Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

Phytochemical Analysis and Antidiabetic Potential of Armoracia Rusticana: Pharmacological and Computational Approach

Author(s): Anam Javaid, Usman Ali Ashfaq*, Zeeshan Zafar, Arina Akmal, Saman Taj and Hina Khalid

Volume 24, Issue 3, 2021

Published on: 26 May, 2020

Page: [465 - 471] Pages: 7

DOI: 10.2174/1386207323666200526134512

Price: $65

Abstract

Aims & Objective: Armoracia rusticana has high medicinal values and is an excellent source of phytochemicals. This study was aimed to evaluate the antidiabetic potential of bioactive compounds from Armoracia rusticana.

Methods: The antidiabetic analysis revealed that Armoracia rusticana was highly active against α- glucosidase with IC50 values of 5.6 μg/ml. Furthermore, molecular docking was used to identify the active constituents against α-glucosidase, while using acarbose as a controlled drug.

Results: Upon phytochemical screening, it was found that six out of ten phytochemicals were successfully docked in the respective binding sites. The lead phytochemical was Quercetin 3-Obeta- D-xylopyranoside, which displayed a more binding score as compared to acarbose. They were subjected to analyze for drug-like properties, which further strengthen its validation.

Conclusion: It was, therefore, concluded that Armoracia rusticana might potentially be used in the amelioration of type 2 diabetes. Potential molecules identified from this study could be considered as a lead drug to cure diabetes mellitus.

Keywords: Anti-diabetic, phytochemicals, docking, alpha-glucosidase, enzyme inhibition assay, Armoracia rusticana.

[1]
Agesen, R.M.; Alibegovic, A.C.; Andersen, H.U.; Beck-Nielsen, H.; Gustenhoff, P.; Hansen, T.K.; Hedetoft, C.; Jensen, T.; Juhl, C.B.; Lerche, S.S.; Nørgaard, K.; Parving, H.H.; Tarnow, L.; Thorsteinsson, B.; Pedersen-Bjergaard, U. The effect of insulin degludec on risk of symptomatic nocturnal hypoglycaemia in adults with type 1 diabetes and high risk of nocturnal severe hypoglycaemia (the HypoDeg trial): study rationale and design. BMC Endocr. Disord., 2019, 19(1), 78.
[http://dx.doi.org/10.1186/s12902-019-0408-x] [PMID: 31337371]
[2]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[3]
Siddiqui, A.A. Diabetes: Mechanism, pathophysiology and management-A review. Int J Drug Dev Res, 2013, 5(2), 1-23.
[4]
Schwartz, D.D.; Stewart, S.D.; Aikens, J.E.; Bussell, J.K.; Osborn, C.Y.; Safford, M.M. Seeing the person, not the illness: promoting diabetes medication adherence through patient-centered collaboration. Clin. Diabetes, 2017, 35(1), 35-42.
[http://dx.doi.org/10.2337/cd16-0007] [PMID: 28144044]
[5]
McCulloch, D.K. Alpha-glucosidase inhibitors and lipase inhibitors for treatment of diabetes mellitus. Available at. (Accessed July 31, 2017); Wolters Kluwer Health Clinical Solutions, 2007.
[6]
Jia, Y.; Lao, Y.; Leung, S.W. Glycaemic control efficacy of oral antidiabetic drugs in treating type 2 diabetes: a protocol for network meta-analysis. BMJ Open, 2015, 5(3)e006139
[http://dx.doi.org/10.1136/bmjopen-2014-006139] [PMID: 25762228]
[7]
Qi, Y.; Chen, Y.; He, J.; Gao, X. Highly sensitive and simple colorimetric assay of hydrogen peroxide and glucose in human serum via the smart synergistic catalytic mechanism. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 234118233
[http://dx.doi.org/10.1016/j.saa.2020.118233] [PMID: 32182569]
[8]
Qi, Y. An aptamer-based colorimetric sensing of acetamiprid in environmental samples: Convenience, sensitivity and practicability. Sens. Actuators B Chem., 2020, 304127359
[http://dx.doi.org/10.1016/j.snb.2019.127359]
[9]
Qi, Y.; Ma, J.; Chen, X.; Xiu, F.R.; Chen, Y.; Lu, Y. Practical aptamer-based assay of heavy metal mercury ion in contaminated environmental samples: convenience and sensitivity. Anal. Bioanal. Chem., 2020, 412(2), 439-448.
[http://dx.doi.org/10.1007/s00216-019-02253-8] [PMID: 31773229]
[10]
Qi, Y. A convenient chemiluminescence detection for bisphenol A in E-waste dismantling site based on surface charge change of cationic gold nanoparticles. Microchem. J., 2019, 147, 789-796.
[http://dx.doi.org/10.1016/j.microc.2019.03.095]
[11]
Sekhon-Loodu, S.; Rupasinghe, H.P.V. Evaluation of antioxidant, antidiabetic and antiobesity potential of selected traditional medicinal plants. Front. Nutr., 2019, 6, 53.
[http://dx.doi.org/10.3389/fnut.2019.00053] [PMID: 31106207]
[12]
Karimi, A.; Majlesi, M.; Rafieian-Kopaei, M. Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacol., 2015, 4(1), 27-30.
[PMID: 28197471]
[13]
Skalli, S.; Hassikou, R.; Arahou, M. An ethnobotanical survey of medicinal plants used for diabetes treatment in Rabat, Morocco. Heliyon, 2019, 5(3)e01421
[http://dx.doi.org/10.1016/j.heliyon.2019.e01421] [PMID: 30976694]
[14]
Herz, C. Evaluation of an aqueous extract from horseradish root (Armoracia rusticana Radix) against lipopolysaccharide-induced cellular inflammation reaction. Evidence-Based Complementary and Alternative Medicine, 2017, 2017.
[15]
Gafrikova, M.; Galova, E.; Sevcovicova, A.; Imreova, P.; Mucaji, P.; Miadokova, E. Extract from Armoracia rusticana and its flavonoid components protect human lymphocytes against oxidative damage induced by hydrogen peroxide. Molecules, 2014, 19(3), 3160-3172.
[http://dx.doi.org/10.3390/molecules19033160] [PMID: 24637991]
[16]
Wagner, A.E.; Boesch-Saadatmandi, C.; Dose, J.; Schultheiss, G.; Rimbach, G. Anti-inflammatory potential of allyl-isothiocyanate--role of Nrf2, NF-(κ) B and microRNA-155. J. Cell. Mol. Med., 2012, 16(4), 836-843.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01367.x] [PMID: 21692985]
[17]
Agneta, R.; Möllers, C.; Rivelli, A.R. Horseradish (Armoracia rusticana), a neglected medical and condiment species with a relevant glucosinolate profile: a review. Genet. Resour. Crop Evol., 2013, 60(7), 1923-1943.
[http://dx.doi.org/10.1007/s10722-013-0010-4]
[18]
Keypour, S.; Mirzania, F.; Farimani, M.M. Antioxidant activity, total flavonoid and phenolic contents of three different extracts of Hyrcanian Reishi. Curr. Bioact. Compd., 2019, 15(1), 109-113.
[http://dx.doi.org/10.2174/1573407213666171107151007]
[19]
Vilar, S.; Cozza, G.; Moro, S. Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Curr. Top. Med. Chem., 2008, 8(18), 1555-1572.
[http://dx.doi.org/10.2174/156802608786786624] [PMID: 19075767]
[20]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res., 2019, 47(D1), D1102-D1109.
[http://dx.doi.org/10.1093/nar/gky1033] [PMID: 30371825]
[21]
Benet, L.Z.; Hosey, C.M.; Ursu, O.; Oprea, T.I. BDDCS, the Rule of 5 and drugability. Adv. Drug Deliv. Rev., 2016, 101, 89-98.
[http://dx.doi.org/10.1016/j.addr.2016.05.007] [PMID: 27182629]
[22]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[23]
Papp, N. Ethnobotanical and ethnopharmacological data of Armoracia rusticana P. Gaertner, B. Meyer et Scherb. in Hungary and Romania: a case study. Genet. Resour. Crop Evol., 2018, 65(7), 1893-1905.
[http://dx.doi.org/10.1007/s10722-018-0663-0]
[24]
Chandramohan, G. Antidiabetic effect of kaempferol a flavonoid compound, on streptozotocin-induced diabetic rats with special reference to glycoprotein components. Prog. Nutr., 2015, 17(1), 50-57.
[25]
Vinayagam, R.; Xu, B. Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr. Metab. (Lond.), 2015, 12(1), 60.
[http://dx.doi.org/10.1186/s12986-015-0057-7] [PMID: 26705405]
[26]
Tavani, C.; Bianchi, L.; De Palma, A.; Passeri, G.I.; Punzi, G.; Pierri, C.L.; Lovece, A.; Cavalluzzi, M.M.; Franchini, C.; Lentini, G.; Petrillo, G. Nitro-substituted tetrahydroindolizines and homologs: Design, kinetics, and mechanism of α-glucosidase inhibition. Bioorg. Med. Chem. Lett., 2017, 27(17), 3980-3986.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.068] [PMID: 28781158]
[27]
Ezzat, S.M.; Salama, M.M. A new α-glucosidase inhibitor from Achillea fragrantissima (Forssk.) Sch. Bip. growing in Egypt. Nat. Prod. Res., 2014, 28(11), 812-818.
[http://dx.doi.org/10.1080/14786419.2014.891203] [PMID: 24666348]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy