Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Roles of Dietary, Nutritional and Lifestyle Interventions in Adipose Tissue Adaptation and Obesity

Author(s): Geir Bjørklund*, Torsak Tippairote, Maryam Dadar, Fernando Lizcano, Jan Aaseth and Olga Borisova

Volume 28, Issue 9, 2021

Published on: 05 May, 2020

Page: [1683 - 1702] Pages: 20

DOI: 10.2174/0929867327666200505090449

Price: $65

Abstract

The obesity and the associated non-communicable diseases (NCDs) are globally increasing in their prevalence. While the modern-day lifestyle required less ventilation of metabolic energy through muscular activities, this lifestyle transition also provided the unlimited accession to foods around the clock, which prolong the daily eating period of foods that contained high calorie and high glycemic load. These situations promote the high continuous flux of carbon substrate availability in mitochondria and induce the indecisive bioenergetic switches. The disrupted bioenergetic milieu increases the uncoupling respiration due to the excess flow of the substrate-derived reducing equivalents and reduces ubiquinones into the respiratory chain. The diversion of the uncoupling proton gradient through adipocyte thermogenesis will then alleviate the damaging effects of free radicals to mitochondria and other organelles. The adaptive induction of white adipose tissues (WAT) to beige adipose tissues (beAT) has shown beneficial effects on glucose oxidation, ROS protection and mitochondrial function preservation through the uncoupling protein 1 (UCP1)-independent thermogenesis of beAT. However, the maladaptive stage can eventually initiate with the persistent unhealthy lifestyles. Under this metabolic gridlock, the low oxygen and pro-inflammatory environments promote the adipose breakdown with sequential metabolic dysregulation, including insulin resistance, systemic inflammation and clinical NCDs progression. It is unlikely that a single intervention can reverse all these complex interactions. A comprehensive protocol that includes dietary, nutritional and all modifiable lifestyle interventions, can be the preferable choice to decelerate, stop, or reverse the NCDs pathophysiologic processes.

Keywords: Obesity, adipocytes, mitochondria, thermogenesis, adaptation, maladaptation, diet, nutrients, lifestyle.

[1]
Jaspers, L.; Colpani, V.; Chaker, L.; van der Lee, S.J.; Muka, T.; Imo, D.; Mendis, S.; Chowdhury, R.; Bramer, W.M.; Falla, A.; Pazoki, R.; Franco, O.H. The global impact of non-communicable diseases on households and impoverishment: a systematic review. Eur. J. Epidemiol., 2015, 30(3), 163-188.
[http://dx.doi.org/10.1007/s10654-014-9983-3] [PMID: 25527371]
[2]
Chan, M. Ten years in public health 2007-2017: Report by Dr. Margaret Chan, Director-General In: World Health Organization; , 2018. Geneva.
[3]
Castro, A.V.B.; Kolka, C.M.; Kim, S.P.; Bergman, R.N. Obesity, insulin resistance and comorbidities? Mechanisms of association. Arq. Bras. Endocrinol. Metabol, 2014, 58(6), 600-609.
[http://dx.doi.org/10.1590/0004-2730000003223] [PMID: 25211442]
[4]
Cai, L.; Lubitz, J.; Flegal, K.M.; Pamuk, E.R. The predicted effects of chronic obesity in middle age on medicare costs and mortality. Med. Care, 2010, 48(6), 510-517.
[http://dx.doi.org/10.1097/MLR.0b013e3181dbdb20] [PMID: 20473195]
[5]
Hammond, R.A.; Levine, R. The economic impact of obesity in the United States. Diabetes Metab. Syndr. Obes., 2010, 3, 285-295.
[http://dx.doi.org/10.2147/DMSO.S7384] [PMID: 21437097]
[6]
Bjørndal, B.; Burri, L.; Staalesen, V.; Skorve, J.; Berge, R.K. Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J. Obes., 2011., , 2011490650..
[http://dx.doi.org/10.1155/2011/490650] [PMID: 21403826]
[7]
Uranga, R.M.; Keller, J.N. The complex interactions between obesity, metabolism and the brain. Front. Neurosci., 2019, 13(513), 513.
[http://dx.doi.org/10.3389/fnins.2019.00513] [PMID: 31178685]
[8]
Obesity and Lipotoxicity. Engin, A.B, Eds;; Engin, A. Springer International Publishing: Berlin, 2017.
[http://dx.doi.org/10.1007/978-3-319-48382-5]
[9]
Freese, J.; Klement, R.J.; Ruiz-Núñez, B.; Schwarz, S.; Lötzerich, H. The sedentary (r)evolution: Have we lost our metabolic flexibility? F1000 Res., 2017, 6, 1787.
[http://dx.doi.org/10.12688/f1000research.12724.1] [PMID: 29225776]
[10]
Muoio, D.M.; Inflexibility, M. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. Cell, 2014, 159(6), 1253-1262.
[http://dx.doi.org/10.1016/j.cell.2014.11.034] [PMID: 25480291]
[11]
Mehta, M.M.; Weinberg, S.E.; Chandel, N.S. Mitochondrial control of immunity: beyond ATP. Nat. Rev. Immunol., 2017, 17(10), 608-620. advance online publication
[http://dx.doi.org/10.1038/nri.2017.66] [PMID: 28669986]
[12]
Kelley, D.E. Skeletal muscle fat oxidation: timing and flexibility are everything. J. Clin. Invest., 2005, 115(7), 1699-1702.
[http://dx.doi.org/10.1172/JCI25758] [PMID: 16007246]
[13]
Kelley, D.E.; Mandarino, L.J. Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes, 2000, 49(5), 677-683.
[http://dx.doi.org/10.2337/diabetes.49.5.677] [PMID: 10905472]
[14]
Ikeda, K.; Maretich, P.; Kajimura, S. The common and distinct features of brown and beige adipocytes. Trends Endocrinol. Metab., 2018, 29(3), 191-200.
[http://dx.doi.org/10.1016/j.tem.2018.01.001] [PMID: 29366777]
[15]
Chouchani, E.T.; Kajimura, S. Metabolic adaptation and maladaptation in adipose tissue. Nat. Metab., 2019, 1(2), 189-200.
[http://dx.doi.org/10.1038/s42255-018-0021-8] [PMID: 31903450]
[16]
Guilherme, A.; Henriques, F.; Bedard, A.H.; Czech, M.P. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nat. Rev. Endocrinol., 2019, 15(4), 207-225.
[http://dx.doi.org/10.1038/s41574-019-0165-y] [PMID: 30733616]
[17]
Tormos, K.V.; Anso, E.; Hamanaka, R.B.; Eisenbart, J.; Joseph, J.; Kalyanaraman, B.; Chandel, N.S. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab., 2011, 14(4), 537-544.
[http://dx.doi.org/10.1016/j.cmet.2011.08.007] [PMID: 21982713]
[18]
Betz, M.J.; Enerbäck, S. Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nat. Rev. Endocrinol., 2018, 14(2), 77-87.
[http://dx.doi.org/10.1038/nrendo.2017.132] [PMID: 29052591]
[19]
Brestoff, J.R.; Artis, D. Immune regulation of metabolic homeostasis in health and disease. Cell, 2015, 161(1), 146-160.
[http://dx.doi.org/10.1016/j.cell.2015.02.022] [PMID: 25815992]
[20]
Alcalá, M.; Calderon-Dominguez, M.; Serra, D.; Herrero, L.; Viana, M. Mechanisms of impaired brown adipose tissue recruitment in obesity. Front. Physiol., 2019, 10(94), 94.
[http://dx.doi.org/10.3389/fphys.2019.00094] [PMID: 30814954]
[21]
Cinti, S. The adipose organ. Prostaglandins Leukot. Essent. Fatty Acids, 2005, 73(1), 9-15.
[http://dx.doi.org/10.1016/j.plefa.2005.04.010] [PMID: 15936182]
[22]
Wang, P.; Mariman, E.; Renes, J.; Keijer, J. The secretory function of adipocytes in the physiology of white adipose tissue. J. Cell. Physiol., 2008, 216(1), 3-13.
[http://dx.doi.org/10.1002/jcp.21386] [PMID: 18264975]
[23]
Galgani, J.E.; Moro, C.; Ravussin, E. Metabolic flexibility and insulin resistance. Am. J. Physiol. Endocrinol. Metab., 2008, 295(5), E1009-E1017.
[http://dx.doi.org/10.1152/ajpendo.90558.2008] [PMID: 18765680]
[24]
De Pauw, A.; Tejerina, S.; Raes, M.; Keijer, J.; Arnould, T. Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations. Am. J. Pathol., 2009, 175(3), 927-939.
[http://dx.doi.org/10.2353/ajpath.2009.081155] [PMID: 19700756]
[25]
Kahn, C.R.; Wang, G.; Lee, K.Y. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J. Clin. Invest., 2019, 129(10), 3990-4000.
[http://dx.doi.org/10.1172/JCI129187] [PMID: 31573548]
[26]
Czech, M.P. Mechanisms of insulin resistance related to white, beige and brown adipocytes. Mol. Metab., 2020, 34, 27-42.
[http://dx.doi.org/10.1016/j.molmet.2019.12.014] [PMID: 32180558]
[27]
Wu, J.; Boström, P.; Sparks, L.M.; Ye, L.; Choi, J.H.; Giang, A-H.; Khandekar, M.; Virtanen, K.A.; Nuutila, P.; Schaart, G.; Huang, K.; Tu, H.; van Marken Lichtenbelt, W.D.; Hoeks, J.; Enerbäck, S.; Schrauwen, P.; Spiegelman, B.M. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell, 2012, 150(2), 366-376.
[http://dx.doi.org/10.1016/j.cell.2012.05.016] [PMID: 22796012]
[28]
Zwick, R.K.; Guerrero-Juarez, C.F.; Horsley, V.; Plikus, M.V. Anatomical, physiological and functional diversity of adipose tissue. Cell Metab., 2018, 27(1), 68-83.
[http://dx.doi.org/10.1016/j.cmet.2017.12.002] [PMID: 29320711]
[29]
Demine, S.; Renard, P.; Arnould, T. Mitochondrial uncoupling: a key controller of biological processes in physiology and diseases. Cells, 2019, 8(8), 795.
[http://dx.doi.org/10.3390/cells8080795] [PMID: 31366145]
[30]
Cedikova, M.; Kripnerová, M.; Dvorakova, J.; Pitule, P.; Grundmanova, M.; Babuska, V.; Mullerova, D.; Kuncova, J. Mitochondria in white, brown and beige adipocytes. Stem Cells Int., 2016, 2016, , 6067349..
[http://dx.doi.org/10.1155/2016/6067349] [PMID: 27073398]
[31]
Harms, M.; Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med., 2013, 19(10), 1252-1263.
[http://dx.doi.org/10.1038/nm.3361] [PMID: 24100998]
[32]
Kajimura, S.; Spiegelman, B.M.; Seale, P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab., 2015, 22(4), 546-559.
[http://dx.doi.org/10.1016/j.cmet.2015.09.007] [PMID: 26445512]
[33]
Liesa, M.; Shirihai, O.S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab., 2013, 17(4), 491-506.
[http://dx.doi.org/10.1016/j.cmet.2013.03.002] [PMID: 23562075]
[34]
Boudina, S.; Graham, T.E. Mitochondrial function/dysfunction in white adipose tissue. Exp. Physiol., 2014, 99(9), 1168-1178.
[http://dx.doi.org/10.1113/expphysiol.2014.081414] [PMID: 25128326]
[35]
Jeffery, E.; Church, C.D.; Holtrup, B.; Colman, L.; Rodeheffer, M.S. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat. Cell Biol., 2015, 17(4), 376-385.
[http://dx.doi.org/10.1038/ncb3122] [PMID: 25730471]
[36]
Kleemann, R.; van Erk, M.; Verschuren, L.; van den Hoek, A.M.; Koek, M.; Wielinga, P.Y.; Jie, A.; Pellis, L.; Bobeldijk-Pastorova, I.; Kelder, T.; Toet, K.; Wopereis, S.; Cnubben, N.; Evelo, C.; van Ommen, B.; Kooistra, T. Time-resolved and tissue-specific systems analysis of the pathogenesis of insulin resistance. PLoS One, 2010, 5(1), e8817-e8817.
[http://dx.doi.org/10.1371/journal.pone.0008817] [PMID: 20098690]
[37]
Asterholm, I.W.; Scherer, P.E. Enhanced metabolic flexibility associated with elevated adiponectin levels. Am. J. Pathol., 2010, 176(3), 1364-1376.
[http://dx.doi.org/10.2353/ajpath.2010.090647] [PMID: 20093494]
[38]
Ricoult, S.J.H.; Manning, B.D. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep., 2013, 14(3), 242-251.
[http://dx.doi.org/10.1038/embor.2013.5] [PMID: 23399656]
[39]
Rosenwald, M.; Perdikari, A.; Rülicke, T.; Wolfrum, C. Bi-directional interconversion of brite and white adipocytes. Nat. Cell Biol., 2013, 15(6), 659-667.
[http://dx.doi.org/10.1038/ncb2740] [PMID: 23624403]
[40]
Altshuler-Keylin, S.; Shinoda, K.; Hasegawa, Y.; Ikeda, K.; Hong, H.; Kang, Q.; Yang, Y.; Perera, R.M.; Debnath, J.; Kajimura, S. Beige adipocyte maintenance is regulated by autophagy-induced mitochondrial clearance. Cell Metab., 2016, 24(3), 402-419.
[http://dx.doi.org/10.1016/j.cmet.2016.08.002] [PMID: 27568548]
[41]
Rossignol, R.; Faustin, B.; Rocher, C.; Malgat, M.; Mazat, J-P.; Letellier, T. Mitochondrial threshold effects. Biochem. J., 2003, 370(Pt 3), 751-762.
[http://dx.doi.org/10.1042/bj20021594] [PMID: 12467494]
[42]
Schöttl, T.; Pachl, F.; Giesbertz, P.; Daniel, H.; Kuster, B.; Fromme, T.; Klingenspor, M. Proteomic and metabolite profiling reveals profound structural and metabolic reorganization of adipocyte mitochondria in obesity. Obesity (Silver Spring), 2020, 28(3), 590-600.
[http://dx.doi.org/10.1002/oby.22737] [PMID: 32034895]
[43]
Schöttl, T.; Kappler, L.; Fromme, T.; Klingenspor, M. Limited OXPHOS capacity in white adipocytes is a hallmark of obesity in laboratory mice irrespective of the glucose tolerance status. Mol. Metab., 2015, 4(9), 631-642.
[http://dx.doi.org/10.1016/j.molmet.2015.07.001] [PMID: 26413469]
[44]
Vernochet, C.; Mourier, A.; Bezy, O.; Macotela, Y.; Boucher, J.; Rardin, M.J.; An, D.; Lee, K.Y.; Ilkayeva, O.R.; Zingaretti, C.M.; Emanuelli, B.; Smyth, G.; Cinti, S.; Newgard, C.B.; Gibson, B.W.; Larsson, N-G.; Kahn, C.R. Adipose-specific deletion of TFAM increases mitochondrial oxidation and protects mice against obesity and insulin resistance. Cell Metab., 2012, 16(6), 765-776.
[http://dx.doi.org/10.1016/j.cmet.2012.10.016] [PMID: 23168219]
[45]
Schöttl, T.; Kappler, L.; Braun, K.; Fromme, T.; Klingenspor, M. Limited mitochondrial capacity of visceral versus subcutaneous white adipocytes in male C57BL/6N mice. Endocrinology, 2015, 156(3), 923-933.
[http://dx.doi.org/10.1210/en.2014-1689] [PMID: 25549046]
[46]
Vernochet, C.; Damilano, F.; Mourier, A.; Bezy, O.; Mori, M.A.; Smyth, G.; Rosenzweig, A.; Larsson, N-G.; Kahn, C.R. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis and cardiovascular complications. FASEB J., 2014, 28(10), 4408-4419.
[http://dx.doi.org/10.1096/fj.14-253971] [PMID: 25005176]
[47]
Busiello, R.A.; Savarese, S.; Lombardi, A. Mitochondrial uncoupling proteins and energy metabolism. Front. Physiol., 2015, 6, 36-36.
[http://dx.doi.org/10.3389/fphys.2015.00036] [PMID: 25713540]
[48]
Nedergaard, J.; Cannon, B. UCP1 mRNA does not produce heat. Biochim. Biophys. Acta, 2013, 1831(5), 943-949.
[http://dx.doi.org/10.1016/j.bbalip.2013.01.009] [PMID: 23353596]
[49]
Vitali, A.; Murano, I.; Zingaretti, M.C.; Frontini, A.; Ricquier, D.; Cinti, S. The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J. Lipid Res., 2012, 53(4), 619-629.
[http://dx.doi.org/10.1194/jlr.M018846] [PMID: 22271685]
[50]
Naon, D.; Zaninello, M.; Giacomello, M.; Varanita, T.; Grespi, F.; Lakshminaranayan, S.; Serafini, A.; Semenzato, M.; Herkenne, S.; Hernández-Alvarez, M.I.; Zorzano, A.; De Stefani, D.; Dorn, G.W., II; Scorrano, L. Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proc. Natl. Acad. Sci. USA, 2016, 113(40), 11249-11254.
[http://dx.doi.org/10.1073/pnas.1606786113] [PMID: 27647893]
[51]
Kusminski, C.M.; Scherer, P.E. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol. Metab., 2012, 23(9), 435-443.
[http://dx.doi.org/10.1016/j.tem.2012.06.004] [PMID: 22784416]
[52]
Kazak, L.; Chouchani, E.T.; Jedrychowski, M.P.; Erickson, B.K.; Shinoda, K.; Cohen, P.; Vetrivelan, R.; Lu, G.Z.; Laznik-Bogoslavski, D.; Hasenfuss, S.C.; Kajimura, S.; Gygi, S.P.; Spiegelman, B.M. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell, 2015, 163(3), 643-655.
[http://dx.doi.org/10.1016/j.cell.2015.09.035] [PMID: 26496606]
[53]
Yin, X.; Lanza, I.R.; Swain, J.M.; Sarr, M.G.; Nair, K.S.; Jensen, M.D. Adipocyte mitochondrial function is reduced in human obesity independent of fat cell size. J. Clin. Endocrinol. Metab., 2014, 99(2), E209-E216.
[http://dx.doi.org/10.1210/jc.2013-3042] [PMID: 24276464]
[54]
Peschechera, A.; Eckel, J. “Browning” of adipose tissue--regulation and therapeutic perspectives. Arch. Physiol. Biochem., 2013, 119(4), 151-160.
[http://dx.doi.org/10.3109/13813455.2013.796995] [PMID: 23721302]
[55]
Cannon, B.; Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev., 2004, 84(1), 277-359.
[http://dx.doi.org/10.1152/physrev.00015.2003] [PMID: 14715917]
[56]
Schreiber, R.; Diwoky, C.; Schoiswohl, G.; Feiler, U.; Wongsiriroj, N.; Abdellatif, M.; Kolb, D.; Hoeks, J.; Kershaw, E.E.; Sedej, S.; Schrauwen, P.; Haemmerle, G.; Zechner, R. Cold-induced thermogenesis depends on ATGL-mediated lipolysis in cardiac muscle, but not brown adipose tissue. Cell Metab., 2017, 26(5), 753-763.e7.
[http://dx.doi.org/10.1016/j.cmet.2017.09.004] [PMID: 28988821]
[57]
Ikeda, K.; Kang, Q.; Yoneshiro, T.; Camporez, J.P.; Maki, H.; Homma, M.; Shinoda, K.; Chen, Y.; Lu, X.; Maretich, P.; Tajima, K.; Ajuwon, K.M.; Soga, T.; Kajimura, S. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat. Med., 2017, 23(12), 1454-1465.
[http://dx.doi.org/10.1038/nm.4429] [PMID: 29131158]
[58]
Denton, R.M. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Biophys. Acta, 2009, 1787(11), 1309-1316.
[http://dx.doi.org/10.1016/j.bbabio.2009.01.005] [PMID: 19413950]
[59]
Seale, P.; Conroe, H.M.; Estall, J.; Kajimura, S.; Frontini, A.; Ishibashi, J.; Cohen, P.; Cinti, S.; Spiegelman, B.M. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Invest., 2011, 121(1), 96-105.
[http://dx.doi.org/10.1172/JCI44271] [PMID: 21123942]
[60]
Onder, Y.; Green, C.B. Rhythms of metabolism in adipose tissue and mitochondria. Neurobiol. Sleep Circadian Rhythms, 2018, 4, 57-63.
[http://dx.doi.org/10.1016/j.nbscr.2018.01.001] [PMID: 30637351]
[61]
Lackey, D.E.; Burk, D.H.; Ali, M.R.; Mostaedi, R.; Smith, W.H.; Park, J.; Scherer, P.E.; Seay, S.A.; McCoin, C.S.; Bonaldo, P.; Adams, S.H. Contributions of adipose tissue architectural and tensile properties toward defining healthy and unhealthy obesity. Am. J. Physiol. Endocrinol. Metab., 2014, 306(3), E233-E246.
[http://dx.doi.org/10.1152/ajpendo.00476.2013] [PMID: 24302007]
[62]
Muir, L.A.; Neeley, C.K.; Meyer, K.A.; Baker, N.A.; Brosius, A.M.; Washabaugh, A.R.; Varban, O.A.; Finks, J.F.; Zamarron, B.F.; Flesher, C.G.; Chang, J.S.; DelProposto, J.B.; Geletka, L.; Martinez-Santibanez, G.; Kaciroti, N.; Lumeng, C.N.; O’Rourke, R.W. Adipose tissue fibrosis, hypertrophy and hyperplasia: correlations with diabetes in human obesity. Obesity (Silver Spring), 2016, 24(3), 597-605.
[http://dx.doi.org/10.1002/oby.21377] [PMID: 26916240]
[63]
Reggio, S.; Rouault, C.; Poitou, C.; Bichet, J-C.; Prifti, E.; Bouillot, J-L.; Rizkalla, S.; Lacasa, D.; Tordjman, J.; Clément, K. Increased Basement Membrane Components in Adipose Tissue During Obesity: Links With TGFβ and Metabolic Phenotypes. J. Clin. Endocrinol. Metab., 2016, 101(6), 2578-2587.
[http://dx.doi.org/10.1210/jc.2015-4304] [PMID: 27049236]
[64]
Henegar, C.; Tordjman, J.; Achard, V.; Lacasa, D.; Cremer, I.; Guerre-Millo, M.; Poitou, C.; Basdevant, A.; Stich, V.; Viguerie, N.; Langin, D.; Bedossa, P.; Zucker, J-D.; Clement, K. Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol., 2008, 9(1), R14-R14.
[http://dx.doi.org/10.1186/gb-2008-9-1-r14] [PMID: 18208606]
[65]
Gonzalez, F.J.; Xie, C.; Jiang, C. The role of hypoxia-inducible factors in metabolic diseases. Nat. Rev. Endocrinol., 2018, 15(1), 21-32.
[http://dx.doi.org/10.1038/s41574-018-0096-z] [PMID: 30275460]
[66]
Michailidou, Z. Fundamental roles for hypoxia signalling in adipose tissue metabolism and inflammation in obesity. Curr. Opinion Phys., 2019, 12, 39-43.
[http://dx.doi.org/10.1016/j.cophys.2019.09.005]
[67]
Gaspar, J.M.; Velloso, L.A. Hypoxia inducible factor as a central regulator of metabolism - implications for the development of obesity. Front. Neurosci., 2018, 12(813), 813.
[http://dx.doi.org/10.3389/fnins.2018.00813] [PMID: 30443205]
[68]
Clària, J.; Dalli, J.; Yacoubian, S.; Gao, F.; Serhan, C.N. Resolvin D1 and resolvin D2 govern local inflammatory tone in obese fat. J. Immunol., 2012, 189(5), 2597-2605.
[http://dx.doi.org/10.4049/jimmunol.1201272] [PMID: 22844113]
[69]
Muñoz, A.; Costa, M. Nutritionally mediated oxidative stress and inflammation. Oxid. Med. Cell. Longev., 2013, 2013, , 610950..
[http://dx.doi.org/10.1155/2013/610950] [PMID: 23844276]
[70]
Olli, K.; Lahtinen, S.; Rautonen, N.; Tiihonen, K. Betaine reduces the expression of inflammatory adipokines caused by hypoxia in human adipocytes. Br. J. Nutr., 2013, 109(1), 43-49.
[http://dx.doi.org/10.1017/S0007114512000888] [PMID: 22424556]
[71]
Bantug, G.R.; Galluzzi, L.; Kroemer, G.; Hess, C. The spectrum of T cell metabolism in health and disease. Nat. Rev. Immunol., 2018, 18(1), 19-34.
[http://dx.doi.org/10.1038/nri.2017.99] [PMID: 28944771]
[72]
Medina-Gómez, G. Mitochondria and endocrine function of adipose tissue. Best Pract. Res. Clin. Endocrinol. Metab., 2012, 26(6), 791-804.
[http://dx.doi.org/10.1016/j.beem.2012.06.002] [PMID: 23168280]
[73]
Ertunc, M.E.; Hotamisligil, G.S. Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J. Lipid Res., 2016, 57(12), 2099-2114.
[http://dx.doi.org/10.1194/jlr.R066514] [PMID: 27330055]
[74]
Andreyev, A.Y.; Kushnareva, Y.E.; Starkov, A.A. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc.), 2005, 70(2), 200-214.
[http://dx.doi.org/10.1007/s10541-005-0102-7] [PMID: 15807660]
[75]
Rieusset, J. Contribution of mitochondria and endoplasmic reticulum dysfunction in insulin resistance: Distinct or interrelated roles? Diabetes Metab., 2015, 41(5), 358-368.
[http://dx.doi.org/10.1016/j.diabet.2015.02.006] [PMID: 25797073]
[76]
Bogdanovic, E.; Kraus, N.; Patsouris, D.; Diao, L.; Wang, V.; Abdullahi, A.; Jeschke, M.G. Endoplasmic reticulum stress in adipose tissue augments lipolysis. J. Cell. Mol. Med., 2015, 19(1), 82-91.
[http://dx.doi.org/10.1111/jcmm.12384] [PMID: 25381905]
[77]
Pagliassotti, M.J.; Kim, P.Y.; Estrada, A.L.; Stewart, C.M.; Gentile, C.L. Endoplasmic reticulum stress in obesity and obesity-related disorders: An expanded view. Metabolism, 2016, 65(9), 1238-1246.
[http://dx.doi.org/10.1016/j.metabol.2016.05.002] [PMID: 27506731]
[78]
Sullivan, J.E.; Brocklehurst, K.J.; Marley, A.E.; Carey, F.; Carling, D.; Beri, R.K. Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett., 1994, 353(1), 33-36.
[http://dx.doi.org/10.1016/0014-5793(94)01006-4] [PMID: 7926017]
[79]
Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest., 2004, 114(12), 1752-1761.
[http://dx.doi.org/10.1172/JCI21625] [PMID: 15599400]
[80]
Hosogai, N.; Fukuhara, A.; Oshima, K.; Miyata, Y.; Tanaka, S.; Segawa, K.; Furukawa, S.; Tochino, Y.; Komuro, R.; Matsuda, M.; Shimomura, I. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes, 2007, 56(4), 901-911.
[http://dx.doi.org/10.2337/db06-0911] [PMID: 17395738]
[81]
Halberg, N.; Khan, T.; Trujillo, M.E.; Wernstedt-Asterholm, I.; Attie, A.D.; Sherwani, S.; Wang, Z.V.; Landskroner-Eiger, S.; Dineen, S.; Magalang, U.J.; Brekken, R.A.; Scherer, P.E. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol. Cell. Biol., 2009, 29(16), 4467-4483.
[http://dx.doi.org/10.1128/MCB.00192-09] [PMID: 19546236]
[82]
Sun, K.; Halberg, N.; Khan, M.; Magalang, U.J.; Scherer, P.E. Selective inhibition of hypoxia-inducible factor 1α ameliorates adipose tissue dysfunction. Mol. Cell. Biol., 2013, 33(5), 904-917.
[http://dx.doi.org/10.1128/MCB.00951-12] [PMID: 23249949]
[83]
Koh, E.H.; Park, J-Y.; Park, H-S.; Jeon, M.J.; Ryu, J.W.; Kim, M.; Kim, S.Y.; Kim, M-S.; Kim, S-W.; Park, I.S.; Youn, J.H.; Lee, K.U. Essential role of mitochondrial function in adiponectin synthesis in adipocytes. Diabetes, 2007, 56(12), 2973-2981.
[http://dx.doi.org/10.2337/db07-0510] [PMID: 17827403]
[84]
Priest, C.; Tontonoz, P. Inter-organ cross-talk in metabolic syndrome. Nature Metabolism, 2019, 1(12), 1177-1188.
[http://dx.doi.org/10.1038/s42255-019-0145-5]
[85]
Paniagua, J.A. Nutrition, insulin resistance and dysfunctional adipose tissue determine the different components of metabolic syndrome. World J. Diabetes, 2016, 7(19), 483-514.
[http://dx.doi.org/10.4239/wjd.v7.i19.483] [PMID: 27895819]
[86]
Sun, K.; Tordjman, J.; Clément, K.; Scherer, P.E. Fibrosis and adipose tissue dysfunction. Cell Metab., 2013, 18(4), 470-477.
[http://dx.doi.org/10.1016/j.cmet.2013.06.016] [PMID: 23954640]
[87]
Divoux, A.; Tordjman, J.; Lacasa, D.; Veyrie, N.; Hugol, D.; Aissat, A.; Basdevant, A.; Guerre-Millo, M.; Poitou, C.; Zucker, J-D.; Bedossa, P.; Clément, K. Fibrosis in human adipose tissue: composition, distribution and link with lipid metabolism and fat mass loss. Diabetes, 2010, 59(11), 2817-2825.
[http://dx.doi.org/10.2337/db10-0585] [PMID: 20713683]
[88]
Heinonen, S.; Buzkova, J.; Muniandy, M.; Kaksonen, R.; Ollikainen, M.; Ismail, K.; Hakkarainen, A.; Lundbom, J.; Lundbom, N.; Vuolteenaho, K.; Moilanen, E.; Kaprio, J.; Rissanen, A.; Suomalainen, A.; Pietiläinen, K.H. Impaired mitochondrial biogenesis in adipose tissue in acquired obesity. Diabetes, 2015, 64(9), 3135-3145.
[http://dx.doi.org/10.2337/db14-1937] [PMID: 25972572]
[89]
Heinonen, S.; Muniandy, M.; Buzkova, J.; Mardinoglu, A.; Rodríguez, A.; Frühbeck, G.; Hakkarainen, A.; Lundbom, J.; Lundbom, N.; Kaprio, J.; Rissanen, A.; Pietiläinen, K.H. Mitochondria-related transcriptional signature is downregulated in adipocytes in obesity: a study of young healthy MZ twins. Diabetologia, 2017, 60(1), 169-181.
[http://dx.doi.org/10.1007/s00125-016-4121-2] [PMID: 27734103]
[90]
Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol., 2011, 11(2), 85-97.
[http://dx.doi.org/10.1038/nri2921] [PMID: 21252989]
[91]
Shulman, G.I. Ectopic fat in insulin resistance, dyslipidemia and cardiometabolic disease. N. Engl. J. Med., 2014, 371(12), 1131-1141.
[http://dx.doi.org/10.1056/NEJMra1011035] [PMID: 25229917]
[92]
Summers, S.A. Could ceramides become the new cholesterol? Cell Metab., 2018, 27(2), 276-280.
[http://dx.doi.org/10.1016/j.cmet.2017.12.003] [PMID: 29307517]
[93]
Blachnio-Zabielska, A.U.; Chacinska, M.; Vendelbo, M.H.; Zabielski, P. The crucial role of C18-Cer in fat-induced skeletal muscle insulin resistance. Cell. Physiol. Biochem., 2016, 40(5), 1207-1220.
[http://dx.doi.org/10.1159/000453174] [PMID: 27960149]
[94]
Chaurasia, B.; Kaddai, V.A.; Lancaster, G.I.; Henstridge, D.C.; Sriram, S.; Galam, D.L.A.; Gopalan, V.; Prakash, K.N.B.; Velan, S.S.; Bulchand, S.; Tsong, T.J.; Wang, M.; Siddique, M.M.; Yuguang, G.; Sigmundsson, K.; Mellet, N.A.; Weir, J.M.; Meikle, P.J.; Bin, M. Yassin, M.S.; Shabbir, A.; Shayman, J.A.; Hirabayashi, Y.; Shiow, S.T.; Sugii, S.; Summers, S.A. Adipocyte ceramides regulate subcutaneous adipose browning, inflammation and metabolism. Cell Metab., 2016, 24(6), 820-834.
[http://dx.doi.org/10.1016/j.cmet.2016.10.002] [PMID: 27818258]
[95]
Lafontan, M. Adipose tissue and adipocyte dysregulation. Diabetes Metab., 2014, 40(1), 16-28.
[http://dx.doi.org/10.1016/j.diabet.2013.08.002] [PMID: 24139247]
[96]
Jackson, E.; Shoemaker, R.; Larian, N.; Cassis, L. Adipose tissue as a site of toxin accumulation. Compr. Physiol., 2017, 7(4), 1085-1135.
[http://dx.doi.org/10.1002/cphy.c160038] [PMID: 28915320]
[97]
Brown, R.H.; Ng, D.K.; Steele, K.; Schweitzer, M.; Groopman, J.D. Mobilization of environmental toxicants following bariatric surgery. Obesity (Silver Spring), 2019, 27(11), 1865-1873.
[http://dx.doi.org/10.1002/oby.22618] [PMID: 31689012]
[98]
Pereira-Fernandes, A.; Demaegdt, H.; Vandermeiren, K.; Hectors, T.L.M.; Jorens, P.G.; Blust, R.; Vanparys, C. Evaluation of a screening system for obesogenic compounds: screening of endocrine disrupting compounds and evaluation of the PPAR dependency of the effect. PLoS One, 2013, 8(10), e77481-e77481.
[http://dx.doi.org/10.1371/journal.pone.0077481] [PMID: 24155963]
[99]
Mazioti, M. The impact of endocrine disrupting chemicals on adipose tissue. Rev, Clin. Pharmacol. Pharmacokinet. Int. Ed., 2015, 29(3), 125-129.
[100]
Darbre, P.D. Endocrine disruptors and obesity. Curr. Obes. Rep., 2017, 6(1), 18-27.
[http://dx.doi.org/10.1007/s13679-017-0240-4] [PMID: 28205155]
[101]
Gore, A.C. Endocrine-disrupting chemicals. JAMA Intern. Med., 2016, 176(11), 1705-1706.
[http://dx.doi.org/10.1001/jamainternmed.2016.5766] [PMID: 27668954]
[102]
Thayer, K.A.; Heindel, J.J.; Bucher, J.R.; Gallo, M.A. Role of environmental chemicals in diabetes and obesity: a national toxicology program workshop review. Environ. Health Perspect., 2012, 120(6), 779-789.
[http://dx.doi.org/10.1289/ehp.1104597] [PMID: 22296744]
[103]
Kirchner, S.; Kieu, T.; Chow, C.; Casey, S.; Blumberg, B. Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes. Mol. Endocrinol., 2010, 24(3), 526-539.
[http://dx.doi.org/10.1210/me.2009-0261] [PMID: 20160124]
[104]
Iavicoli, I.; Fontana, L.; Bergamaschi, A. The effects of metals as endocrine disruptors. J. Toxicol. Environ. Health. B, 2009, 12(3), 206-223.
[http://dx.doi.org/10.1080/10937400902902062] [PMID: 19466673]
[105]
Gore, A.C.; Martien, K.M.; Gagnidze, K.; Pfaff, D. Implications of prenatal steroid perturbations for neurodevelopment, behavior and autism. Endocr. Rev., 2014, 35(6), 961-991.
[http://dx.doi.org/10.1210/er.2013-1122] [PMID: 25211453]
[106]
Lim, Y.C.; Chia, S.Y.; Jin, S.; Han, W.; Ding, C.; Sun, L. Dynamic DNA methylation landscape defines brown and white cell specificity during adipogenesis. Mol. Metab., 2016, 5(10), 1033-1041.
[http://dx.doi.org/10.1016/j.molmet.2016.08.006] [PMID: 27689016]
[107]
Chen, Y-S.; Wu, R.; Yang, X.; Kou, S.; MacDougald, O.A.; Yu, L.; Shi, H.; Xue, B. Inhibiting DNA methylation switches adipogenesis to osteoblastogenesis by activating Wnt10a. Sci. Rep., 2016, 6, 25283.
[http://dx.doi.org/10.1038/srep25283] [PMID: 27136753]
[108]
Yoo, Y.; Park, J.H.; Weigel, C.; Liesenfeld, D.B.; Weichenhan, D.; Plass, C.; Seo, D.G.; Lindroth, A.M.; Park, Y.J. TET-mediated hydroxymethylcytosine at the Pparγ locus is required for initiation of adipogenic differentiation. Int. J. Obes., 2017, 41(4), 652-659.
[http://dx.doi.org/10.1038/ijo.2017.8] [PMID: 28100914]
[109]
Kamei, Y.; Suganami, T.; Ehara, T.; Kanai, S.; Hayashi, K.; Yamamoto, Y.; Miura, S.; Ezaki, O.; Okano, M.; Ogawa, Y. Increased expression of DNA methyltransferase 3a in obese adipose tissue: studies with transgenic mice. Obesity (Silver Spring), 2010, 18(2), 314-321.
[http://dx.doi.org/10.1038/oby.2009.246] [PMID: 19680236]
[110]
Kim, C-S.; Kwon, Y.; Choe, S-Y.; Hong, S-M.; Yoo, H.; Goto, T.; Kawada, T.; Choi, H-S.; Joe, Y.; Chung, H.T.; Yu, R. Quercetin reduces obesity-induced hepatosteatosis by enhancing mitochondrial oxidative metabolism via heme oxygenase-1. Nutr. Metab. (Lond.), 2015, 12(1), 33.
[http://dx.doi.org/10.1186/s12986-015-0030-5] [PMID: 26445592]
[111]
You, D.; Nilsson, E.; Tenen, D.E.; Lyubetskaya, A.; Lo, J.C.; Jiang, R.; Deng, J.; Dawes, B.A.; Vaag, A.; Ling, C.; Rosen, E.D.; Kang, S. Dnmt3a is an epigenetic mediator of adipose insulin resistance. eLife, 2017., 6e30766.
[http://dx.doi.org/10.7554/eLife.30766] [PMID: 29091029]
[112]
Christensen, D.P.; Dahllöf, M.; Lundh, M.; Rasmussen, D.N.; Nielsen, M.D.; Billestrup, N.; Grunnet, L.G.; Mandrup-Poulsen, T. Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol. Med., 2011, 17(5-6), 378-390.
[http://dx.doi.org/10.2119/molmed.2011.00021] [PMID: 21274504]
[113]
Daneshpajooh, M.; Bacos, K.; Bysani, M.; Bagge, A.; Ottosson Laakso, E.; Vikman, P.; Eliasson, L.; Mulder, H.; Ling, C. HDAC7 is overexpressed in human diabetic islets and impairs insulin secretion in rat islets and clonal beta cells. Diabetologia, 2017, 60(1), 116-125.
[http://dx.doi.org/10.1007/s00125-016-4113-2] [PMID: 27796421]
[114]
Sharma, S.; Taliyan, R. Histone deacetylase inhibitors: future therapeutics for insulin resistance and type 2 diabetes. Pharmacol. Res., 2016, 113(Pt A), 320-326.
[http://dx.doi.org/10.1016/j.phrs.2016.09.009] [PMID: 27620069]
[115]
Fujiki, K.; Shinoda, A.; Kano, F.; Sato, R.; Shirahige, K.; Murata, M. PPARγ-induced PARylation promotes local DNA demethylation by production of 5-hydroxymethylcytosine. Nat. Commun., 2013, 4, 2262.
[http://dx.doi.org/10.1038/ncomms3262] [PMID: 23912449]
[116]
Bian, F.; Ma, X.; Villivalam, S.D.; You, D.; Choy, L.R.; Paladugu, A.; Fung, S.; Kang, S. TET2 facilitates PPARγ agonist-mediated gene regulation and insulin sensitization in adipocytes. Metabolism, 2018, 89, 39-47.
[http://dx.doi.org/10.1016/j.metabol.2018.08.006] [PMID: 30193945]
[117]
Rissman, E.F.; Adli, M. Minireview: transgenerational epigenetic inheritance: focus on endocrine disrupting compounds. Endocrinology, 2014, 155(8), 2770-2780.
[http://dx.doi.org/10.1210/en.2014-1123] [PMID: 24885575]
[118]
Jirtle, R.L.; Skinner, M.K. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet., 2007, 8(4), 253-262.
[http://dx.doi.org/10.1038/nrg2045] [PMID: 17363974]
[119]
Song, L.; Xia, W.; Zhou, Z.; Li, Y.; Lin, Y.; Wei, J.; Wei, Z.; Xu, B.; Shen, J.; Li, W.; Xu, S. Low-level phenolic estrogen pollutants impair islet morphology and β-cell function in isolated rat islets. J. Endocrinol., 2012, 215(2), 303-311.
[http://dx.doi.org/10.1530/JOE-12-0219] [PMID: 22946080]
[120]
Lin, Y.; Sun, X.; Qiu, L.; Wei, J.; Huang, Q.; Fang, C.; Ye, T.; Kang, M.; Shen, H.; Dong, S. Exposure to bisphenol A induces dysfunction of insulin secretion and apoptosis through the damage of mitochondria in rat insulinoma (INS-1) cells. Cell Death Dis., 2013, 4(1), , e460..
[http://dx.doi.org/10.1038/cddis.2012.206] [PMID: 23328667]
[121]
Carchia, E.; Porreca, I.; Almeida, P.J.; D’Angelo, F.; Cuomo, D.; Ceccarelli, M.; De Felice, M.; Mallardo, M.; Ambrosino, C. Evaluation of low doses BPA-induced perturbation of glycemia by toxicogenomics points to a primary role of pancreatic islets and to the mechanism of toxicity. Cell Death Dis., 2015, 6(10), , e1959..
[http://dx.doi.org/10.1038/cddis.2015.319] [PMID: 26512966]
[122]
Bansal, A.; Rashid, C.; Xin, F.; Li, C.; Polyak, E.; Duemler, A.; van der Meer, T.; Stefaniak, M.; Wajid, S.; Doliba, N.; Bartolomei, M.S.; Simmons, R.A. Sex-and dose-specific effects of maternal bisphenol A exposure on pancreatic islets of first-and second-generation adult mice offspring. Environ. Health Perspect., 2017, 125(9), , 097022..
[http://dx.doi.org/10.1289/EHP1674] [PMID: 29161229]
[123]
Tsou, T.C.; Yeh, S.C.; Hsu, J.W.; Tsai, F.Y. Estrogenic chemicals at body burden levels attenuate energy metabolism in 3T3-L1 adipocytes. J. Appl. Toxicol., 2017, 37(12), 1537-1546.
[http://dx.doi.org/10.1002/jat.3508] [PMID: 28849599]
[124]
Bogacka, I.; Xie, H.; Bray, G.A.; Smith, S.R. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes, 2005, 54(5), 1392-1399.
[http://dx.doi.org/10.2337/diabetes.54.5.1392] [PMID: 15855325]
[125]
Dahlman, I.; Forsgren, M.; Sjögren, A.; Nordström, E.A.; Kaaman, M.; Näslund, E.; Attersand, A.; Arner, P. Downregulation of electron transport chain genes in visceral adipose tissue in type 2 diabetes independent of obesity and possibly involving tumor necrosis factor-α. Diabetes, 2006, 55(6), 1792-1799.
[http://dx.doi.org/10.2337/db05-1421] [PMID: 16731844]
[126]
Rong, J.X.; Qiu, Y.; Hansen, M.K.; Zhu, L.; Zhang, V.; Xie, M.; Okamoto, Y.; Mattie, M.D.; Higashiyama, H.; Asano, S.; Strum, J.C.; Ryan, T.E. Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone. Diabetes, 2007, 56(7), 1751-1760.
[http://dx.doi.org/10.2337/db06-1135] [PMID: 17456854]
[127]
Rahman, M.L.; Zhang, C.; Smarr, M.M.; Lee, S.; Honda, M.; Kannan, K.; Tekola-Ayele, F.; Buck Louis, G.M. Persistent organic pollutants and gestational diabetes: A multi-center prospective cohort study of healthy US women. Environ. Int., 2019, 124, 249-258.
[http://dx.doi.org/10.1016/j.envint.2019.01.027] [PMID: 30660025]
[128]
Kim, Y.A.; Park, J.B.; Woo, M.S.; Lee, S.Y.; Kim, H.Y.; Yoo, Y.H. Persistent organic pollutant-mediated insulin resistance. Int. J. Environ. Res. Public Health, 2019, 16(3), 448.
[http://dx.doi.org/10.3390/ijerph16030448] [PMID: 30717446]
[129]
West, A.P. Mitochondrial dysfunction as a trigger of innate immune responses and inflammation. Toxicology, 2017, 391, 54-63.
[http://dx.doi.org/10.1016/j.tox.2017.07.016] [PMID: 28765055]
[130]
Meyer, J.N.; Hartman, J.H.; Mello, D.F. Mitochondrial Toxicity. Toxicol. Sci., 2018, 162(1), 15-23.
[http://dx.doi.org/10.1093/toxsci/kfy008] [PMID: 29340618]
[131]
Skolarczyk, J.; Pekar, J.; Skórzyńska-Dziduszko, K.; Łabądź, D. Role of heavy metals in the development of obesity: A review of research. J. Elem., 2018, 23(4), 1271-1280.
[http://dx.doi.org/10.5601/jelem.2018.23.1.1545]
[132]
Sato, S.; Shirakawa, H.; Tomita, S.; Tohkin, M.; Gonzalez, F.J.; Komai, M. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A. Toxicol. Appl. Pharmacol., 2013, 273(1), 90-99.
[http://dx.doi.org/10.1016/j.taap.2013.08.017] [PMID: 23994556]
[133]
Lindeque, J.Z.; Levanets, O.; Louw, R.; van der Westhuizen, F.H. The involvement of metallothioneins in mitochondrial function and disease. Curr. Protein Pept. Sci., 2010, 11(4), 292-309.
[http://dx.doi.org/10.2174/138920310791233378] [PMID: 20408794]
[134]
Haynes, V.; Connor, T.; Tchernof, A.; Vidal, H.; Dubois, S. Metallothionein 2a gene expression is increased in subcutaneous adipose tissue of type 2 diabetic patients. Mol. Genet. Metab., 2013, 108(1), 90-94.
[http://dx.doi.org/10.1016/j.ymgme.2012.10.012] [PMID: 23148893]
[135]
Hussain, S.; Slikker, W., Jr; Ali, S.F. Role of metallothionein and other antioxidants in scavenging superoxide radicals and their possible role in neuroprotection. Neurochem. Int., 1996, 29(2), 145-152.
[http://dx.doi.org/10.1016/0197-0186(95)00114-X] [PMID: 8837043]
[136]
Fliss, H.; Ménard, M. Oxidant-induced mobilization of zinc from metallothionein. Arch. Biochem. Biophys., 1992, 293(1), 195-199.
[http://dx.doi.org/10.1016/0003-9861(92)90384-9] [PMID: 1309984]
[137]
Reinecke, F.; Levanets, O.; Olivier, Y.; Louw, R.; Semete, B.; Grobler, A.; Hidalgo, J.; Smeitink, J.; Olckers, A.; Van der Westhuizen, F.H. Metallothionein isoform 2A expression is inducible and protects against ROS-mediated cell death in rotenone-treated HeLa cells. Biochem. J., 2006, 395(2), 405-415.
[http://dx.doi.org/10.1042/BJ20051253] [PMID: 16402917]
[138]
Zhou, Z.; Kang, Y.J. Immunocytochemical localization of metallothionein and its relation to doxorubicin toxicity in transgenic mouse heart. Am. J. Pathol., 2000, 156(5), 1653-1662.
[http://dx.doi.org/10.1016/S0002-9440(10)65036-5] [PMID: 10793076]
[139]
Wang, B.; Wood, I.S.; Trayhurn, P. PCR arrays identify metallothionein-3 as a highly hypoxia-inducible gene in human adipocytes. Biochem. Biophys. Res. Commun., 2008, 368(1), 88-93.
[http://dx.doi.org/10.1016/j.bbrc.2008.01.036] [PMID: 18206644]
[140]
Jones, D.S.; Quinn, S. Textbook of functional medicine; Institute for Functional Medicine: Washington, 2010.
[141]
Roden, M.; Shulman, G.I. The integrative biology of type 2 diabetes. Nature, 2019, 576(7785), 51-60.
[http://dx.doi.org/10.1038/s41586-019-1797-8] [PMID: 31802013]
[142]
Goodpaster, B.H.; Sparks, L.M. Metabolic flexibility in health and disease. Cell Metab., 2017, 25(5), 1027-1036.
[http://dx.doi.org/10.1016/j.cmet.2017.04.015] [PMID: 28467922]
[143]
Gonzalez, J.T.; Richardson, J.D.; Chowdhury, E.A.; Koumanov, F.; Holman, G.D.; Cooper, S.; Thompson, D.; Tsintzas, K.; Betts, J.A. Molecular adaptations of adipose tissue to 6 weeks of morning fasting vs. daily breakfast consumption in lean and obese adults. J. Physiol., 2018, 596(4), 609-622.
[http://dx.doi.org/10.1113/JP275113] [PMID: 29193093]
[144]
Wilkinson, M.J.; Manoogian, E.N.C.; Zadourian, A.; Lo, H.; Fakhouri, S.; Shoghi, A.; Wang, X.; Fleischer, J.G.; Navlakha, S.; Panda, S.; Taub, P.R. Ten-hour time-restricted eating reduces weight, blood pressure and atherogenic lipids in patients with metabolic syndrome. Cell Metab., 2020, 31(1), 92-104.e5.
[http://dx.doi.org/10.1016/j.cmet.2019.11.004] [PMID: 31813824]
[145]
Rynders, C.A.; Thomas, E.A.; Zaman, A.; Pan, Z.; Catenacci, V.A.; Melanson, E.L. Effectiveness of Intermittent fasting and time-restricted feeding compared to continuous energy restriction for weight loss. Nutrients, 2019, 11(10), 2442.
[http://dx.doi.org/10.3390/nu11102442] [PMID: 31614992]
[146]
Ravussin, E.; Beyl, R.A.; Poggiogalle, E.; Hsia, D.S.; Peterson, C.M. Early time-restricted feeding reduces appetite and increases fat oxidation but does not affect energy expenditure in humans. Obesity (Silver Spring), 2019, 27(8), 1244-1254.
[http://dx.doi.org/10.1002/oby.22518] [PMID: 31339000]
[147]
Jamshed, H.; Beyl, R.A.; Della Manna, D.L.; Yang, E.S.; Ravussin, E.; Peterson, C.M. Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging and autophagy in humans. Nutrients, 2019, 11(6), , E1234..
[http://dx.doi.org/10.3390/nu11061234] [PMID: 31151228]
[148]
Hutchison, A.T.; Regmi, P.; Manoogian, E.N.C.; Fleischer, J.G.; Wittert, G.A.; Panda, S.; Heilbronn, L.K. Time-restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: a randomized crossover trial. Obesity (Silver Spring), 2019, 27(5), 724-732.
[http://dx.doi.org/10.1002/oby.22449] [PMID: 31002478]
[149]
Chaix, A.; Manoogian, E.N.C.; Melkani, G.C.; Panda, S. Time-restricted eating to prevent and manage chronic metabolic diseases. Annu. Rev. Nutr., 2019, 39, 291-315.
[http://dx.doi.org/10.1146/annurev-nutr-082018-124320] [PMID: 31180809]
[150]
Li, G.; Xie, C.; Lu, S.; Nichols, R.G.; Tian, Y.; Li, L.; Patel, D.; Ma, Y.; Brocker, C.N.; Yan, T.; Krausz, K.W.; Xiang, R.; Gavrilova, O.; Patterson, A.D.; Gonzalez, F.J. Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab., 2017, 26(4), 672-685.e4.
[http://dx.doi.org/10.1016/j.cmet.2017.08.019] [PMID: 28918936]
[151]
Cignarella, F.; Cantoni, C.; Ghezzi, L.; Salter, A.; Dorsett, Y.; Chen, L.; Phillips, D.; Weinstock, G.M.; Fontana, L.; Cross, A.H.; Zhou, Y.; Piccio, L. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab., 2018, 27(6), 1222-1235.e6.
[http://dx.doi.org/10.1016/j.cmet.2018.05.006] [PMID: 29874567]
[152]
Unwin, D.J.; Tobin, S.D.; Murray, S.W.; Delon, C.; Brady, A.J. Substantial and sustained improvements in blood pressure, weight and lipid profiles from a carbohydrate restricted diet: an observational study of insulin resistant patients in primary care. Int. J. Environ. Res. Public Health, 2019, 16(15), 2680.
[http://dx.doi.org/10.3390/ijerph16152680] [PMID: 31357547]
[153]
Turton, J.; Brinkworth, G.D.; Field, R.; Parker, H.; Rooney, K. An evidence-based approach to developing low-carbohydrate diets for type 2 diabetes management: A systematic review of interventions and methods. Diabetes Obes. Metab., 2019, 21(11), 2513-2525.
[http://dx.doi.org/10.1111/dom.13837] [PMID: 31347236]
[154]
Liu, Y-S.; Wu, Q-J.; Xia, Y.; Zhang, J-Y.; Jiang, Y-T.; Chang, Q.; Zhao, Y-H. Carbohydrate intake and risk of metabolic syndrome: A dose-response meta-analysis of observational studies. Nutr. Metab. Cardiovasc. Dis., 2019, 29(12), 1288-1298.
[http://dx.doi.org/10.1016/j.numecd.2019.09.003] [PMID: 31653521]
[155]
Jacobi, N.; Rodin, H.; Erdosi, G.A.K. Long-term effects of very low-carbohydrate diet with intermittent fasting on metabolic profile in a social media-based support group, Integr; Food Nutr. Metab, 2019, p. 6.
[http://dx.doi.org/10.15761/IFNM.1000260]
[156]
Hyde, P.N.; Sapper, T.N.; Crabtree, C.D.; LaFountain, R.A.; Bowling, M.L.; Buga, A.; Fell, B.; McSwiney, F.T.; Dickerson, R.M.; Miller, V.J.; Scandling, D.; Simonetti, O.P.; Phinney, S.D.; Kraemer, W.J.; King, S.A.; Krauss, R.M.; Volek, J.S. Dietary carbohydrate restriction improves metabolic syndrome independent of weight loss. JCI Insight, 2019, 4(12), , 128308..
[http://dx.doi.org/10.1172/jci.insight.128308] [PMID: 31217353]
[157]
Gyorkos, A.; Baker, M.H.; Miutz, L.N.; Lown, D.A.; Jones, M.A.; Houghton-Rahrig, L.D. Carbohydrate-restricted diet and exercise increase brain-derived neurotrophic factor and cognitive function: a randomized crossover trial. Cureus, 2019, 11(9), , e5604..
[http://dx.doi.org/10.7759/cureus.5604] [PMID: 31700717]
[158]
Dostal, T.; Plews, D.J.; Hofmann, P.; Laursen, P.B.; Cipryan, L. Effects of a 12-week very-low carbohydrate high-fat diet on maximal aerobic capacity, high-intensity intermittent exercise and cardiac autonomic regulation: non-randomized parallel-group study. Front. Physiol., 2019, 10, 912.
[http://dx.doi.org/10.3389/fphys.2019.00912] [PMID: 31379612]
[159]
Kroemer, G.; López-Otín, C.; Madeo, F.; de Cabo, R. Carbotoxicity-noxious effects of carbohydrates. Cell, 2018, 175(3), 605-614.
[http://dx.doi.org/10.1016/j.cell.2018.07.044] [PMID: 30340032]
[160]
Caprio, M.; Infante, M.; Moriconi, E.; Armani, A.; Fabbri, A.; Mantovani, G.; Mariani, S.; Lubrano, C.; Poggiogalle, E.; Migliaccio, S.; Donini, L.M.; Basciani, S.; Cignarelli, A.; Conte, E.; Ceccarini, G.; Bogazzi, F.; Cimino, L.; Condorelli, R.A.; La Vignera, S.; Calogero, A.E.; Gambineri, A.; Vignozzi, L.; Prodam, F.; Aimaretti, G.; Linsalata, G.; Buralli, S.; Monzani, F.; Aversa, A.; Vettor, R.; Santini, F.; Vitti, P.; Gnessi, L.; Pagotto, U.; Giorgino, F.; Colao, A.; Lenzi, A. Cardiovascular Endocrinology Club of the Italian Society of Endocrinology. Very-low-calorie ketogenic diet (VLCKD) in the management of metabolic diseases: systematic review and consensus statement from the Italian Society of Endocrinology (SIE). J. Endocrinol. Invest., 2019, 42(11), 1365-1386.
[http://dx.doi.org/10.1007/s40618-019-01061-2] [PMID: 31111407]
[161]
Senyilmaz-Tiebe, D.; Pfaff, D.H.; Virtue, S.; Schwarz, K.V.; Fleming, T.; Altamura, S.; Muckenthaler, M.U.; Okun, J.G.; Vidal-Puig, A.; Nawroth, P.; Teleman, A.A. Dietary stearic acid regulates mitochondria in vivo in humans. Nat. Commun., 2018, 9(1), 3129.
[http://dx.doi.org/10.1038/s41467-018-05614-6] [PMID: 30087348]
[162]
Lepretti, M.; Martucciello, S.; Burgos Aceves, M.A.; Putti, R.; Lionetti, L. Omega-3 fatty acids and insulin resistance: Focus on the regulation of mitochondria and endoplasmic reticulum stress. Nutrients, 2018, 10(3), 350.
[http://dx.doi.org/10.3390/nu10030350] [PMID: 29538286]
[163]
Wesselink, E.; Koekkoek, W.A.C.; Grefte, S.; Witkamp, R.F.; van Zanten, A.R.H. Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence. Clin. Nutr., 2019, 38(3), 982-995.
[http://dx.doi.org/10.1016/j.clnu.2018.08.032] [PMID: 30201141]
[164]
Voloboueva, L.A.; Liu, J.; Suh, J.H.; Ames, B.N.; Miller, S.S. (R)-α-lipoic acid protects retinal pigment epithelial cells from oxidative damage. Invest. Ophthalmol. Vis. Sci., 2005, 46(11), 4302-4310.
[http://dx.doi.org/10.1167/iovs.04-1098] [PMID: 16249512]
[165]
Shen, W.; Liu, K.; Tian, C.; Yang, L.; Li, X.; Ren, J.; Packer, L.; Cotman, C.W.; Liu, J. R-α-lipoic acid and acetyl-L-carnitine complementarily promote mitochondrial biogenesis in murine 3T3-L1 adipocytes. Diabetologia, 2008, 51(1), 165-174.
[http://dx.doi.org/10.1007/s00125-007-0852-4] [PMID: 18026715]
[166]
Ito, T.; Yoshikawa, N.; Ito, H.; Schaffer, S.W. Impact of taurine depletion on glucose control and insulin secretion in mice. J. Pharmacol. Sci., 2015, 129(1), 59-64.
[http://dx.doi.org/10.1016/j.jphs.2015.08.007] [PMID: 26382103]
[167]
Schaffer, S.; Kim, H.W. Effects and mechanisms of taurine as a therapeutic agent. Biomol. Ther. (Seoul), 2018, 26(3), 225-241.
[http://dx.doi.org/10.4062/biomolther.2017.251] [PMID: 29631391]
[168]
Palikaras, K.; Daskalaki, I.; Markaki, M.; Tavernarakis, N. Mitophagy and age-related pathologies: Development of new therapeutics by targeting mitochondrial turnover. Pharmacol. Ther., 2017, 178, 157-174.
[http://dx.doi.org/10.1016/j.pharmthera.2017.04.005] [PMID: 28461251]
[169]
Kobori, M.; Takahashi, Y.; Sakurai, M.; Akimoto, Y.; Tsushida, T.; Oike, H.; Ippoushi, K. Quercetin suppresses immune cell accumulation and improves mitochondrial gene expression in adipose tissue of diet-induced obese mice. Mol. Nutr. Food Res., 2016, 60(2), 300-312.
[http://dx.doi.org/10.1002/mnfr.201500595] [PMID: 26499876]
[170]
Nichols, M.; Zhang, J.; Polster, B.M.; Elustondo, P.A.; Thirumaran, A.; Pavlov, E.V.; Robertson, G.S. Synergistic neuroprotection by epicatechin and quercetin: Activation of convergent mitochondrial signaling pathways. Neuroscience, 2015, 308, 75-94.
[http://dx.doi.org/10.1016/j.neuroscience.2015.09.012] [PMID: 26363153]
[171]
Ramírez-Sánchez, I.; Rodríguez, A.; Moreno-Ulloa, A.; Ceballos, G.; Villarreal, F. (-)-Epicatechin-induced recovery of mitochondria from simulated diabetes: Potential role of endothelial nitric oxide synthase. Diab. Vasc. Dis. Res., 2016, 13(3), 201-210.
[http://dx.doi.org/10.1177/1479164115620982] [PMID: 26993496]
[172]
Keller, A.C.; Hull, S.E.; Knaub, L.; Johnston, A.; Reusch, J.E. Epicatechin modulates vasoreactivity and mitochondrial function in endothelium. Diabetes, 2018, 67(Suppl 1)
[http://dx.doi.org/10.2337/db18-1494-P]
[173]
Li, D.; Wang, P.; Luo, Y.; Zhao, M.; Chen, F. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Crit. Rev. Food Sci. Nutr., 2017, 57(8), 1729-1741.
[http://dx.doi.org/10.1080/10408398.2015.1030064] [PMID: 26192537]
[174]
Liu, J.; Gao, F.; Ji, B.; Wang, R.; Yang, J.; Liu, H.; Zhou, F. Anthocyanins-rich extract of wild Chinese blueberry protects glucolipotoxicity-induced INS832/13 β-cell against dysfunction and death. J. Food Sci. Technol., 2015, 52(5), 3022-3029.
[http://dx.doi.org/10.1007/s13197-014-1379-6] [PMID: 25892804]
[175]
Pizzorno, J. Mitochondria-Fundamental to Life and Health. Integr. Med. (Encinitas), 2014, 13(2), 8-15.
[PMID: 26770084]
[176]
Tisdale, M.J. Zinc-α2-glycoprotein in cachexia and obesity. Curr. Opin. Support. Palliat. Care, 2009, 3(4), 288-293.
[http://dx.doi.org/10.1097/SPC.0b013e328331c897] [PMID: 19823091]
[177]
Bing, C.; Bao, Y.; Jenkins, J.; Sanders, P.; Manieri, M.; Cinti, S.; Tisdale, M.J.; Trayhurn, P. Zinc-α2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia. Proc. Natl. Acad. Sci. USA, 2004, 101(8), 2500-2505.
[http://dx.doi.org/10.1073/pnas.0308647100] [PMID: 14983038]
[178]
Russell, S.T.; Tisdale, M.J. Effect of eicosapentaenoic acid (EPA) on expression of a lipid mobilizing factor in adipose tissue in cancer cachexia. Prostaglandins Leukot. Essent. Fatty Acids, 2005, 72(6), 409-414.
[http://dx.doi.org/10.1016/j.plefa.2005.03.002] [PMID: 15899583]
[179]
Russell, S.T.; Tisdale, M.J. The role of glucocorticoids in the induction of zinc-α2-glycoprotein expression in adipose tissue in cancer cachexia. Br. J. Cancer, 2005, 92(5), 876-881.
[http://dx.doi.org/10.1038/sj.bjc.6602404] [PMID: 15714206]
[180]
Cabassi, A.; Tedeschi, S. Zinc-α2-glycoprotein as a marker of fat catabolism in humans. Curr. Opin. Clin. Nutr. Metab. Care, 2013, 16(3), 267-271.
[http://dx.doi.org/10.1097/MCO.0b013e32835f816c] [PMID: 23448999]
[181]
Emilsson, V.; Summers, R.J.; Hamilton, S.; Liu, Y-L.; Cawthorne, M.A. The effects of the β3-adrenoceptor agonist BRL 35135 on UCP isoform mRNA expression. Biochem. Biophys. Res. Commun., 1998, 252(2), 450-454.
[http://dx.doi.org/10.1006/bbrc.1998.9667] [PMID: 9826550]
[182]
Gómez-Ambrosi, J.; Frühbeck, G.; Martínez, J.A. Interactions between an α2-adrenergic antagonist and a β3-adrenergic agonist on the expression of UCP2 and UCP3 in rats. J. Physiol. Biochem., 2002, 58(1), 17-23.
[http://dx.doi.org/10.1007/BF03179834] [PMID: 12222743]
[183]
Schrauwen, P.; Walder, K.; Ravussin, E. Human uncoupling proteins and obesity. Obes. Res., 1999, 7(1), 97-105.
[http://dx.doi.org/10.1002/j.1550-8528.1999.tb00396.x] [PMID: 10023736]
[184]
Berraondo, B.; Bonafonte, A.; Fernández-Otero, M.P.; Martinez, J.A. Effects on energy utilization of a beta3-adrenergic agonist in rats fed on a cafeteria diet. Eat. Weight Disord., 1997, 2(3), 130-137.
[http://dx.doi.org/10.1007/BF03339963] [PMID: 14655836]
[185]
Maguire, D.; Neytchev, O.; Talwar, D.; McMillan, D.; Shiels, P.G. Telomere homeostasis: interplay with magnesium. Int. J. Mol. Sci., 2018, 19(1), 157.
[http://dx.doi.org/10.3390/ijms19010157] [PMID: 29303978]
[186]
Wang, P.; Wang, Z-Y. Metal ions influx is a double edged sword for the pathogenesis of Alzheimer’s disease. Ageing Res. Rev., 2017, 35, 265-290.
[http://dx.doi.org/10.1016/j.arr.2016.10.003] [PMID: 27829171]
[187]
Jahnen-Dechent, W.; Ketteler, M. Magnesium basics. Clin. Kidney J., 2012, 5(Suppl. 1), i3-i14.
[http://dx.doi.org/10.1093/ndtplus/sfr163] [PMID: 26069819]
[188]
Yamanaka, R.; Tabata, S.; Shindo, Y.; Hotta, K.; Suzuki, K.; Soga, T.; Oka, K. Mitochondrial Mg(2+) homeostasis decides cellular energy metabolism and vulnerability to stress. Sci. Rep., 2016, 6, 30027.
[http://dx.doi.org/10.1038/srep30027] [PMID: 27458051]
[189]
Bertinato, J.; Wang, K.C.; Hayward, S. Serum magnesium concentrations in the Canadian population and associations with diabetes, glycemic regulation and insulin resistance. Nutrients, 2017, 9(3), 296.
[http://dx.doi.org/10.3390/nu9030296] [PMID: 28304338]
[190]
Mikalsen, S.M.; Bjørke-Monsen, A-L.; Whist, J.E.; Aaseth, J. Improved Magnesium Levels in Morbidly Obese Diabetic and Non-diabetic Patients After Modest Weight Loss. Biol. Trace Elem. Res., 2019, 188(1), 45-51.
[http://dx.doi.org/10.1007/s12011-018-1349-3] [PMID: 29705834]
[191]
Larsson, S.C.; Wolk, A. Magnesium intake and risk of type 2 diabetes: a meta-analysis. J. Intern. Med., 2007, 262(2), 208-214.
[http://dx.doi.org/10.1111/j.1365-2796.2007.01840.x] [PMID: 17645588]
[192]
Dong, J-Y.; Xun, P.; He, K.; Qin, L-Q. Magnesium intake and risk of type 2 diabetes: meta-analysis of prospective cohort studies. Diabetes Care, 2011, 34(9), 2116-2122.
[http://dx.doi.org/10.2337/dc11-0518] [PMID: 21868780]
[193]
Yeo, J.E.; Kang, S.K. Selenium effectively inhibits ROS-mediated apoptotic neural precursor cell death in vitro and in vivo in traumatic brain injury. Biochim. Biophys. Acta, 2007, 1772(11-12), 1199-1210.
[http://dx.doi.org/10.1016/j.bbadis.2007.09.004] [PMID: 17997286]
[194]
Stranges, S.; Marshall, J.R.; Natarajan, R.; Donahue, R.P.; Trevisan, M.; Combs, G.F.; Cappuccio, F.P.; Ceriello, A.; Reid, M.E. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann. Intern. Med., 2007, 147(4), 217-223.
[http://dx.doi.org/10.7326/0003-4819-147-4-200708210-00175] [PMID: 17620655]
[195]
Brigelius-Flohé, R.; Friedrichs, B.; Maurer, S.; Schultz, M.; Streicher, R. Interleukin-1-induced nuclear factor κ B activation is inhibited by overexpression of phospholipid hydroperoxide glutathione peroxidase in a human endothelial cell line. Biochem. J., 1997, 328(Pt 1), 199-203.
[http://dx.doi.org/10.1042/bj3280199] [PMID: 9359853]
[196]
Kelly, E.; Greene, C.M.; Carroll, T.P.; McElvaney, N.G.; O’Neill, S.J. Selenoprotein S/SEPS1 modifies endoplasmic reticulum stress in Z variant α1-antitrypsin deficiency. J. Biol. Chem., 2009, 284(25), 16891-16897.
[http://dx.doi.org/10.1074/jbc.M109.006288] [PMID: 19398551]
[197]
Stranges, S.; Rayman, M.P.; Winther, K.H.; Guallar, E.; Cold, S.; Pastor-Barriuso, R. Effect of selenium supplementation on changes in HbA1c: Results from a multiple-dose, randomized controlled trial. Diabetes Obes. Metab., 2019, 21(3), 541-549.
[http://dx.doi.org/10.1111/dom.13549] [PMID: 30280459]
[198]
Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; Geny, B.; Laakso, M.; Puigserver, P.; Auwerx, J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 2006, 127(6), 1109-1122.
[http://dx.doi.org/10.1016/j.cell.2006.11.013] [PMID: 17112576]
[199]
Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R.H.; van de Weijer, T.; Goossens, G.H.; Hoeks, J.; van der Krieken, S.; Ryu, D.; Kersten, S.; Moonen-Kornips, E.; Hesselink, M.K.C.; Kunz, I.; Schrauwen-Hinderling, V.B.; Blaak, E.; Auwerx, J.; Schrauwen, P. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab., 2011, 14(5), 612-622.
[http://dx.doi.org/10.1016/j.cmet.2011.10.002] [PMID: 22055504]
[200]
Calder, P.C. Omega-3 fatty acids and inflammatory processes. Nutrients, 2010, 2(3), 355-374.
[http://dx.doi.org/10.3390/nu2030355] [PMID: 22254027]
[201]
DiNicolantonio, J.J.; O’Keefe, J.H. Importance of maintaining a low omega-6/omega-3 ratio for reducing inflammation. Open Heart, 2018, 5(2), , e000946..
[http://dx.doi.org/10.1136/openhrt-2018-000946] [PMID: 30564378]
[202]
Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother., 2002, 56(8), 365-379.
[http://dx.doi.org/10.1016/S0753-3322(02)00253-6] [PMID: 12442909]
[203]
Simopoulos, A.P. Omega-6/omega-3 essential fatty acid ratio and chronic diseases. Food Rev. Int., 2004, 20(1), 77-90.
[http://dx.doi.org/10.1081/FRI-120028831]
[204]
Ameur, A.; Enroth, S.; Johansson, A.; Zaboli, G.; Igl, W.; Johansson, A.C.; Rivas, M.A.; Daly, M.J.; Schmitz, G.; Hicks, A.A.; Meitinger, T.; Feuk, L.; van Duijn, C.; Oostra, B.; Pramstaller, P.P.; Rudan, I.; Wright, A.F.; Wilson, J.F.; Campbell, H.; Gyllensten, U. Genetic adaptation of fatty-acid metabolism: a human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids. Am. J. Hum. Genet., 2012, 90(5), 809-820.
[http://dx.doi.org/10.1016/j.ajhg.2012.03.014] [PMID: 22503634]
[205]
Zhu, F.; Du, B.; Xu, B. Anti-inflammatory effects of phytochemicals from fruits, vegetables and food legumes: A review. Crit. Rev. Food Sci. Nutr., 2018, 58(8), 1260-1270.
[http://dx.doi.org/10.1080/10408398.2016.1251390] [PMID: 28605204]
[206]
Yang, H.; Jia, X.; Chen, X.; Yang, C.S.; Li, N. Time-selective chemoprevention of vitamin E and selenium on esophageal carcinogenesis in rats: the possible role of nuclear factor kappaB signaling pathway. Int. J. Cancer, 2012, 131(7), 1517-1527.
[http://dx.doi.org/10.1002/ijc.27423] [PMID: 22223226]
[207]
Tian, L.P.; Zhang, S.; Xu, L.; Li, W.; Wang, Y.; Chen, S.D.; Ding, J.Q. Selenite benefits embryonic stem cells therapy in Parkinson’s disease. Curr. Mol. Med., 2012, 12(8), 1005-1014.
[http://dx.doi.org/10.2174/156652412802480880] [PMID: 22804247]
[208]
Moon, P-D.; Kim, H-M. The suppression of thymic stromal lymphopoietin expression by selenium. Amino Acids, 2012, 43(2), 999-1004.
[http://dx.doi.org/10.1007/s00726-011-1156-z] [PMID: 22086213]
[209]
Panicker, S.; Swathy, S.S.; John, F.; Madambath, I. Impact of selenium on NFκB translocation in isoproterenol-induced myocardial infarction in rats. Biol. Trace Elem. Res., 2010, 138(1-3), 202-211.
[http://dx.doi.org/10.1007/s12011-009-8597-1] [PMID: 20107922]
[210]
Faure, P.; Ramon, O.; Favier, A.; Halimi, S. Selenium supplementation decreases nuclear factor-kappa B activity in peripheral blood mononuclear cells from type 2 diabetic patients. Eur. J. Clin. Invest., 2004, 34(7), 475-481.
[http://dx.doi.org/10.1111/j.1365-2362.2004.01362.x] [PMID: 15255784]
[211]
Tsiloulis, T.; Watt, M.J. Chapter eight - exercise and the regulation of adipose tissue metabolism. In Progress in Molecular Biology and Translational Science; Bouchard, C., Ed.; Academic Press, Massachusetts, 2015, 135, pp. 175-201.
[http://dx.doi.org/10.1016/bs.pmbts.2015.06.016]
[212]
Mika, A.; Macaluso, F.; Barone, R.; Di Felice, V.; Sledzinski, T. Effect of exercise on fatty acid metabolism and adipokine secretion in adipose tissue. Front. Physiol., 2019, 10(26), 26.
[http://dx.doi.org/10.3389/fphys.2019.00026] [PMID: 30745881]
[213]
Thompson, D.; Karpe, F.; Lafontan, M.; Frayn, K. Physical activity and exercise in the regulation of human adipose tissue physiology. Physiol. Rev., 2012, 92(1), 157-191.
[http://dx.doi.org/10.1152/physrev.00012.2011] [PMID: 22298655]
[214]
Stanford, K.I.; Goodyear, L.J. Exercise regulation of adipose tissue. Adipocyte, 2016, 5(2), 153-162.
[http://dx.doi.org/10.1080/21623945.2016.1191307] [PMID: 27386159]
[215]
Lehnig, A.C.; Dewal, R.S.; Baer, L.A.; Kitching, K.M.; Munoz, V.R.; Arts, P.J.; Sindeldecker, D.A.; May, F.J.; Lauritzen, H.P.M.M.; Goodyear, L.J.; Stanford, K.I. Exercise training induces depot-specific adaptations to white and brown adipose tissue. iScience, 2019, 11, 425-439.
[http://dx.doi.org/10.1016/j.isci.2018.12.033] [PMID: 30661000]
[216]
Giolo De Carvalho, F.; Sparks, L.M. Targeting white adipose tissue with exercise or bariatric surgery as therapeutic strategies in obesity. Biology (Basel), 2019, 8(1), 16.
[http://dx.doi.org/10.3390/biology8010016] [PMID: 30875990]
[217]
Cedernaes, J.; Schönke, M.; Westholm, J.O.; Mi, J.; Chibalin, A.; Voisin, S.; Osler, M.; Vogel, H.; Hörnaeus, K.; Dickson, S.L.; Lind, S.B.; Bergquist, J.; Schiöth, H.B.; Zierath, J.R.; Benedict, C. Acute sleep loss results in tissue-specific alterations in genome-wide DNA methylation state and metabolic fuel utilization in humans. Sci. Adv., 2018, 4(8), , eaar8590..
[http://dx.doi.org/10.1126/sciadv.aar8590] [PMID: 30140739]
[218]
Al Khatib, H.K.; Harding, S.V.; Darzi, J.; Pot, G.K. The effects of partial sleep deprivation on energy balance: a systematic review and meta-analysis. Eur. J. Clin. Nutr., 2017, 71(5), 614-624.
[http://dx.doi.org/10.1038/ejcn.2016.201] [PMID: 27804960]
[219]
Mullins, E.N.; Miller, A.L.; Cherian, S.S.; Lumeng, J.C.; Wright, K.P., Jr; Kurth, S.; Lebourgeois, M.K. Acute sleep restriction increases dietary intake in preschool-age children. J. Sleep Res., 2017, 26(1), 48-54.
[http://dx.doi.org/10.1111/jsr.12450] [PMID: 27641365]
[220]
Wilms, B.; Leineweber, E.M.; Mölle, M.; Chamorro, R.; Pommerenke, C.; Salinas-Riester, G.; Sina, C.; Lehnert, H.; Oster, H.; Schmid, S.M. Sleep loss disrupts morning-to-evening differences in human white adipose tissue transcriptome. J. Clin. Endocrinol. Metab., 2019, 104(5), 1687-1696.
[http://dx.doi.org/10.1210/jc.2018-01663] [PMID: 30535338]
[221]
Christou, S.; Wehrens, S.M.T.; Isherwood, C.; Möller-Levet, C.S.; Wu, H.; Revell, V.L.; Bucca, G.; Skene, D.J.; Laing, E.E.; Archer, S.N.; Johnston, J.D. Circadian regulation in human white adipose tissue revealed by transcriptome and metabolic network analysis. Sci. Rep., 2019, 9(1), 2641.
[http://dx.doi.org/10.1038/s41598-019-39668-3] [PMID: 30804433]
[222]
Pagano, E.S.; Spinedi, E.; Gagliardino, J.J. White adipose tissue and circadian rhythm dysfunctions in obesity: pathogenesis and available therapies. Neuroendocrinology, 2017, 104(4), 347-363.
[http://dx.doi.org/10.1159/000453317] [PMID: 27846625]
[223]
Broussard, J.; Brady, M.J. The impact of sleep disturbances on adipocyte function and lipid metabolism. Best Pract. Res. Clin. Endocrinol. Metab., 2010, 24(5), 763-773.
[http://dx.doi.org/10.1016/j.beem.2010.08.007] [PMID: 21112024]
[224]
Froy, O.; Garaulet, M. The circadian clock in white and brown adipose tissue: mechanistic, endocrine and clinical aspects. Endocr. Rev., 2018, 39(3), 261-273.
[http://dx.doi.org/10.1210/er.2017-00193] [PMID: 29490014]
[225]
Adlanmerini, M.; Carpenter, B.J.; Remsberg, J.R.; Aubert, Y.; Peed, L.C.; Richter, H.J.; Lazar, M.A. Circadian lipid synthesis in brown fat maintains murine body temperature during chronic cold. Proc. Natl. Acad. Sci. USA, 2019, 116(37), 18691-18699.
[http://dx.doi.org/10.1073/pnas.1909883116] [PMID: 31451658]
[226]
Ryan, S.; Arnaud, C.; Fitzpatrick, S.F.; Gaucher, J.; Tamisier, R.; Pépin, J-L. Adipose tissue as a key player in obstructive sleep apnoea. Eur. Respir. Rev., 2019, 28(152), , 190006..
[http://dx.doi.org/10.1183/16000617.0006-2019] [PMID: 31243096]
[227]
Lekkas, D.; Paschos, G.K. The circadian clock control of adipose tissue physiology and metabolism. Auton. Neurosci., 2019, 219, 66-70.
[http://dx.doi.org/10.1016/j.autneu.2019.05.001] [PMID: 31122604]
[228]
Xenaki, N.; Bacopoulou, F.; Kokkinos, A.; Nicolaides, N.C.; Chrousos, G.P.; Darviri, C. Impact of a stress management program on weight loss, mental health and lifestyle in adults with obesity: a randomized controlled trial. J. Mol. Biochem., 2018, 7(2), 78-84.
[PMID: 30568922]
[229]
Rabasa, C.; Dickson, S.L. Impact of stress on metabolism and energy balance. Curr. Opin. Behav. Sci., 2016, 9, 71-77.
[http://dx.doi.org/10.1016/j.cobeha.2016.01.011]
[230]
Stefanaki, C.; Pervanidou, P.; Boschiero, D.; Chrousos, G.P. Chronic stress and body composition disorders: implications for health and disease. Hormones (Athens), 2018, 17(1), 33-43.
[http://dx.doi.org/10.1007/s42000-018-0023-7] [PMID: 29858868]
[231]
Koski, M.; Naukkarinen, H. The Relationship between stress and severe obesity: a case-control study. Biomed. Hub, 2017, 2(1), 1-13.
[http://dx.doi.org/10.1159/000458771] [PMID: 31988895]
[232]
Epel, E.S.; McEwen, B.; Seeman, T.; Matthews, K.; Castellazzo, G.; Brownell, K.D.; Bell, J.; Ickovics, J.R. Stress and body shape: stress-induced cortisol secretion is consistently greater among women with central fat. Psychosom. Med., 2000, 62(5), 623-632.
[http://dx.doi.org/10.1097/00006842-200009000-00005] [PMID: 11020091]
[233]
Drapeau, V.; Therrien, F.; Richard, D.; Tremblay, A. Is visceral obesity a physiological adaptation to stress? Panminerva Med., 2003, 45(3), 189-195.
[PMID: 14618117]
[234]
Freitas, F.V.; Barbosa, W.M.; Silva, L.A.A.; Garozi, M.J.O.; Pinheiro, J.A.; Borçoi, A.R.; Conti, C.L.; Arpini, J.K.; de Paula, H.; de Oliveira, M.M.; Archanjo, A.B.; de Freitas, É.A.S.; de Oliveira, D.R.; Borloti, E.B.; Louro, I.D.; Alvares-da-Silva, A.M. Psychosocial stress and central adiposity: A Brazilian study with a representative sample of the public health system users. PLoS One, 2018, 13(7), , e0197699..
[http://dx.doi.org/10.1371/journal.pone.0197699] [PMID: 30063700]
[235]
Daubenmier, J.; Kristeller, J.; Hecht, F.M.; Maninger, N.; Kuwata, M.; Jhaveri, K.; Lustig, R.H.; Kemeny, M.; Karan, L.; Epel, E. Mindfulness intervention for stress eating to reduce cortisol and abdominal fat among overweight and obese women: an exploratory randomized controlled study. J. Obes., 2011, 2011, , 651936..
[http://dx.doi.org/10.1155/2011/651936] [PMID: 21977314]
[236]
La Merrill, M.; Emond, C.; Kim, M.J.; Antignac, J-P.; Le Bizec, B.; Clément, K.; Birnbaum, L.S.; Barouki, R. Toxicological function of adipose tissue: focus on persistent organic pollutants. Environ. Health Perspect., 2013, 121(2), 162-169.
[http://dx.doi.org/10.1289/ehp.1205485] [PMID: 23221922]
[237]
Latini, G.; Gallo, F.; Iughetti, L. Toxic environment and obesity pandemia: is there a relationship? Ital. J. Pediatr., 2010, 36, 8.
[http://dx.doi.org/10.1186/1824-7288-36-8] [PMID: 20205780]
[238]
van Marken Lichtenbelt, W.D.; Hanssen, M.J.W.; Hoeks, J.; van der Lans, A.A.J.J.; Brans, B.; Mottaghy, F.M.; Schrauwen, P. Cold acclimation and health: effect on brown fat, energetics and insulin sensitivity. Extrem. Physiol. Med., 2015, 4(1), A45.
[http://dx.doi.org/10.1186/2046-7648-4-S1-A45]
[239]
Blondin, D.P.; Tingelstad, H.C.; Noll, C.; Frisch, F.; Phoenix, S.; Guérin, B.; Turcotte, É.E.; Richard, D.; Haman, F.; Carpentier, A.C. Dietary fatty acid metabolism of brown adipose tissue in cold-acclimated men. Nat. Commun., 2017, 8(1), 14146.
[http://dx.doi.org/10.1038/ncomms14146] [PMID: 28134339]
[240]
Blondin, D.P.; Labbé, S.M.; Tingelstad, H.C.; Noll, C.; Kunach, M.; Phoenix, S.; Guérin, B.; Turcotte, E.E.; Carpentier, A.C.; Richard, D.; Haman, F. Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J. Clin. Endocrinol. Metab., 2014, 99(3), E438-E446.
[http://dx.doi.org/10.1210/jc.2013-3901] [PMID: 24423363]
[241]
Vosselman, M.J.; Vijgen, G.H.E.J.; Kingma, B.R.M.; Brans, B.; van Marken Lichtenbelt, W.D. Frequent extreme cold exposure and brown fat and cold-induced thermogenesis: a study in a monozygotic twin. PLoS One, 2014, 9(7), , e101653..
[http://dx.doi.org/10.1371/journal.pone.0101653] [PMID: 25014028]
[242]
van der Lans, A.A.J.J.; Hoeks, J.; Brans, B.; Vijgen, G.H.E.J.; Visser, M.G.W.; Vosselman, M.J.; Hansen, J.; Jörgensen, J.A.; Wu, J.; Mottaghy, F.M.; Schrauwen, P.; van Marken Lichtenbelt, W.D. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J. Clin. Invest., 2013, 123(8), 3395-3403.
[http://dx.doi.org/10.1172/JCI68993] [PMID: 23867626]
[243]
Hanssen, M.J.W.; van der Lans, A.A.J.J.; Brans, B.; Hoeks, J.; Jardon, K.M.C.; Schaart, G.; Mottaghy, F.M.; Schrauwen, P.; van Marken Lichtenbelt, W.D. Short-term Cold Acclimation Recruits Brown Adipose Tissue in Obese Humans. Diabetes, 2016, 65(5), 1179-1189.
[http://dx.doi.org/10.2337/db15-1372] [PMID: 26718499]
[244]
Gordon, K.; Blondin, D.P.; Friesen, B.J.; Tingelstad, H.C.; Kenny, G.P.; Haman, F. Seven days of cold acclimation substantially reduces shivering intensity and increases nonshivering thermogenesis in adult humans. J. Appl. Physiol., 2019, 126(6), 1598-1606.
[http://dx.doi.org/10.1152/japplphysiol.01133.2018] [PMID: 30896355]
[245]
Blondin, D.P.; Daoud, A.; Taylor, T.; Tingelstad, H.C.; Bézaire, V.; Richard, D.; Carpentier, A.C.; Taylor, A.W.; Harper, M-E.; Aguer, C.; Haman, F. Four-week cold acclimation in adult humans shifts uncoupling thermogenesis from skeletal muscles to brown adipose tissue. J. Physiol., 2017, 595(6), 2099-2113.
[http://dx.doi.org/10.1113/JP273395] [PMID: 28025824]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy