig., 2019, 23(1), 273-284.
[http://dx.doi.org/10.1007/s00784-018-2434-x] [PMID: 29721706]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy