Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Effect of Chalcones on the Main Sources of Reactive Species Production: Possible Therapeutic Implications in Diabetes Mellitus

Author(s): Adelaide Sousa, Daniela Ribeiro, Eduarda Fernandes* and Marisa Freitas*

Volume 28, Issue 8, 2021

Published on: 24 May, 2020

Page: [1625 - 1669] Pages: 45

DOI: 10.2174/0929867327666200525010007

Price: $65

Abstract

Diabetes mellitus (DM) is characterized by hyperglycaemia, resulting from defects in insulin secretion, insulin action or both. There are several factors such as hyperlipidemia and oxidative stress (OS), namely the production of reactive oxygen/nitrogen species (ROS/RNS), that actively contribute to the development and worsening of DM. Chalcones, also termed as benzalacetophenone or benzylidene acetophenone, present a 1,3-diaryl-2-propen-1-one scaffold that has been shown to be highly promising in the development of new antioxidant compounds. Considering the potential interest of antioxidant therapy, the present review scrutinizes the role of the main sources of ROS/RNS production during DM. The modulatory effect of chalcones against nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, xanthine oxidase, mitochondrial respiratory chain and nitric oxide synthase, is also thoroughly discussed, establishing, whenever possible, a structure-activity relationship (SAR). From the SAR analysis, it can be stated that the presence of catechol groups, hydroxyl and methoxyl substituents in the chalcones scaffold improves their modulatory activity against the main sources of ROS/RNS production in DM.

Keywords: Chalcones, diabetes mellitus, oxidative stress, NADPH oxidase, xanthine oxidase, mitochondrial respiratory chain, nitric oxide synthase.

« Previous
[1]
Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress-a concise review. Saudi Pharm. J., 2016, 24(5), 547-553.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]
[2]
Aouacheri, O.; Saka, S.; Krim, M.; Messaadia, A.; Maidi, I. The investigation of the oxidative stress-related parameters in type 2 diabetes mellitus. Can. J. Diabetes, 2015, 39(1), 44-49.
[http://dx.doi.org/10.1016/j.jcjd.2014.03.002] [PMID: 25065473]
[3]
Yang, H.; Jin, X.; Kei Lam, C.W.; Yan, S.K. Oxidative stress and diabetes mellitus. Clin. Chem. Lab. Med., 2011, 49(11), 1773-1782.
[http://dx.doi.org/10.1515/cclm.2011.250] [PMID: 21810068]
[4]
Mahapatra, D.K.; Asati, V.; Bharti, S.K. Chalcones and their therapeutic targets for the management of diabetes: structural and pharmacological perspectives. Eur. J. Med. Chem., 2015, 92, 839-865.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.051] [PMID: 25638569]
[5]
Harreiter, J.; Roden, M. [Diabetes mellitus-definition, classification, diagnosis, screening and prevention (Update 2019) Wien. Klin. Wochenschr., 2019, 131(Suppl. 1), 6-15.
[http://dx.doi.org/10.1007/s00508-019-1450-4] [PMID: 30980151]
[6]
Gorin, Y.; Block, K. Nox as a target for diabetic complications. Clin. Sci. (Lond.), 2013, 125(8), 361-382.
[http://dx.doi.org/10.1042/CS20130065] [PMID: 23767990]
[7]
Martinez, L.C.; Sherling, D.; Holley, A. The screening and prevention of diabetes mellitus. Prim. Care, 2019, 46(1), 41-52.
[http://dx.doi.org/10.1016/j.pop.2018.10.006] [PMID: 30704659]
[8]
Lontchi-Yimagou, E.; Sobngwi, E.; Matsha, T.E.; Kengne, A.P. Diabetes mellitus and inflammation. Curr. Diab. Rep., 2013, 13(3), 435-444.
[http://dx.doi.org/10.1007/s11892-013-0375-y] [PMID: 23494755]
[9]
Altas, I.D.F. Diabetes atlas ,9th edition; International Diabetes Federation: Brussels, 2019. Available at: www.diabetesatlas. org/en/ (Accessed Date: 3rd September, 2019).
[10]
Atlas, I.D.F. 8th; International Diabetes Federation: Brussels, 2017. Available at: http://www.diabetesatlas.org/en/www.diabetesatlas.org/en/ (Accessed in 15 September, 2019).
[11]
Tokarz, V.L.; MacDonald, P.E.; Klip, A. The cell biology of systemic insulin function. J. Cell Biol., 2018, 217(7), 2273-2289.
[http://dx.doi.org/10.1083/jcb.201802095] [PMID: 29622564]
[12]
Poretsky, L. Principles of diabetes mellitus, 2nd ed; Springer, 2010.
[http://dx.doi.org/10.1007/978-0-387-09841-8]
[13]
Klöppel, G.; Löhr, M.; Habich, K.; Oberholzer, M.; Heitz, P.U. Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv. Synth. Pathol. Res., 1985, 4(2), 110-125.
[http://dx.doi.org/10.1159/000156969] [PMID: 3901180]
[14]
Zaccardi, F.; Webb, D.R.; Yates, T.; Davies, M.J. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad. Med. J., 2016, 92(1084), 63-69.
[http://dx.doi.org/10.1136/postgradmedj-2015-133281] [PMID: 26621825]
[15]
Ribeiro, D.; Freitas, M.; Lima, L.F.C. J.; Fernandes, E. Proinflammatory pathways: the modulation by flavonoids. Med. Res. Rev., 2015, 35(5), 877-936.
[http://dx.doi.org/10.1002/med.21347] [PMID: 25926332]
[16]
Zatalia, S.R.; Sanusi, H. The role of antioxidants in the pathophysiology, complications, and management of diabetes mellitus. Acta Med. Indones., 2013, 45(2), 141-147.
[PMID: 23770795]
[17]
Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem., 2015, 97, 55-74.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.040] [PMID: 25942353]
[18]
Drews, G.; Krippeit-Drews, P.; Düfer, M. Oxidative stress and beta-cell dysfunction. Pflugers Arch., 2010, 460(4), 703-718.
[http://dx.doi.org/10.1007/s00424-010-0862-9] [PMID: 20652307]
[19]
Oguntibeju, O.O. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int. J. Physiol. Pathophysiol. Pharmacol., 2019, 11(3), 45-63.
[PMID: 31333808]
[20]
Folli, F.; Corradi, D.; Fanti, P.; Davalli, A.; Paez, A.; Giaccari, A.; Perego, C.; Muscogiuri, G. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: avenues for a mechanistic-based therapeutic approach. Curr. Diabetes Rev., 2011, 7(5), 313-324.
[http://dx.doi.org/10.2174/157339911797415585] [PMID: 21838680]
[21]
Matough, F.A.; Budin, S.B.; Hamid, Z.A.; Alwahaibi, N.; Mohamed, J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ. Med. J., 2012, 12(1), 5-18.
[http://dx.doi.org/10.12816/0003082] [PMID: 22375253]
[22]
Volpe, C.M.O.; Villar-Delfino, P.H.; Dos Anjos, P.M.F.; Nogueira-Machado, J.A. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis., 2018, 9(2), 119.
[http://dx.doi.org/10.1038/s41419-017-0135-z] [PMID: 29371661]
[23]
Babior, B.M. NADPH oxidase: an update. Blood, 1999, 93(5), 1464-1476.
[http://dx.doi.org/10.1182/blood.V93.5.1464] [PMID: 10029572]
[24]
Tang, Y.; Long, J.; Liu, J. Chapter 8 - Hyperglycemiaassociated oxidative stress induces autophagy: involvement of the ROS-ERK/JNK-p53 Pathway. In: Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging. Elsevier Inc. Vol. 1, , 2013.
[http://dx.doi.org/10.1016/B978-0-12-405530-8.00008-X]
[25]
Osto, E.; Cosentino, F. The role of oxidative stress in endothelial dysfunction and vascular inflammation.Nitric Oxide, 2nd ed; Elsevier, 2010, pp. 705-754.
[http://dx.doi.org/10.1016/B978-0-12-373866-0.00022-8]
[26]
Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal., 2014, 20(7), 1126-1167.
[http://dx.doi.org/10.1089/ars.2012.5149] [PMID: 23991888]
[27]
Fakhruddin, S.; Alanazi, W.; Jackson, K.E. Diabetes-induced reactive oxygen species: mechanism of their generation and role in renal injury. J. Diabetes Res., 2017.20178379327
[http://dx.doi.org/10.1155/2017/8379327] [PMID: 28164134]
[28]
Sedeek, M.; Nasrallah, R.; Touyz, R.M.; Hébert, R.L. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J. Am. Soc. Nephrol., 2013, 24(10), 1512-1518.
[http://dx.doi.org/10.1681/ASN.2012111112] [PMID: 23970124]
[29]
Belambri, S.A.; Rolas, L.; Raad, H.; Hurtado-Nedelec, M.; Dang, P.M.; El-Benna, J. NADPH oxidase activation in neutrophils: role of the phosphorylation of its subunits. Eur. J. Clin. Invest., 2018, 48(Suppl. 2)e12951
[http://dx.doi.org/10.1111/eci.12951] [PMID: 29757466]
[30]
Wu, Y.; Tang, L.; Chen, B. Oxidative stress: implications for the development of diabetic retinopathy and antioxidant therapeutic perspectives. Oxid. Med. Cell. Longev., 2014, 2014752387
[http://dx.doi.org/10.1155/2014/752387] [PMID: 25180070]
[31]
Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J., 2012, 5(1), 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[32]
Trager, W.F. 5.05 - Principles of drug metabolism 1: Redox Reactions A2 - Taylor, John B.Comprehensive Medicinal Chemistry II; Triggle, D.J., Ed.; Elsevier: Oxford, 2007, pp. 87-132.
[http://dx.doi.org/10.1016/B0-08-045044-X/00119-X ]
[33]
Pacher, P.; Nivorozhkin, A.; Szabó, C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol. Rev., 2006, 58(1), 87-114.
[http://dx.doi.org/10.1124/pr.58.1.6] [PMID: 16507884]
[34]
Johansen, J.S.; Harris, A.K.; Rychly, D.J.; Ergul, A. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc. Diabetol., 2005, 4(1), 5.
[http://dx.doi.org/10.1186/1475-2840-4-5] [PMID: 15862133]
[35]
Rochette, L.; Zeller, M.; Cottin, Y.; Vergely, C. Diabetes, oxidative stress and therapeutic strategies. Biochim. Biophys. Acta, 2014, 1840(9), 2709-2729.
[http://dx.doi.org/10.1016/j.bbagen.2014.05.017] [PMID: 24905298]
[36]
Vorbach, C.; Harrison, R.; Capecchi, M.R. Xanthine oxidoreductase is central to the evolution and function of the innate immune system. Trends Immunol., 2003, 24(9), 512-517.
[http://dx.doi.org/10.1016/S1471-4906(03)00237-0] [PMID: 12967676]
[37]
Tabet, F.; Touyz, R.M. Chapter 30- Reactive oxygen species, oxidative stress, and vascular biology in hypertension. In: In: Comprehensive Hypertension; , 2007; pp. (337)344-.
[http://dx.doi.org/10.1016/B978-0-323-03961-1.50033-7]
[38]
Rahimi, R.; Nikfar, S.; Larijani, B.; Abdollahi, M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed. Pharmacother., 2005, 59(7), 365-373.
[http://dx.doi.org/10.1016/j.biopha.2005.07.002] [PMID: 16081237]
[39]
McNally, J.S.; Saxena, A.; Cai, H.; Dikalov, S.; Harrison, D.G. Regulation of xanthine oxidoreductase protein expression by hydrogen peroxide and calcium. Arterioscler. Thromb. Vasc. Biol., 2005, 25(8), 1623-1628.
[http://dx.doi.org/10.1161/01.ATV.0000170827.16296.6e] [PMID: 15905466]
[40]
Bonini, M.G.; Miyamoto, S.; Di Mascio, P.; Augusto, O. Production of the carbonate radical anion during xanthine oxidase turnover in the presence of bicarbonate. J. Biol. Chem., 2004, 279(50), 51836-51843.
[http://dx.doi.org/10.1074/jbc.M406929200] [PMID: 15448145]
[41]
Knowles, R.G.; Moncada, S. Nitric oxide synthases in mammals. Biochem. J., 1994, 298(Pt 2), 249-258.
[http://dx.doi.org/10.1042/bj2980249] [PMID: 7510950]
[42]
Förstermann, U.; Sessa, W.C. Nitric oxide synthases: regulation and function. Eur. Heart J, 2012, 33(7), 829-837. 837a-837d.
[http://dx.doi.org/10.1093/eurheartj/ehr304] [PMID: 21890489]
[43]
Katusic, Z.S. Vascular endothelial dysfunction: does tetrahydrobiopterin play a role? Am. J. Physiol. Heart Circ. Physiol., 2001, 281(3), H981-H986.
[http://dx.doi.org/10.1152/ajpheart.2001.281.3.h981] [PMID: 11514262]
[44]
Hoang, H.H.; Padgham, S.V.; Meininger, C.J. L-arginine, tetrahydrobiopterin, nitric oxide and diabetes. Curr. Opin. Clin. Nutr. Metab. Care, 2013, 16(1), 76-82.
[http://dx.doi.org/10.1097/MCO.0b013e32835ad1ef] [PMID: 23164986]
[45]
Buse, M.G. Hexosamines, insulin resistance, and the complications of diabetes: current status. Am. J. Physiol. Endocrinol. Metab., 2006, 290(1), E1-E8.
[http://dx.doi.org/10.1152/ajpendo.00329.2005] [PMID: 16339923]
[46]
Rahimi-Madiseh, M.; Malekpour-Tehrani, A.; Bahmani, M.; Rafieian-Kopaei, M. The research and development on the antioxidants in prevention of diabetic complications. Asian Pac. J. Trop. Med., 2016, 9(9), 825-831.
[http://dx.doi.org/10.1016/j.apjtm.2016.07.001] [PMID: 27633293]
[47]
Vásquez-Vivar, J.; Kalyanaraman, B.; Martásek, P.; Hogg, N.; Masters, B.S.S.; Karoui, H.; Tordo, P.; Pritchard, K.A., Jr Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc. Natl. Acad. Sci. USA, 1998, 95(16), 9220-9225.
[http://dx.doi.org/10.1073/pnas.95.16.9220] [PMID: 9689061]
[48]
Luo, S.; Lei, H.; Qin, H.; Xia, Y. Molecular mechanisms of endothelial NO synthase uncoupling. Curr. Pharm. Des., 2014, 20(22), 3548-3553.
[http://dx.doi.org/10.2174/13816128113196660746] [PMID: 24180388]
[49]
DiMauro, S.; Schon, E.A. Mitochondrial respiratory-chain diseases. N. Engl. J. Med., 2003, 348(26), 2656-2668.
[http://dx.doi.org/10.1056/NEJMra022567] [PMID: 12826641]
[50]
Lazo-de-la-Vega, M-L.; Fernández-Mejía, C. Oxidative stress in diabetes mellitus and the role of vitamins with antioxidant actions.Oxidative Stress and Chronic Degenerative Diseases-A Role for Antioxidants; InTech, 2013.
[http://dx.doi.org/10.5772/51788]
[51]
Kumar, V.; Abbas, A.K.; Fausto, N.; Aster, J.C. Robbins and cotran pathologic basis of disease, professional, Edition E-Book; Elsevier Health Sciences, 2014.
[52]
Blake, R.; Trounce, I.A. Mitochondrial dysfunction and complications associated with diabetes. Biochim. Biophys. Acta, 2014, 1840(4), 1404-1412.
[http://dx.doi.org/10.1016/j.bbagen.2013.11.007] [PMID: 24246956]
[53]
Sivitz, W.I.; Yorek, M.A. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid. Redox Signal., 2010, 12(4), 537-577.
[http://dx.doi.org/10.1089/ars.2009.2531] [PMID: 19650713]
[54]
Litvinova, L.; Atochin, D.N.; Fattakhov, N.; Vasilenko, M.; Zatolokin, P.; Kirienkova, E. Nitric oxide and mitochondria in metabolic syndrome. Front. Physiol., 2015, 6, 20.
[http://dx.doi.org/10.3389/fphys.2015.00020] [PMID: 25741283]
[55]
Geto, Z.; Molla, M.D.; Challa, F.; Belay, Y.; Getahun, T. mitochondrial dynamic dysfunction as a main triggering factor for inflammation associated chronic non-communicable diseases. J. Inflamm. Res., 2020, 13, 97-107.
[http://dx.doi.org/10.2147/JIR.S232009] [PMID: 32110085]
[56]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. chalcone: a privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[57]
Karimi-Sales, E.; Mohaddes, G.; Alipour, M.R. Chalcones as putative hepatoprotective agents: Preclinical evidence and molecular mechanisms. Pharmacol. Res., 2018, 129, 177-187.
[http://dx.doi.org/10.1016/j.phrs.2017.11.022] [PMID: 29175112]
[58]
Kostanecki, S.; Tambor, J. Ueber die sechs isomeren Monoxybenzalacetophenone (Monoxychalcone). Chem. Ber., 1899, 32, 1921-1926.
[http://dx.doi.org/10.1002/cber.18990320293 ]
[59]
Chopra, P.G. Chalcones: a brief review. Int. J. Res. Eng. Appl. Sci., 2016, 6(5), 173-185.
[60]
Katsori, A.M.; Hadjipavlou-Litina, D. Recent progress in therapeutic applications of chalcones. Expert Opin. Ther. Pat., 2011, 21(10), 1575-1596.
[http://dx.doi.org/10.1517/13543776.2011.596529] [PMID: 21711087]
[61]
Taiz, L.; Zeiger, E. Plant physiology; Publishers Sunderland; Sinauer Associates, Inc.: Massachusetts, 1998.
[http://dx.doi.org/10.1093/aob/mcg079]
[62]
Diaz-Tielas, C.; Grana, E.; Reigosa, M.; Sanchez-Moreiras, A. Biological activities and novel applications of chalcones. Planta Daninha, 2016, 34(3), 607-616.
[http://dx.doi.org/10.1590/s0100-83582016340300022]
[63]
Kontogiorgis, C.; Mantzanidou, M.; Hadjipavlou-Litina, D. Chalcones and their potential role in inflammation. Mini Rev. Med. Chem., 2008, 8(12), 1224-1242.
[http://dx.doi.org/10.2174/138955708786141034] [PMID: 18855737]
[64]
Orlikova, B.; Tasdemir, D.; Golais, F.; Dicato, M.; Diederich, M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr., 2011, 6(2), 125-147.
[http://dx.doi.org/10.1007/s12263-011-0210-5] [PMID: 21484163]
[65]
Bandgar, B.P.; Gawande, S.S.; Bodade, R.G.; Totre, J.V.; Khobragade, C.N. Synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents. Bioorg. Med. Chem., 2010, 18(3), 1364-1370.
[http://dx.doi.org/10.1016/j.bmc.2009.11.066] [PMID: 20064725]
[66]
Opletalová, V. Chalcones and their heterocyclic analogs as potential therapeutic agents in bacterial diseases Ceska Slov. Farm., 2000, 49(6), 278-284.
[PMID: 11367546]
[67]
Liu, M.; Wilairat, P.; Go, M-L. Antimalarial alkoxylated and hydroxylated chalcones [corrected]: structure-activity relationship analysis. J. Med. Chem., 2001, 44(25), 4443-4452.
[http://dx.doi.org/10.1021/jm0101747] [PMID: 11728189]
[68]
Patel, N.B.; Patel, H.R. Synthesis and antibacterial and antifungal studies of novel nitrogen containing heterocycles from 5-ethylpyridin-2-ethanol. Indian J. Pharm. Sci., 2010, 72(5), 613-620.
[http://dx.doi.org/10.4103/0250-474X.78531] [PMID: 21694994]
[69]
Lee, S.H.; Nan, J.X.; Zhao, Y.Z.; Woo, S.W.; Park, E.J.; Kang, T.H.; Seo, G.S.; Kim, Y.C.; Sohn, D.H. The chalcone butein from Rhus verniciflua shows antifibrogenic activity. Planta Med., 2003, 69(11), 990-994.
[http://dx.doi.org/10.1055/s-2003-45143] [PMID: 14735434]
[70]
Lin, Y.M.; Zhou, Y.; Flavin, M.T.; Zhou, L.M.; Nie, W.; Chen, F.C. Chalcones and flavonoids as anti-tuberculosis agents. Bioorg. Med. Chem., 2002, 10(8), 2795-2802.
[http://dx.doi.org/10.1016/S0968-0896(02)00094-9] [PMID: 12057669]
[71]
Barfod, L.; Kemp, K.; Hansen, M.; Kharazmi, A. Chalcones from Chinese liquorice inhibit proliferation of T cells and production of cytokines. Int. Immunopharmacol., 2002, 2(4), 545-555.
[http://dx.doi.org/10.1016/S1567-5769(01)00202-8] [PMID: 11962733]
[72]
Boumendjel, A.; Boccard, J.; Carrupt, P.A.; Nicolle, E.; Blanc, M.; Geze, A.; Choisnard, L.; Wouessidjewe, D.; Matera, E.L.; Dumontet, C. Antimitotic and antiproliferative activities of chalcones: forward structure-activity relationship. J. Med. Chem., 2008, 51(7), 2307-2310.
[http://dx.doi.org/10.1021/jm0708331] [PMID: 18293907]
[73]
Narender, T.; Khaliq, T. Shweta; Nishi; Goyal, N.; Gupta, S. Synthesis of chromenochalcones and evaluation of their in vitro antileishmanial activity. Bioorg. Med. Chem., 2005, 13(23), 6543-6550.
[http://dx.doi.org/10.1016/j.bmc.2005.07.005] [PMID: 16185885]
[74]
Bonesi, M.; Loizzo, M.R.; Statti, G.A.; Michel, S.; Tillequin, F.; Menichini, F. The synthesis and angiotensin converting enzyme (ACE) inhibitory activity of chalcones and their pyrazole derivatives. Bioorg. Med. Chem. Lett., 2010, 20(6), 1990-1993.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.113] [PMID: 20167484]
[75]
Hayat, F.; Moseley, E.; Salahuddin, A.; Van Zyl, R.L.; Azam, A. Antiprotozoal activity of chloroquinoline based chalcones. Eur. J. Med. Chem., 2011, 46(5), 1897-1905.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.004] [PMID: 21377771]
[76]
Cai, C-Y.; Rao, L.; Rao, Y.; Guo, J-X.; Xiao, Z-Z.; Cao, J-Y.; Huang, Z-S.; Wang, B. Analogues of xanthones--Chalcones and bis-chalcones as α-glucosidase inhibitors and anti-diabetes candidates. Eur. J. Med. Chem., 2017, 130, 51-59.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.007] [PMID: 28242551]
[77]
Rammohan, A.; Bhaskar, B.V.; Venkateswarlu, N.; Gu, W.; Zyryanov, G.V. Design, synthesis, docking and biological evaluation of chalcones as promising antidiabetic agents. Bioorg. Chem., 2020, 95103527
[http://dx.doi.org/10.1016/j.bioorg.2019.103527] [PMID: 31911298]
[78]
Johnson, D. A.; Johnson, J. A. Nrf2--a therapeutic target for the treatment of neurodegenerative diseases. Free Radic. Biol. Med., 2015, 88(Pt B), 253-267.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.07.147] [PMID: 26281945]
[79]
Gomes, M.N.; Muratov, E.N.; Pereira, M.; Peixoto, J.C.; Rosseto, L.P.; Cravo, P.V.L.; Andrade, C.H.; Neves, B.J. Chalcone derivatives: promising starting points for drug design. Molecules, 2017, 22(8), 1210.
[http://dx.doi.org/10.3390/molecules22081210] [PMID: 28757583]
[80]
Wang, J-P.; Tsao, L-T.; Raung, S-L.; Lin, C-N. Investigation of the inhibitory effect of broussochalcone A on respiratory burst in neutrophils. Eur. J. Pharmacol., 1997, 320(2-3), 201-208.
[http://dx.doi.org/10.1016/S0014-2999(96)00888-6] [PMID: 9059855]
[81]
Wang, J.P.; Chang, L.C.; Hsu, M.F.; Lin, C.N. The blockade of formyl peptide-induced respiratory burst by 2′,5′-dihydroxy-2-furfurylchalcone involves phospholipase D signaling in neutrophils. Naunyn Schmiedebergs Arch. Pharmacol., 2003, 368(3), 166-174.
[http://dx.doi.org/10.1007/s00210-003-0782-8] [PMID: 12928764]
[82]
Itoh, T.; Ninomiya, M.; Nozawa, Y.; Koketsu, M. Chalcone glycosides isolated from aerial parts of Brassica rapa L. ‘hidabeni’ suppress antigen-stimulated degranulation in rat basophilic leukemia RBL-2H3 cells. Bioorg. Med. Chem., 2010, 18(19), 7052-7057.
[http://dx.doi.org/10.1016/j.bmc.2010.08.008] [PMID: 20801664]
[83]
Perez, M.K.; Piedimonte, G. Metabolic asthma: is there a link between obesity, diabetes, and asthma? Immunol. Allergy Clin. North Am., 2014, 34(4), 777-784.
[http://dx.doi.org/10.1016/j.iac.2014.07.002] [PMID: 25282290]
[84]
Chen, Y.H.; Lin, C.L.; Bau, D.T.; Hung, Y.C. Risk of allergic conjunctivitis in patients with type 1 diabetes mellitus: a population-based retrospective cohort study. BMJ Open, 2017, 7(6)e015795
[http://dx.doi.org/10.1136/bmjopen-2016-015795] [PMID: 28630085]
[85]
Haraguchi, H.; Ishikawa, H.; Mizutani, K.; Tamura, Y.; Kinoshita, T. Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflata. Bioorg. Med. Chem., 1998, 6(3), 339-347.
[http://dx.doi.org/10.1016/S0968-0896(97)10034-7] [PMID: 9568287]
[86]
Ponce, A.M.; Blanco, S.E.; Molina, A.S.; García-Domenech, R.; Gálvez, J. Study of the action of flavonoids on xanthine-oxidase by molecular topology. J. Chem. Inf. Comput. Sci., 2000, 40(4), 1039-1045.
[http://dx.doi.org/10.1021/ci000020k] [PMID: 10955535]
[87]
Niu, Y.; Zhu, H.; Liu, J.; Fan, H.; Sun, L.; Lu, W.; Liu, X.; Li, L. 3,5,2′,4′-Tetrahydroxychalcone, a new non-purine xanthine oxidase inhibitor. Chem. Biol. Interact., 2011, 189(3), 161-166.
[http://dx.doi.org/10.1016/j.cbi.2010.12.004] [PMID: 21167141]
[88]
Niu, Y.; Zhou, Y.; Lin, H.; Gao, L.H.; Xiong, W.; Zhu, H.; Zou, C.G.; Li, L. Inhibition of 3,5,2′,4′-tetrahydroxychalcone on production of uric acid in hypoxanthine-induced hyperuricemic mice. Biol. Pharm. Bull., 2018, 41(1), 99-105.
[http://dx.doi.org/10.1248/bpb.b17-00655] [PMID: 29093325]
[89]
Hofmann, E.; Webster, J.; Do, T.; Kline, R.; Snider, L.; Hauser, Q.; Higginbottom, G.; Campbell, A.; Ma, L.; Paula, S. Hydroxylated chalcones with dual properties: xanthine oxidase inhibitors and radical scavengers. Bioorg. Med. Chem., 2016, 24(4), 578-587.
[http://dx.doi.org/10.1016/j.bmc.2015.12.024] [PMID: 26762836]
[90]
Li, C.; Hsieh, M.C.; Chang, S.J. Metabolic syndrome, diabetes, and hyperuricemia. Curr. Opin. Rheumatol., 2013, 25(2), 210-216.
[http://dx.doi.org/10.1097/BOR.0b013e32835d951e] [PMID: 23370374]
[91]
Kim, D.W.; Curtis-Long, M.J.; Yuk, H.J.; Wang, Y.; Song, Y.H.; Jeong, S.H.; Park, K.H. Quantitative analysis of phenolic metabolites from different parts of Angelica keiskei by HPLC-ESI MS/MS and their xanthine oxidase inhibition. Food Chem., 2014, 153, 20-27.
[http://dx.doi.org/10.1016/j.foodchem.2013.12.026] [PMID: 24491695]
[92]
Bui, T.H.; Nguyen, N.T.; Dang, P.H.; Nguyen, H.X.; Nguyen, M.T. Design and synthesis of chalcone derivatives as potential non-purine xanthine oxidase inhibitors. Springerplus, 2016, 5(1), 1789.
[http://dx.doi.org/10.1186/s40064-016-3485-6] [PMID: 27795931]
[93]
Xie, Z.; Luo, X.; Zou, Z.; Zhang, X.; Huang, F.; Li, R.; Liao, S.; Liu, Y. Synthesis and evaluation of hydroxychalcones as multifunctional non-purine xanthine oxidase inhibitors for the treatment of hyperuricemia. Bioorg. Med. Chem. Lett., 2017, 27(15), 3602-3606.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.053] [PMID: 28655421]
[94]
Rojas, J.; Domínguez, J.N.; Charris, J.E.; Lobo, G.; Payá, M.; Ferrándiz, M.L. Synthesis and inhibitory activity of dimethylamino-chalcone derivatives on the induction of nitric oxide synthase. Eur. J. Med. Chem., 2002, 37(8), 699-705.
[http://dx.doi.org/10.1016/S0223-5234(02)01387-9] [PMID: 12161067]
[95]
Ko, H.H.; Tsao, L.T.; Yu, K.L.; Liu, C.T.; Wang, J.P.; Lin, C.N. Structure-activity relationship studies on chalcone derivatives. the potent inhibition of chemical mediators release. Bioorg. Med. Chem., 2003, 11(1), 105-111.
[http://dx.doi.org/10.1016/S0968-0896(02)00312-7] [PMID: 12467713]
[96]
Ban, H.S.; Suzuki, K.; Lim, S.S.; Jung, S.H.; Lee, S.; Ji, J.; Lee, H.S.; Lee, Y.S.; Shin, K.H.; Ohuchi, K. Inhibition of lipopolysaccharide-induced expression of inducible nitric oxide synthase and tumor necrosis factor-α by 2′-hydroxychalcone derivatives in RAW 264.7 cells. Biochem. Pharmacol., 2004, 67(8), 1549-1557.
[http://dx.doi.org/10.1016/j.bcp.2003.12.016] [PMID: 15041472]
[97]
Furusawa, J.; Funakoshi-Tago, M.; Mashino, T.; Tago, K.; Inoue, H.; Sonoda, Y.; Kasahara, T. Glycyrrhiza inflata-derived chalcones, Licochalcone A, Licochalcone B and Licochalcone D, inhibit phosphorylation of NF-kappaB p65 in LPS signaling pathway. Int. Immunopharmacol., 2009, 9(4), 499-507.
[http://dx.doi.org/10.1016/j.intimp.2009.01.031] [PMID: 19291859]
[98]
Hara, H.; Nakamura, Y.; Ninomiya, M.; Mochizuki, R.; Kamiya, T.; Aizenman, E.; Koketsu, M.; Adachi, T. Inhibitory effects of chalcone glycosides isolated from Brassica rapa L. ‘hidabeni’ and their synthetic derivatives on LPS-induced NO production in microglia. Bioorg. Med. Chem., 2011, 19(18), 5559-5568.
[http://dx.doi.org/10.1016/j.bmc.2011.07.036] [PMID: 21856162]
[99]
Hara, H.; Ikeda, R.; Ninomiya, M.; Kamiya, T.; Koketsu, M.; Adachi, T. Newly synthesized ‘hidabeni’ chalcone derivatives potently suppress LPS-induced NO production via inhibition of STAT1, but not NF-κB, JNK, and p38, pathways in microglia. Biol. Pharm. Bull., 2014, 37(6), 1042-1049.
[http://dx.doi.org/10.1248/bpb.b14-00116] [PMID: 24882415]
[100]
Ventura, T.L.; Calixto, S.D.; de Azevedo Abrahim-Vieira, B.; de Souza, A.M.; Mello, M.V.; Rodrigues, C.R. Soter de Mariz e Miranda, L.; Alves de Souza, R.O.; Leal, I.C.; Lasunskaia, E.B.; Muzitano, M.F. Antimycobacterial and anti-inflammatory activities of substituted chalcones focusing on an anti-tuberculosis dual treatment approach. Molecules, 2015, 20(5), 8072-8093.
[http://dx.doi.org/10.3390/molecules20058072] [PMID: 25951004]
[101]
Mateeva, N.; Gangapuram, M.; Mazzio, E.; Eyunni, S.; Soliman, K.F.; Redda, K.K. Biological evaluation of synthetic chalcone and flavone derivatives as anti-inflammatory agents. Med. Chem. Res., 2015, 24(4), 1672-1680.
[http://dx.doi.org/10.1007/s00044-014-1214-7] [PMID: 25866456]
[102]
Dang, Y.; Ling, S.; Duan, J.; Ma, J.; Ni, R.; Xu, J.W. Bavachalcone-induced manganese superoxide dismutase expression through the AMP-activated protein kinase pathway in human endothelial cells. Pharmacology, 2015, 95(3-4), 105-110.
[http://dx.doi.org/10.1159/000375452] [PMID: 25766656]
[103]
Zhong, P.; Wu, L.; Qian, Y.; Fang, Q.; Liang, D.; Wang, J.; Zeng, C.; Wang, Y.; Liang, G. Blockage of ROS and NF-κB-mediated inflammation by a new chalcone L6H9 protects cardiomyocytes from hyperglycemia-induced injuries. Biochim. Biophys. Acta, 2015, 1852(7), 1230-1241.
[http://dx.doi.org/10.1016/j.bbadis.2015.02.011] [PMID: 25736300]
[104]
Murphy, M.P. Mitochondrial dysfunction indirectly elevates ROS production by the endoplasmic reticulum. Cell Metab., 2013, 18(2), 145-146.
[http://dx.doi.org/10.1016/j.cmet.2013.07.006] [PMID: 23931748]
[105]
Han, J.Y.; Cho, S.S.; Yang, J.H.; Kim, K.M.; Jang, C.H.; Park, D.E.; Bang, J.S.; Jung, Y.S.; Ki, S.H. The chalcone compound isosalipurposide (ISPP) exerts a cytoprotective effect against oxidative injury via Nrf2 activation. Toxicol. Appl. Pharmacol., 2015, 287(1), 77-85.
[http://dx.doi.org/10.1016/j.taap.2015.05.015] [PMID: 26028482]
[106]
Park, S.M.; Lee, J.R.; Ku, S.K.; Cho, I.J.; Byun, S.H.; Kim, S.C.; Park, S.J.; Kim, Y.W. Isoliquiritigenin in licorice functions as a hepatic protectant by induction of antioxidant genes through extracellular signal-regulated kinase-mediated NF-E2-related factor-2 signaling pathway. Eur. J. Nutr., 2016, 55(8), 2431-2444.
[http://dx.doi.org/10.1007/s00394-015-1051-6] [PMID: 26593436]
[107]
Mohamed, J.; Nazratun Nafizah, A.H.; Zariyantey, A.H.; Budin, S.B. Mechanisms of diabetes-induced liver damage: The role of oxidative stress and inflammation. Sultan Qaboos Univ. Med. J., 2016, 16(2), e132-e141.
[http://dx.doi.org/10.18295/squmj.2016.16.02.002] [PMID: 27226903]
[108]
Jiang, B.; Le, L.; Liu, H.; Xu, L.; He, C.; Hu, K.; Peng, Y.; Xiao, P. Marein protects against methylglyoxal-induced apoptosis by activating the AMPK pathway in PC12 cells. Free Radic. Res., 2016, 50(11), 1173-1187.
[http://dx.doi.org/10.1080/10715762.2016.1222374] [PMID: 27596733]
[109]
Alshammari, G.M.; Balakrishnan, A.; Chinnasamy, T. Butein protects the nonalcoholic fatty liver through mitochondrial reactive oxygen species attenuation in rats. Biofactors, 2018, 44(3), 289-298.
[http://dx.doi.org/10.1002/biof.1428] [PMID: 29672963]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy