Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Research Article

Drug Repositioning: Antimalarial Activities of GABA Analogs in Mice Infected with Plasmodium berghei

Author(s): Akeem A. Ayankunle*, Olayemi K. Wakeel, Oyetunji T. Kolawole, Adesola O. Oyekale, Olusola Ojurongbe and Oluwaseyi A. Adeyeba

Volume 20, Issue 2, 2020

Page: [110 - 121] Pages: 12

DOI: 10.2174/1871524920666200604151907

Price: $65

Abstract

Background: Drug repositioning is becoming popular due to the development of resistance to almost all the recommended antimalarials. Pregabalin and gabapentin are chemical analogs of gamma- aminobutyric acid (GABA) approved for the treatment of epilepsy and neuropathic pain.

Objective: This study investigates acute toxicities and antimalarial activities of pregabalin and gabapentin in the murine malarial model.

Methods: Acute toxicities were assessed using the method of Lorke, while curative activities were assessed by the administration of serial doses of pregabalin and gabapentin to Plasmodium berghei infected mice. Pregabalin was further investigated for its prophylactic activity, and curative potential when combined with either artesunate or amodiaquine. All drugs were freshly prepared and administered orally. Thin films were collected, stained, and observed under the microscope for the estimation of parasitemia and calculation of percentage chemoinhibition or chemoprevention. In pregabalin –artesunate or -amodiaquine combination aspect of this study, survival day post-infection (SDPI) was recorded, while parasitemia was re-estimated for animals that survived till day 28.

Results: The oral LD50 of gabapentin, as well as pregabalin, was >5,000 mg/kg. Gabapentin at 100 and 200 mg/Kg demonstrated 35.64% and -12.78% chemoinhibition, respectively, while pregabalin demonstrated 75.60% and 100.00% chemoinhibition at doses of 12.5 and 25 mg/Kg, respectively. Moreover, pregabalin at individual doses of 25, 50 mg/Kg, and in combination with either artesunate or amodiaquine demonstrated 100.00% chemoinhibition. In its prophylactic study, pregabalin was found to be 100% chemopreventive at individual doses of 12.5 and 25 mg/Kg.

Conclusion: Both GABA analogs have antimalarial properties, but pregabalin proved to be more efficacious.

Keywords: Plasmodium berghei, malarial disease, antimalarial, gabapentin, pregabalin, drug repositioning.

Graphical Abstract

[1]
Caraballo, H.; King, K. Emergency department management of mosquito-borne illness: Malaria, dengue, and West Nile virus. Emerg. Med. Pract., 2014, 16(5), 1-23.
[PMID: 25207355]
[2]
WHO Global malaria program. World malarial report, . 2011.
[3]
Harrison, K.A. Malaria in pregnancy. In: Maternity Care in Developing country; Lawson, J.B.; Harrison, K.A.; Bergstrom, S., Eds.; RCOG Press: London, 2001; pp. 112-128.
[4]
Opare-Addo, H.S.; Odoi, A.T. Malaria in pregnancy. In: Comprehensive Obstetrics in the Tropics, 1st ed; Kwakume, E.Y.; Emuveyan, E.E., Eds.; Asante and Hittscherpp Ltd: Ghana, 2002, pp. 250- 309. .
[5]
The World Health Report 1999: Roll back malaria. Geneva: World Health Organization (WHO), 1999. Available from: http://www.who.int/whr/1999/en/whr99_ch4_en.pdf (Accessed on: February 1, . 2018. )
[6]
Ojo, O.; Kuti, O.; Orji, E. Comparative study on efficacy of pyrimethamine chemoprophylaxis to intermittent preventive therapy using sulphadoxine-pyrimethamine for malaria prevention in pregnancy. J. Chin. Clin. Med., 2007, 2, 451-457.
[7]
World malaria report, 2008. Available from: http://apps.who.int/iris/bitstream/10665/43939/1/9789241563697_eng.pdf (Accessed on: February 4, 2018).
[8]
Federal Ministry of Health. National malaria control Programme, Abuja-Nigeria. Strategic plan 2009-2013; a road map for malaria control in Nigeria, 2008, 23-24. Available at:. http://www.nationalplanningcycles.org/sites/default/files/country_docs/Nigeria/nigeria_draft_malaria_strategic_plan_2009-2013.pdf [February 4, 2018.];
[9]
Ng, O.T.; Ooi, E.E.; Lee, C.C.; Lee, P.J.; Ng, L.C.; Pei, S.W.; Tu, T.M.; Loh, J.P.; Leo, Y.S. Naturally acquired human Plasmodium knowlesi infection, Singapore. Emerg. Infect. Dis., 2008, 14(5), 814-816.
[http://dx.doi.org/10.3201/eid1405.070863] [PMID: 18439370]
[10]
Grandesso, F.; Bachy, C.; Donam, I.; Ntambi, J.; Habimana, J.; D’Alessandro, U.; Maikere, J.; Vanlerberghe, V.; Kerah, C.H.; Guthmann, J.P. Efficacy of chloroquine, sulfadoxine-pyrimethamine and amodiaquine for treatment of uncomplicated Plasmodium falciparum malaria among children under five in Bongor and Koumra, Chad. Trans. R. Soc. Trop. Med. Hyg., 2006, 100(5), 419-426.
[http://dx.doi.org/10.1016/j.trstmh.2005.07.017] [PMID: 16297419]
[11]
Valecha, N.; Srivastava, P.; Mohanty, S.S.; Mittra, P.; Sharma, S.K.; Tyagi, P.K.; Pradhan, K.; Dev, V.; Singh, R.; Dash, A.P.; Sharma, Y.D. Therapeutic efficacy of artemether-lumefantrine in uncomplicated falciparum malaria in India. Malar. J., 2009, 8, 107.
[http://dx.doi.org/10.1186/1475-2875-8-107] [PMID: 19454000]
[12]
Andriantsoanirina, V.; Ratsimbasoa, A.; Bouchier, C.; Jahevitra, M.; Rabearimanana, S.; Radrianjafy, R.; Andrianaranjaka, V.; Randriantsoa, T.; Rason, M.A.; Tichit, M.; Rabarijaona, L.P.; Mercereau-Puijalon, O.; Durand, R.; Ménard, D. Plasmodium falciparum drug resistance in Madagascar: facing the spread of unusual pfdhfr and pfmdr-1 haplotypes and the decrease of dihydroartemisinin susceptibility. Antimicrob. Agents Chemother., 2009, 53(11), 4588-4597.
[http://dx.doi.org/10.1128/AAC.00610-09] [PMID: 19704124]
[13]
World Health Organization. Malaria fact sheet, 2014.
[14]
Ekland, E.H.; Fidock, D.A. In vitro evaluations of antimalarial drugs and their relevance to clinical outcomes. Int. J. Parasitol.,, 38, 743-747..
[http://dx.doi.org/10.1016/j.ijpara.2008.03.004 ] [PMID: 18406409]
[15]
Ashburn, T.T.; Thor, K.B. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[16]
Ekins, S.; Williams, A.J.; Krasowski, M.D.; Freundlich, J.S. In silico repositioning of approved drugs for rare and neglected diseases. Drug Discov. Today, 2011, 16(7-8), 298-310.
[http://dx.doi.org/10.1016/j.drudis.2011.02.016] [PMID: 21376136]
[17]
Fink, H.A.; Mac Donald, R.; Rutks, I.R.; Nelson, D.B.; Wilt, T.J. Sildenafil for male erectile dysfunction: A systematic review and meta-analysis. Arch. Intern. Med., 2002, 162(12), 1349-1360.
[http://dx.doi.org/10.1001/archinte.162.12.1349] [PMID: 12076233]
[18]
Walker, S.L.; Waters, M.F.; Lockwood, D.N. The role of thalidomide in the management of erythema nodosum leprosum. Lepr. Rev., 2007, 78(3), 197-215.
[PMID: 18035771]
[19]
DiMasi, J.A.; Hansen, R.W.; Grabowski, H.G.; Lasagna, L. Cost of innovation in the pharmaceutical industry. J. Health Econ., 1991, 10(2), 107-142.
[http://dx.doi.org/10.1016/0167-6296(91)90001-4] [PMID: 10113009]
[20]
Tartaglia, L.A. Complementary new approaches enable repositioning of failed drug candidates. Expert Opin. Investig. Drugs, 2006, 15(11), 1295-1298.
[http://dx.doi.org/10.1517/13543784.15.11.1295] [PMID: 17040191]
[21]
Guiguemde, W.A.; Shelat, A.A.; Garcia-Bustos, J.F.; Diagana, T.T.; Guy, R.K. Global phenotypic screening for antimalarials. Chem. Biol., 2012, 19(1), 116-129.
[http://dx.doi.org/10.1016/j.chembiol.2012.01.004]
[22]
Chatterjee, A.K.; Yeung, B.K.; Bryan, K.S. Back to the future: lessons learned in modern target-based and whole-cell lead optimization of antimalarials. Curr. Top. Med. Chem., 2012, 12(5), 473-483.
[http://dx.doi.org/10.2174/156802612799362977] [PMID: 22242845]
[23]
Wells, T.N.; Burrows, J.N.; Baird, J.K. Targeting the hypnozoite reservoir of Plasmodium vivax: The hidden obstacle to malaria elimination. Trends Parasitol., 2010, 26(3), 145-151.
[http://dx.doi.org/10.1016/j.pt.2009.12.005] [PMID: 20133198]
[24]
Lucumi, E.; Darling, C.; Jo, H.; Napper, A.D.; Chandramohanadas, R.; Fisher, N.; Shone, A.E.; Jing, H.; Ward, S.A.; Biagini, G.A.; DeGrado, W.F.; Diamond, S.L.; Greenbaum, D.C. Discovery of potent small-molecule inhibitors of multidrug-resistant Plasmodium falciparum using a novel miniaturized high-throughput luciferase-based assay. Antimicrob. Agents Chemother., 2010, 54(9), 3597-3604.
[http://dx.doi.org/10.1128/AAC.00431-10] [PMID: 20547797]
[25]
Chong, C.R.; Chen, X.; Shi, L.; Liu, J.O.; Sullivan, D.J. Jr A clinical drug library screen identifies astemizole as an antimalarial agent. Nat. Chem. Biol., 2006, 2(8), 415-416.
[http://dx.doi.org/10.1038/nchembio806] [PMID: 16816845]
[26]
Buchholz, K.; Burke, T.A.; Williamson, K.C.; Wiegand, R.C.; Wirth, D.F.; Marti, M. A high-throughput screen targeting malaria transmission stages opens new avenues for drug development. J. Infect. Dis., 2011, 203(10), 1445-1453.
[http://dx.doi.org/10.1093/infdis/jir037] [PMID: 21502082]
[27]
da Cruz, F.P.; Martin, C.; Buchholz, K.; Lafuente-Monasterio, M.J.; Rodrigues, T.; Sönnichsen, B.; Moreira, R.; Gamo, F.J.; Marti, M.; Mota, M.M.; Hannus, M.; Prudêncio, M. Drug screen targeted at Plasmodium liver stages identifies a potent multistage antimalarial drug. J. Infect. Dis., 2012, 205(8), 1278-1286.
[http://dx.doi.org/10.1093/infdis/jis184] [PMID: 22396598]
[28]
Lotharius, J.; Gamo-Benito, F.J.; Angulo-Barturen, I.; Clark, J.; Connelly, M.; Ferrer-Bazaga, S.; Parkinson, T.; Viswanath, P.; Bandodkar, B.; Rautela, N.; Bharath, S.; Duffy, S.; Avery, V.M.; Möhrle, J.J.; Guy, R.K.; Wells, T. Repositioning: the fast track to new anti-malarial medicines? Malar. J., 2014, 13, 143.
[http://dx.doi.org/10.1186/1475-2875-13-143] [PMID: 24731288]
[29]
Matthews, H.; Usman-Idris, M.; Khan, F.; Read, M.; Nirmalan, N. Drug repositioning as a route to anti-malarial drug discovery: preliminary investigation of the in vitro anti-malarial efficacy of emetine dihydrochloride hydrate. Malar. J., 2013, 12, 359.
[http://dx.doi.org/10.1186/1475-2875-12-359] [PMID: 24107123]
[30]
Nzila, A.; Ma, Z.; Chibale, K. Drug repositioning in the treatment of malaria and TB. Future Med. Chem., 2011, 3(11), 1413-1426.
[http://dx.doi.org/10.4155/fmc.11.95] [PMID: 21879845]
[31]
Burrows, J.N.; Leroy, D.; Lotharius, J.; Waterson, D. Challenges in antimalarial drug discovery. Future Med. Chem., 2011, 3(11), 1401-1412.
[http://dx.doi.org/10.4155/fmc.11.91] [PMID: 21879844]
[32]
Bockbrader, H.N.; Wesche, O.; Miller, R.; Chapel, S.; Janiczek, N.; Burger, P. A comparison of the pharmacodynamics of pregabalin and gabapentin. Clin. Pharmacokinet., 2010, 49(10), 661-669.
[http://dx.doi.org/10.2165/11536200-000000000-00000] [PMID: 20818832]
[33]
Martin, S.K.; Oduola, A.M.; Milhous, W.K. Reversal of chloroquine resistance in Plasmodium falciparum by verapamil. Science, 1987, 235(4791), 899-901.
[http://dx.doi.org/10.1126/science.3544220] [PMID: 3544220]
[34]
Ayankunle, A.A.; Wakeel, O.K.; Kolawole, O.T.; Ojurongbe, O.; Adeyeba, O.A. Chemo-suppressive activities of clotrimazole and gabapentin in a murine malarial model. World J. Pharm. Pharm. Sci., 2019, 8(5), 72-82.
[35]
National Institute of Health/National Research Council. Guide for the care and use of laboratory animals, 8th ed; , 1996.
[36]
Lorke, D. A new approach to practical acute toxicity testing. Arch. Toxicol., 1983, 54(4), 275-287.
[http://dx.doi.org/10.1007/BF01234480] [PMID: 6667118]
[37]
Ryley, J.F.; Peters, W. The antimalarial activity of some quinolone esters. Ann. Trop. Med. Parasitol., 1970, 64(2), 209-222.
[http://dx.doi.org/10.1080/00034983.1970.11686683] [PMID: 4992592]
[38]
Peters, W. Drug resistance in Plasmodium berghei Vincke and Lips, 1948. I. Chloroquine resistance Exper. Parasitol. Emphas., 1948, 17(1), 80-89.
[39]
Pfizer: Material Safety Data Sheet: Pregabalin (Lyrica). Available 141 from: https://pfe-pfizercom-prod.s3.amazonaws.com/products/mate rial_safety_data/LYRICA_CR(pregabalin)(Accessed on: November 2,. 2019. )
[40]
Pfizer: Material Safety Data Sheet: Gabapentin (Neurontin)., Available from: https://pfe-pfizercomprod.s3.amazonaws.com/products/material_safety_data/gabapentin(Accessed on: December 2 2019).
[41]
Kugler, A.R.; Robbins, J.L.; Strand, J.C. Pregabalin overview: a novel CNS-active compound with anticonvulsant activity. Annual Meeting of the American Epilepsy Society, Seattle, Washington,. 2002.
[42]
Mann, D.; Liu, J.; Chew, M.L.; Bockbrader, H.; Alvey, C.W.; Zegarac, E.; Pellock, J.; Pitman, V.W. Safety, tolerability, and pharmacokinetics of pregabalin in children with refractory partial seizures: a phase 1, randomized controlled study. Epilepsia, 2014, 55(12), 1934-1943.
[http://dx.doi.org/10.1111/epi.12830] [PMID: 25377429]
[43]
Ogbuehi, I.H.; Ebong, O.O.; Obianime, A.W. Oral acute toxicity (LD50) study of different solvent extracts of Abrus precatorius Linn leaves in wistar rats. Eur. J. Exp. Biol., 2015, 5(1), 18-25.
[44]
Toth, C. Substitution of gabapentin therapy with pregabalin therapy in neuropathic pain due to peripheral neuropathy. Pain Med., 2010, 11(3), 456-465.
[http://dx.doi.org/10.1111/j.1526-4637.2009.00796.x] [PMID: 20113408]
[45]
Cada, D.J.; Levien, T.; Baker, D.E. Pregabalin. Hosp. Pharm., 2006, 41, 157-172.
[http://dx.doi.org/10.1310/hpj4102-157]
[46]
World Health Organization; Malaria in children under five, 2018.Available from:. https://www.who.int/malaria/areas/high_risk_groups/children/en/ (Accessed on: November 2, 2019).
[47]
Petrere, J.A.; Anderson, J.A. Developmental toxicity studies in mice, rats, and rabbits with the anticonvulsant gabapentin. Fundam. Appl. Toxicol., 1994, 23(4), 585-589.
[http://dx.doi.org/10.1006/faat.1994.1144] [PMID: 7867910]
[48]
Morse, D.C. Embryo-fetal developmental toxicity studies with pregabalin in mice and rabbits. Birth Defects Res. B Dev. Reprod. Toxicol., 2016, 107(2), 85-93.
[http://dx.doi.org/10.1002/bdrb.21174] [PMID: 27044003]
[49]
Stahl, S.M.; Porreca, F.; Taylor, C.P.; Cheung, R.; Thorpe, A.J.; Clair, A. The diverse therapeutic actions of pregabalin: is a single mechanism responsible for several pharmacological activities? Trends Pharmacol. Sci., 2013, 34(6), 332-339.
[http://dx.doi.org/10.1016/j.tips.2013.04.001] [PMID: 23642658]
[50]
Benet, L.Z. Effect of route of administration and distribution on drug action. J. Pharmacokinet. Biopharm., 1978, 6(6), 559-585.
[http://dx.doi.org/10.1007/BF01062110] [PMID: 731418]
[51]
Stahl, S.M. Anticonvulsants and the relief of chronic pain: pregabalin and gabapentin as alpha(2)delta ligands at voltage-gated calcium channels. J. Clin. Psychiatry, 2004, 65(5), 596-597.
[http://dx.doi.org/10.4088/JCP.v65n0501] [PMID: 15163243]
[52]
Ifuku, M.; Iseki, M.; Hidaka, I.; Morita, Y.; Komatus, S.; Inada, E. Replacement of gabapentin with pregabalin in postherpetic neuralgia therapy. Pain Med., 2011, 12(7), 1112-1116.
[http://dx.doi.org/10.1111/j.1526-4637.2011.01162.x] [PMID: 21692969]
[53]
Mishra, S.; Bhatnagar, S.; Goyal, G.N.; Rana, S.P.; Upadhya, S.P.; Upadhya, S. A comparative efficacy of amitriptyline, gabapentin, and pregabalin in neuropathic cancer pain: a prospective randomized double-blind placebo-controlled study. Am. J. Hosp. Palliat. Care, 2012, 29(3), 177-182.
[http://dx.doi.org/10.1177/1049909111412539] [PMID: 21745832]
[54]
Tanenberg, R.J.; Irving, G.A.; Risser, R.C.; Ahl, J.; Robinson, M.J.; Skljarevski, V.; Malcolm, S.K. Duloxetine, pregabalin, and duloxetine plus gabapentin for diabetic peripheral neuropathic pain management in patients with inadequate pain response to gabapentin: an open-label, randomized, noninferiority comparison. Mayo Clin. Proc., 2011, 86(7), 615-626.
[http://dx.doi.org/10.4065/mcp.2010.0681] [PMID: 21719618]
[55]
Saldaña, M.T.; Pérez, C.; Navarro, A.; Masramón, X.; Rejas, J. Pain alleviation and patient-reported health outcomes following switching to pregabalin in individuals with gabapentin-refractory neuropathic pain in routine medical practice. Clin. Drug Investig., 2012, 32(6), 401-412.
[http://dx.doi.org/10.2165/11599400-000000000-00000] [PMID: 22480279]
[56]
Toth, C. Pregabalin: latest safety evidence and clinical implications for the management of neuropathic pain. Ther. Adv. Drug Saf., 2014, 5(1), 38-56.
[http://dx.doi.org/10.1177/2042098613505614] [PMID: 25083261]
[57]
Delahoy, P.; Thompson, S.; Marschner, I.C. Pregabalin versus gabapentin in partial epilepsy: A meta-analysis of dose-response relationships. BMC Neurol., 2010, 10, 104.
[http://dx.doi.org/10.1186/1471-2377-10-104] [PMID: 21040531]
[58]
Folarin, O.A.; Gbotosho, G.O.; Sowunmi, A.; Olorunsogo, O.O.; Oduola, A.M.J.; Happi, T.C. Chloroquine resistant plasmodium falciparum in Nigeria: Relationship between pfcrt and pfmdr1 Polymorphisms, in-vitro resistance and treatment outcome. Open Trop. Med. J., 2008, 1, 74-82.
[http://dx.doi.org/10.2174/1874315300801010074] [PMID: 19953193]
[59]
Nneji, C.M.; Adedapo, A.D.A.; Okorie, P.N.; Ademowo, O.G. Chloroquine Resistance and Host Genetic Factors among Nigerian Children with Uncomplicated P. falciparum Infection. Arch. Med., 2015, 7(4), 2.
[60]
World Health Organization (WHO); World Malaria Report Geneva., Available from:. http://www.who.int/malaria/publications/world_malaria_report_2015(Accessed on: November 2, 2019).
[61]
Sowunmi, A.; Oduola, A.M.J. Comparative efficacy of chloroquine/chlorpheniramine combination and mefloquine for the treatment of chloroquine-resistant Plasmodium falciparum malaria in Nigerian children. Trans. R. Soc. Trop. Med. Hyg., 1997, 91(6), 689-693.
[http://dx.doi.org/10.1016/S0035-9203(97)90526-5] [PMID: 9509181]
[62]
Ben-Menachem, E.; Kugler, A.R. Pregabalin pharmacology and its relevance to clinical practice. Epilepsia, 2004, 45(Suppl. 6), 13-18.
[http://dx.doi.org/10.1111/j.0013-9580.2004.455003.x] [PMID: 15315511]
[63]
Ben-Menachem, E.; Kugler, A.R. Pregabalin. Antiepileptic drugs, 5th ed; Levy, R.H.; Mattson, R.H.; Meldrum, B.S.; Perucca, E., Eds.; 901-905.
[64]
WHO. Global technical strategy for malaria 2016-2030; World Health Organization: Geneva, 2015.
[65]
Centers for Disease Control and Prevention; Use of antimalarials to reduce malaria transmission., Available from:. https://www.cdc.gov/malaria/malaria_worldwide/reduction/mda_mft.html (Accessed on: November 10, 2019)..
[66]
Tizifa, T.A.; Kabaghe, A.N.; McCann, R.S.; van den Berg, H.; Van Vugt, M.; Phiri, K.S. Prevention Efforts for Malaria. Curr. Trop. Med. Rep., 2018, 5(1), 41-50.
[http://dx.doi.org/10.1007/s40475-018-0133-y] [PMID: 29629252]
[67]
Chaccour, C.J.; Kobylinski, K.C.; Bassat, Q.; Bousema, T.; Drakeley, C.; Alonso, P.; Foy, B.D. Ivermectin to reduce malaria transmission: a research agenda for a promising new tool for elimination. Malar. J., 2013, 12, 153.
[http://dx.doi.org/10.1186/1475-2875-12-153] [PMID: 23647969]
[68]
Chaccour, C.; Hammann, F.; Rabinovich, N.R. Ivermectin to reduce malaria transmission I. Pharmacokinetic and pharmacodynamic considerations regarding efficacy and safety. Malar. J., 2017, 16(1), 161.
[http://dx.doi.org/10.1186/s12936-017-1801-4] [PMID: 28434401]
[69]
Chaccour, C.J.; Rabinovich, N.R.; Slater, H.; Canavati, S.E.; Bousema, T.; Lacerda, M.; Ter Kuile, F.; Drakeley, C.; Bassat, Q.; Foy, B.D.; Kobylinski, K. Establishment of the ivermectin research for malaria elimination network: Updating the research agenda. Malar. J., 2015, 14, 243.
[http://dx.doi.org/10.1186/s12936-015-0691-6] [PMID: 26068560]
[70]
Foy, B.D.; Kobylinski, K.C.; da Silva, I.M.; Rasgon, J.L.; Sylla, M. Endectocides for malaria control. Trends Parasitol., 2011, 27(10), 423-428.
[http://dx.doi.org/10.1016/j.pt.2011.05.007] [PMID: 21727027]
[71]
Naz, S.; Maqbool, A.; Ahmad, M.U.D.; Anjum, A.A.; Zaman, S. Efficacy of ivermectin for control of zoophilic malaria vectors in Pakistan. Pak. J. Zool., 2013, 45, 1585-1591.
[72]
Frampton, J.E.; Foster, R.H. Pregabalin: In the treatment of generalised anxiety disorder. CNS Drugs, 2006, 20(8), 685-693.
[http://dx.doi.org/10.2165/00023210-200620080-00010] [PMID: 16863276]
[73]
Freynhagen, R.; Strojek, K.; Griesing, T.; Whalen, E.; Balkenohl, M. Efficacy of pregabalin in neuropathic pain evaluated in a 12-week, randomised, double-blind, multicentre, placebo-controlled trial of flexible- and fixed-dose regimens. Pain, 2005, 115(3), 254-263.
[http://dx.doi.org/10.1016/j.pain.2005.02.032] [PMID: 15911152]
[74]
Lesser, H.; Sharma, U.; LaMoreaux, L.; Poole, R.M. Pregabalin relieves symptoms of painful diabetic neuropathy: A randomized controlled trial. Neurology, 2004, 63(11), 2104-2110.
[http://dx.doi.org/10.1212/01.WNL.0000145767.36287.A1] [PMID: 15596757]
[75]
Richter, R.W.; Portenoy, R.; Sharma, U.; Lamoreaux, L.; Bockbrader, H.; Knapp, L.E. Relief of painful diabetic peripheral neuropathy with pregabalin: a randomized, placebo-controlled trial. J. Pain, 2005, 6(4), 253-260.
[http://dx.doi.org/10.1016/j.jpain.2004.12.007] [PMID: 15820913]
[76]
Rosenstock, J.; Tuchman, M.; LaMoreaux, L.; Sharma, U. Pregabalin for the treatment of painful diabetic peripheral neuropathy: a double-blind, placebo-controlled trial. Pain, 2004, 110(3), 628-638.
[http://dx.doi.org/10.1016/j.pain.2004.05.001] [PMID: 15288403]
[77]
Eke, F.U.; Anochie, I. Effects of pyrimethamine versus proguanil in malarial chemoprophylaxis in children with sickle cell disease: A randomized, placebo-controlled, open-label study. Curr. Ther. Res. Clin. Exp., 2003, 64(8), 616-625.
[http://dx.doi.org/10.1016/j.curtheres.2003.09.003] [PMID: 24944408]
[78]
Olaosebikan, R.; Ernest, K.; Bojang, K.; Mokuolu, O.; Rehman, A.M.; Affara, M.; Nwakanma, D.; Kiechel, J.R.; Ogunkunle, T.; Olagunju, T.; Murtala, R.; Omefe, P.; Lambe, T.; Bello, S.; Ibrahim, O.; Olorunsola, B.; Ojuawo, A.; Greenwood, B.; Milligan, P. A randomized trial to compare the safety, tolerability, and effectiveness of 3 antimalarial regimens for the prevention of malaria in Nigerian patients with sickle cell disease. J. Infect. Dis., 2015, 212(4), 617-625.
[http://dx.doi.org/10.1093/infdis/jiv093] [PMID: 25701866]
[79]
Nwokolo, C.; Wambebe, C.; Akinyanju, O.; Raji, A.A.; Audu, B.S.; Emodi, I.J.; Balogun, M.O.; Chukwuani, C.M. Mefloquine versus Proguanil in short-term malaria chemoprophylaxis in sickle cell Anaemia., Clin. Drug Invest. 2, 2001, 21(8), 8..
[http://dx.doi.org/10.2165/00044011-200121080-00002]
[80]
McGready, R.; Stepniewska, K.; Edstein, M.D.; Cho, T.; Gilveray, G.; Looareesuwan, S.; White, N.J.; Nosten, F. The pharmacokinetics of atovaquone and proguanil in pregnant women with acute falciparum malaria. Eur. J. Clin. Pharmacol., 2003, 59(7), 545-552.
[http://dx.doi.org/10.1007/s00228-003-0652-9] [PMID: 12955371]
[81]
Soyinka, J.O.; Onyeji, C.O. Alteration of pharmacokinetics of proguanil in healthy volunteers following concurrent administration of efavirenz. Eur. J. Pharm. Sci., 2010, 39(4), 213-218.
[http://dx.doi.org/10.1016/j.ejps.2009.11.012] [PMID: 19961932]
[82]
Wattanagoon, Y.; Taylor, R.B.; Moody, R.R.; Ochekpe, N.A.; Looareesuwan, S.; White, N.J. Single dose pharmacokinetics of proguanil and its metabolites in healthy subjects. Br. J. Clin. Pharmacol., 1987, 24(6), 775-780.
[http://dx.doi.org/10.1111/j.1365-2125.1987.tb03245.x] [PMID: 3440097]
[83]
Adewoyin, A.S. Management of sickle cell disease: A review for physician education in Nigeria (sub-saharan Africa). Anemia, 2015. 2015791498
[http://dx.doi.org/10.1155/2015/791498] [PMID: 25667774]
[84]
Attal, N.; Bouhassira, D. Pharmacotherapy of neuropathic pain: Which drugs, which treatment algorithms? Pain, 2015, 156(Suppl. 1), S104-S114.
[http://dx.doi.org/10.1097/01.j.pain.0000460358.01998.15] [PMID: 25789426]
[85]
Verma, V.; Singh, N.; Singh Jaggi, A. Pregabalin in neuropathic pain: evidences and possible mechanisms. Curr. Neuropharmacol., 2014, 12(1), 44-56.
[http://dx.doi.org/10.2174/1570159X1201140117162802] [PMID: 24533015]
[86]
Ballas, S.K. Current issues in sickle cell pain and its management. Hematology (Am. Soc. Hematol. Educ. Program), 2007, 2007(1), 97-105.
[http://dx.doi.org/10.1182/asheducation-2007.1.97] [PMID: 18024616]
[87]
La Porta, C.; Lara-Mayorga, I.M.; Negrete, R.; Maldonado, R. Effects of pregabalin on the nociceptive, emotional and cognitive manifestations of neuropathic pain in mice. Eur. J. Pain, 2016, 20(9), 1454-1466.
[http://dx.doi.org/10.1002/ejp.868] [PMID: 27029342]
[88]
Micó, J.A.; Prieto, R. Elucidating the mechanism of action of pregabalin: α(2)δ as a therapeutic target in anxiety. CNS Drugs, 2012, 26(8), 637-648.
[http://dx.doi.org/10.2165/11634510-000000000-00000] [PMID: 22784017]
[89]
Navarrete, F.; Pérez-Ortiz, J.M.; Manzanares, J. Pregabalin- and topiramate-mediated regulation of cognitive and motor impulsivity in DBA/2 mice. Br. J. Pharmacol., 2012, 167(1), 183-195.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01981.x] [PMID: 22489711]
[90]
Kayentao, K.; Garner, P.; van Eijk, A.M.; Naidoo, I.; Roper, C.; Mulokozi, A. Intermittent preventive therapy for malaria during pregnancy using 2 vs. 3 or more doses of sulfadoxine pyrimethamine and risk of low birth weight in Africa. Systematic review and meta-analysis. JAMA, 2012, 8(9), 114-129.
[PMID: 23403684]
[91]
Gies, S.; Coulibaly, S.O.; Ky, C.; Ouattara, F.T.; Brabin, B.J.; D’Alessandro, U. Community-based promotional campaign to improve uptake of intermittent preventive antimalarial treatment in pregnancy in Burkina Faso. Am. J. Trop. Med. Hyg., 2009, 80(3), 460-469.
[http://dx.doi.org/10.4269/ajtmh.2009.80.460] [PMID: 19270299]
[92]
Kayentao, K.; Garner, P.; van Eijk, A.M.; Naidoo, I.; Roper, C.; Mulokozi, A.; MacArthur, J.R.; Luntamo, M.; Ashorn, P.; Doumbo, O.K.; ter Kuile, F.O. Intermittent preventive therapy for malaria during pregnancy using 2 vs. 3 or more doses of sulfadoxine-pyrimethamine and risk of low birth weight in Africa: systematic review and meta-analysis. JAMA, 2013, 309(6), 594-604.
[http://dx.doi.org/10.1001/jama.2012.216231] [PMID: 23403684]
[93]
Andrade, C. Safety of Pregabalin in Pregnancy. J Clin Psychiatry., 2018, 279(5), 18f12568..
[http://dx.doi.org/10.4088/JCP.18f12568.]
[94]
Wissam, S.H.A. Pregabalin effects on cellular and humoral components of blood of mice (Mus musculus). Bas. J. Vet. Res., 2017, 16(2), 76-84.
[http://dx.doi.org/10.33762/bvetr.2017.143534]
[95]
Arikkath, J.; Campbell, K.P. Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr. Opin. Neurobiol., 2003, 13(3), 298-307.
[http://dx.doi.org/10.1016/S0959-4388(03)00066-7] [PMID: 12850214]
[96]
Zipprer, E.M.; Neggers, M.; Kushwaha, A.; Rayavara, K.; Desai, S.A. A kinetic fluorescence assay reveals unusual features of Ca++ uptake in Plasmodium falciparum-infected erythrocytes. Malar. J., 2014, 13, 184.
[http://dx.doi.org/10.1186/1475-2875-13-184] [PMID: 24885754]
[97]
Wolf, M.; Eberhart, A.; Glossmann, H.; Striessnig, J.; Grigorieff, N. Visualization of the domain structure of an L-type Ca2+ channel using electron cryo-microscopy. J. Mol. Biol., 2003, 332(1), 171-182.
[http://dx.doi.org/10.1016/S0022-2836(03)00899-4] [PMID: 12946355]
[98]
Eroglu, C.; Allen, N.J.; Susman, M.W.; O’Rourke, N.A.; Park, C.Y.; Ozkan, E.; Chakraborty, C.; Mulinyawe, S.B.; Annis, D.S.; Huberman, A.D.; Green, E.M.; Lawler, J.; Dolmetsch, R.; Garcia, K.C.; Smith, S.J.; Luo, Z.D.; Rosenthal, A.; Mosher, D.F.; Barres, B.A. Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell, 2009, 139(2), 380-392.
[http://dx.doi.org/10.1016/j.cell.2009.09.025] [PMID: 19818485]
[99]
Akhouri, R.R.; Sharma, A.; Malhotra, P.; Sharma, A. Role of Plasmodium falciparum thrombospondin-related anonymous protein in host-cell interactions. Malar. J., 2008, 7, 63.
[http://dx.doi.org/10.1186/1475-2875-7-63] [PMID: 18426606]
[100]
Siddiqui, F.A.; Dhawan, S.; Singh, S.; Singh, B.; Gupta, P.; Pandey, A.; Mohmmed, A.; Gaur, D.; Chitnis, C.E. A thrombospondin structural repeat containing rhoptry protein from Plasmodium falciparum mediates erythrocyte invasion. Cell. Microbiol., 2013, 15(8), 1341-1356.
[http://dx.doi.org/10.1111/cmi.12118] [PMID: 23387921]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy