Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

General Research Article

Curcumin Nanoemulsions Stabilized with Modified Phosphatidylcholine on Skin Carcinogenesis Protocol

Author(s): Beatriz Agame-Lagunes, Monserrat Alegria-Rivadeneyra, Rodolfo Quintana-Castro, Cristobal Torres-Palacios, Peter Grube-Pagola, Cynthia Cano-Sarmiento, Rebeca Garcia-Varela, Alfonso Alexander-Aguilera* and Hugo Sergio García*

Volume 21, Issue 3, 2020

Page: [226 - 234] Pages: 9

DOI: 10.2174/1389200221666200429111928

Price: $65

Abstract

Background: Cancer is one of the main causes of death by disease; several alternative treatments have been developed to counteract this condition. Curcumin (diferuloylmethane), extracted from the rhizome of Curcuma longa, has antioxidant, anti-inflammatory, and anti-cancer properties; however, it has low water solubility and poor intestinal absorption. Carrier systems, such as nanoemulsions, can increase the bioavailability of lipophilic bioactive compounds.

Objective: To evaluate the effect of curcumin nanoemulsions prepared with lecithin modified with medium-chain fatty acids as an emulsifier, on the expression of the Cdk4, Ccne2, Casp8 and Cldn4 genes involved in the carcinogenesis process in K14E6 transgenic mice.

Methods: The emulsifier was prepared by interesterification of medium-chain fatty acids, pure lecithin, and immobilized phospholipase-1 on Duolite A568. An Ultraturrax homogenizer and a Branson Ultrasonic processor were used for the preparation of nano-emulsions, and a Zetasizer evaluated the particle size. qRT-PCR analysis was performed to quantify the cancer-related genes expressed in the K14E6 mice. The development and evolution of skin carcinogenesis were assessed through histological analysis to compare cell morphology.

Results: Ca 59% of the MCFA were incorporated via esterification into the PC within 12 hours of the reaction. An emulsifier yield used to formulate the NE of 86% was achieved. Nanoemulsions with a particle size of 44 nm were obtained. The curcumin nano-emulsion group had a 91.81% decrease in the tumorigenesis index and a reduction in tumor area of 89.95% compared to the sick group. Histological analysis showed that the group administered with free curcumin developed a microinvasive squamous cell carcinoma, as opposed to the group with nanoemulsion which presented only a slight inflammation. In gene expression, only a significant difference in Cdk4 was observed in the nanoemulsion group.

Keywords: Curcumin, nano-emulsions, skin carcinogenesis, modified lecithin, medium-chain fatty acids, gene expression, histology.

Graphical Abstract

[1]
World Health Organization. Monitoring Health for the SDG’s (Sustainable development goals); Geneva,. , 2018.
[2]
Kim, H.; Park, J.; Tak, K.H.; Bu, S.Y.; Kim, E. Chemopreventive effects of curcumin on chemically induced mouse skin carcinogenesis in BK5.insulin-like growth factor-1 transgenic mice. In Vitro Cell. Dev. Biol. Anim., 2014, 50(9), 883-892.
[http://dx.doi.org/10.1007/s11626-014-9791-9] [PMID: 25027711]
[3]
Kotecha, R.; Takami, A.; Espinoza, J.L. Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget, 2016, 7(32), 52517-52529.
[http://dx.doi.org/10.18632/oncotarget.9593] [PMID: 27232756]
[4]
Shang, H.S.; Chang, C.H.; Chou, Y.R.; Yeh, M.Y.; Au, M.K.; Lu, H.F.; Chu, Y.L.; Chou, H.M.; Chou, H.C.; Shih, Y.L.; Chung, J.G. Curcumin causes DNA damage and affects associated protein expression in HeLa human cervical cancer cells. Oncol. Rep., 2016, 36(4), 2207-2215.
[http://dx.doi.org/10.3892/or.2016.5002] [PMID: 27499229]
[5]
Aggarwal, B.B.; Sundaram, C.; Malani, N.; Ichikawa, H. Curcumin: the Indian solid gold. Adv. Exp. Med. Biol., 2007, 595, 1-75.
[http://dx.doi.org/10.1007/978-0-387-46401-5_1] [PMID: 17569205]
[6]
Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. Curcumin nanomedicine: a road to cancer therapeutics. Curr. Pharm. Des., 2013, 19(11), 1994-2010.
[PMID: 23116309]
[7]
Bimonte, S.; Barbieri, A.; Palma, G.; Luciano, A.; Rea, D.; Arra, C. Curcumin inhibits tumor growth and angiogenesis in an orthotopic mouse model of human pancreatic cancer. BioMed Res. Int., 2013, 2013810423
[http://dx.doi.org/10.1155/2013/810423] [PMID: 24324975]
[8]
Huang, M.T.; Newmark, H.; Frenkel, K. Inhibitory effects of curcumin on carcinogenesis in mouse epidermis. J. Cell. Biochem., 1997, 507, 338-349.
[9]
Tuorkey, M.J. Curcumin a potent cancer preventive agent: Mechanisms of cancer cell killing. Interv. Med. Appl. Sci., 2014, 6(4), 139-146.
[http://dx.doi.org/10.1556/IMAS.6.2014.4.1] [PMID: 25598986]
[10]
Zhang, L.; Cheng, X.; Gao, Y.; Zhang, C.; Bao, J.; Guan, H.; Yu, H.; Lu, R.; Xu, Q.; Sun, Y. Curcumin inhibits metastasis in human papillary thyroid carcinoma BCPAP cells via down-regulation of the TGF-β/Smad2/3 signaling pathway. Exp. Cell Res., 2016, 341(2), 157-165.
[http://dx.doi.org/10.1016/j.yexcr.2016.01.006] [PMID: 26826337]
[11]
Siwak, D.R.; Shishodia, S.; Aggarwal, B.B.; Kurzrock, R. Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IkappaB kinase and nuclear factor kappaB activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer, 2005, 104(4), 879-890.
[http://dx.doi.org/10.1002/cncr.21216] [PMID: 16007726]
[12]
Shanmugam, M.K.; Rane, G.; Kanchi, M.M.; Arfuso, F.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; Tan, B.K.; Kumar, A.P.; Sethi, G. The multifaceted role of curcumin in cancer prevention and treatment. Molecules, 2015, 20(2), 2728-2769.
[http://dx.doi.org/10.3390/molecules20022728] [PMID: 25665066]
[13]
Mukhopadhyay, A.; Banerjee, S.; Stafford, L.J.; Xia, C.; Liu, M.; Aggarwal, B.B. Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene, 2002, 21(57), 8852-8861.
[http://dx.doi.org/10.1038/sj.onc.1206048] [PMID: 12483537]
[14]
Sarada, S.K.; Titto, M.; Himadri, P.; Saumya, S.; Vijayalakshmi, V. Curcumin prophylaxis mitigates the incidence of hypobaric hypoxia-induced altered ion channels expression and impaired tight junction proteins integrity in rat brain. J. Neuroinflammation, 2015, 12, 113.
[http://dx.doi.org/10.1186/s12974-015-0326-4] [PMID: 26048285]
[15]
Chang, Z.; Xing, J.; Yu, X. Curcumin induces osteosarcoma MG63 cells apoptosis via ROS/Cyto-C/Caspase-3 pathway. Tumour Biol., 2014, 35(1), 753-758.
[http://dx.doi.org/10.1007/s13277-013-1102-7] [PMID: 23959480]
[16]
Cao, L.; Liu, J.; Zhang, L.; Xiao, X.; Li, W. Curcumin inhibits H2O2-induced invasion and migration of human pancreatic cancer via suppression of the ERK/NF-κB pathway. Oncol. Rep., 2016, 36(4), 2245-2251.
[http://dx.doi.org/10.3892/or.2016.5044] [PMID: 27572503]
[17]
Jordan, B.C.; Mock, C.D.; Thilagavathi, R.; Selvam, C. Molecular mechanisms of curcumin and its semisynthetic analogues in prostate cancer prevention and treatment. Life Sci., 2016, 152, 135-144.
[http://dx.doi.org/10.1016/j.lfs.2016.03.036] [PMID: 27018446]
[18]
Rahimi, H.R.; Nedaeinia, R.; Sepehri Shamloo, A.; Nikdoust, S.; Kazemi Oskuee, R. Novel delivery system for natural products: Nano-curcumin formulations. Avicenna J. Phytomed., 2016, 6(4), 383-398.
[PMID: 27516979]
[19]
Liu, W.; Zhai, Y.; Heng, X.; Che, F.Y.; Chen, W.; Sun, D.; Zhai, G. Oral bioavailability of curcumin: problems and advancements. J. Drug Target., 2016, 24(8), 694-702.
[http://dx.doi.org/10.3109/1061186X.2016.1157883] [PMID: 26942997]
[20]
McClements, D.J.; Decker, E.A.; Park, Y.; Weiss, J. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit. Rev. Food Sci. Nutr., 2009, 49(6), 577-606.
[http://dx.doi.org/10.1080/10408390902841529] [PMID: 19484636]
[21]
McClements, D.J. Nanoemulsion-based oral delivery systems for lipophilic bioactive components: nutraceuticals and pharmaceuticals. Ther. Deliv., 2013, 4(7), 841-857.
[http://dx.doi.org/10.4155/tde.13.46] [PMID: 23883127]
[22]
Nayak, A.P.; Mills, T.; Norton, I. Lipid based nanosystems for curcumin: past, present and future. Curr. Pharm. Des., 2016, 22(27), 4247-4256.
[http://dx.doi.org/10.2174/1381612822666160614083412] [PMID: 27306091]
[23]
Ahmad, M.Z.; Alkahtani, S.A.; Akhter, S.; Ahmad, F.J.; Ahmad, J.; Akhtar, M.S.; Mohsin, N.; Abdel-Wahab, B.A. Progress in nanotechnology-based drug carrier in designing of curcumin nanomedicines for cancer therapy: current state-of-the-art. J. Drug Target., 2016, 24(4), 273-293.
[http://dx.doi.org/10.3109/1061186X.2015.1055570] [PMID: 26066739]
[24]
Pavitra, E.; Dariya, B.; Srivani, G.; Kang, S.M.; Alam, A.; Sudhir, P.R.; Kamal, M.A.; Raju, G.S.R.; Han, Y.K.; Lakkakula, B.V.K.S.; Nagaraju, G.P.; Huh, Y.S. Engineered nanoparticles for imaging and drug delivery in colorectal cancer. Semin. Cancer Biol., 2019, 0-1
[http://dx.doi.org/10.1016/j.semcancer.2019.06.017]
[25]
Ochoa, A.A.; Hernández-Becerra, J.A.; Cavazos-Garduño, A.; García, H.S.; Vernon-Carter, E.J. Phosphatidylcholine enrichment with medium chain fatty acids by immobilized phospholipase A(1) -catalyzed acidolysis. Biotechnol. Prog., 2013, 29(1), 230-236.
[http://dx.doi.org/10.1002/btpr.1648] [PMID: 23074091]
[26]
Garcia, H.S.; Kim, I.H.; Lopez-Hernandez, A.; Hill, C.G., Jr Enrichment of lecithin with n-3 fatty acids by acidolysis using immobilized phospholipase A1. Grasas Aceites, 2008, 59, 368-374.
[http://dx.doi.org/10.3989/gya.2008.v59.i4.531]
[27]
Vikbjerg, A.F.; Rusig, J.Y.; Jonsson, G.; Mu, H.; Xu, X. Strategies for lipase-catalyzed production and the purification of structured phospholipids. Eur. J. Lipid Sci. Technol., 2006, 108, 802-811.
[http://dx.doi.org/10.1002/ejlt.200600138]
[28]
Chávez-Zamudio, R.; Ochoa-Flores, A.A.; Soto-Rodríguez, I.; Garcia-Varela, R.; García, H.S. Preparation, characterization and bioavailability by oral administration of O/W curcumin nanoemulsions stabilized with lysophosphatidylcholine. Food Funct., 2017, 8(9), 3346-3354.
[http://dx.doi.org/10.1039/C7FO00933J] [PMID: 28856361]
[29]
Song, S.; Pitot, H.C.; Lambert, P.F. The human papillomavirus type 16 E6 gene alone is sufficient to induce carcinomas in transgenic animals. J. Virol., 1999, 73(7), 5887-5893.
[http://dx.doi.org/10.1128/JVI.73.7.5887-5893.1999] [PMID: 10364340]
[30]
National Research Council. Guide for The Care and Use of Laboratory Animals, 8th ed; The National Academies Press: Washington, DC, 2011.
[31]
Abel, E.L.; Angel, J.M.; Kiguchi, K.; DiGiovanni, J. Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nat. Protoc., 2009, 4(9), 1350-1362.
[http://dx.doi.org/10.1038/nprot.2009.120] [PMID: 19713956]
[32]
Mendoza-Villanueva, D.; Diaz-Chavez, J.; Uribe-Figueroa, L.; Rangel-Escareão, C.; Hidalgo-Miranda, A.; March-Mifsut, S.; Jimenez-Sanchez, G.; Lambert, P.; Gariglio, P. Gene expression profile of cervical and skin tissues from human papillomavirus type 16 E6 transgenic mice. BMC Cancer, 2008, 8, 347.
[http://dx.doi.org/10.1186/1471-2407-8-347] [PMID: 19036130]
[33]
Torres-Palacios, C.; Ramírez-Lepe, M. Expression of Hydrolytic Enzymes during interaction of Moniliophthora roreri, causal agent of frosty pod rot and Theobroma cacao pods. Plant Pathol. J., 2016, 15, 49-56.
[http://dx.doi.org/10.3923/ppj.2016.49.56]
[34]
Phillips, J.; Moore-Medlin, T.; Sonavane, K.; Ekshyyan, O.; McLarty, J.; Nathan, C.A.O. Curcumin inhibits UV radiation-induced skin cancer in SKH-1 mice. Otolaryngol. Head Neck Surg., 2013, 148(5), 797-803.
[http://dx.doi.org/10.1177/0194599813476845] [PMID: 23386626]
[35]
Odot, J.; Albert, P.; Carlier, A.; Tarpin, M.; Devy, J.; Madoulet, C. In vitro and in vivo anti-tumoral effect of curcumin against melanoma cells. Int. J. Cancer, 2004, 111(3), 381-387.
[http://dx.doi.org/10.1002/ijc.20160] [PMID: 15221965]
[36]
Kim, I.H.; Garcia, H.S. Hill, Jr.; C.G. Phospholipase A1-catalyzed synthesis of phospholipids enriched in n-3 polyunsaturated fatty acid residues. Enzyme Microb. Technol., 2007, 40, 1130-1135.
[http://dx.doi.org/10.1016/j.enzmictec.2006.08.018]
[37]
Ochoa-Flores, A.A.; Hernández-Becerra, J.A.; Cavazos-Garduño, A.; Soto-Rodríguez, I.; Sanchez-Otero, M.G.; Vernon-Carter, E.J.; García, H.S. Enhanced bioavailability of curcumin nanoemulsions stabilized with phosphatidylcholine modified with medium chain fatty acids. Curr. Drug Deliv., 2017, 14(3), 377-385.
[http://dx.doi.org/10.2174/1567201813666160919142811] [PMID: 27654576]
[38]
Lakkakula, S.; Chalikonda, G.; Lakkakula, B.V.K.S. Nanoparticles in pancreatic cancer imaging and therapy. Crit. Rev. Oncog., 2019, 24(2), 139-148.
[http://dx.doi.org/10.1615/CritRevOncog.2019031519] [PMID: 31679209]
[39]
Cai, X.Z.; Wang, J.; Li, X.D.; Wang, G.L.; Liu, F.N.; Cheng, M.S.; Li, F.; Li, F. Curcumin suppresses proliferation and invasion in human gastric cancer cells by downregulation of PAK1 activity and cyclin D1 expression. Cancer Biol. Ther., 2009, 8(14), 1360-1368.
[http://dx.doi.org/10.4161/cbt.8.14.8720] [PMID: 19448398]
[40]
Limtrakul, P.; Lipigorngoson, S.; Namwong, O.; Apisariyakul, A.; Dunn, F.W. Inhibitory effect of dietary curcumin on skin carcinogenesis in mice. Cancer Lett., 1997, 116(2), 197-203.
[http://dx.doi.org/10.1016/S0304-3835(97)00187-0] [PMID: 9215864]
[41]
Rahmani, A.H.; Al Zohairy, M.A.; Aly, S.M.; Khan, M.A. Curcumin: a potential candidate in prevention of cancer via modulation of molecular pathways. BioMed Res. Int., 2014, 2014761608
[http://dx.doi.org/10.1155/2014/761608] [PMID: 25295272]
[42]
Srivastava, R.K.; Chen, Q.; Siddiqui, I.; Sarva, K.; Shankar, S. Linkage of curcumin-induced cell cycle arrest and apoptosis by cyclin-dependent kinase inhibitor p21(/WAF1/CIP1). Cell Cycle, 2007, 6(23), 2953-2961.
[http://dx.doi.org/10.4161/cc.6.23.4951] [PMID: 18156803]
[43]
Watari, A.; Yagi, K.; Kondoh, M. A simple reporter assay for screening claudin-4 modulators. Biochem. Biophys. Res. Commun., 2012, 426(4), 454-460.
[http://dx.doi.org/10.1016/j.bbrc.2012.08.083] [PMID: 22960168]
[44]
Kwon, M.J. Emerging roles of claudins in human cancer. Int. J. Mol. Sci., 2013, 14(9), 18148-18180.
[http://dx.doi.org/10.3390/ijms140918148] [PMID: 24009024]
[45]
Yallapu, M.M.; Ebeling, M.C.; Jaggi, M.; Chauhan, S.C. Plasma proteins interaction with curcumin nanoparticles: implications in cancer therapeutics. Curr. Drug Metab., 2013, 14(4), 504-515.
[http://dx.doi.org/10.2174/1389200211314040012] [PMID: 23566382]
[46]
Yallapu, M.M.; Nagesh, P.K.; Jaggi, M.; Chauhan, S.C. Therapeutic applications of curcumin. Nanoformulations. AAPS J., 2015, 17(6), 1341-1356.
[http://dx.doi.org/10.1208/s12248-015-9811-z] [PMID: 26335307]
[47]
Wang, X.; Jiang, Y.; Wang, Y.W.; Huang, M.T.; Ho, C.T.; Huang, Q. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem., 2008, 108(2), 419-424.
[http://dx.doi.org/10.1016/j.foodchem.2007.10.086] [PMID: 26059118]
[48]
Bisht, S.; Mizuma, M.; Feldmann, G.; Ottenhof, N.A.; Hong, S.M.; Pramanik, D.; Chenna, V.; Karikari, C.; Sharma, R.; Goggins, M.G.; Rudek, M.A.; Ravi, R.; Maitra, A.; Maitra, A. Systemic administration of polymeric nanoparticle-encapsulated curcumin (NanoCurc) blocks tumor growth and metastases in preclinical models of pancreatic cancer. Mol. Cancer Ther., 2010, 9(8), 2255-2264.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0172] [PMID: 20647339]
[49]
Pisano, M.; Palomba, A.; Tanca, A.; Pagnozzi, D.; Uzzau, S.; Addis, M.F.; Dettori, M.A.; Fabbri, D.; Palmieri, G.; Rozzo, C. Protein expression changes induced in a malignant melanoma cell line by the curcumin analogue compound D6. BMC Cancer, 2016, 16, 317.
[http://dx.doi.org/10.1186/s12885-016-2362-6] [PMID: 27192978]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy