Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Functional Characterization of Alr0765, A Hypothetical Protein from Anabaena PCC 7120 Involved in Cellular Energy Status Sensing, Iron Acquisition and Abiotic Stress Management in E. coli Using Molecular, Biochemical and Computational Approaches

Author(s): Antra Chatterjee, Shilpi Singh, Ruchi Rai, Shweta Rai and L.C. Rai*

Volume 21, Issue 4, 2020

Page: [295 - 310] Pages: 16

DOI: 10.2174/1389202921999200424181239

Price: $65

Abstract

Background: Cyanobacteria are excellent model to understand the basic metabolic processes taking place in response to abiotic stress. The present study involves the characterization of a hypothetical protein Alr0765 of Anabaena PCC7120 comprising the CBS-CP12 domain and deciphering its role in abiotic stress tolerance.

Methods: Molecular cloning, heterologous expression and protein purification using affinity chromatography were performed to obtain native purified protein Alr0765. The energy sensing property of Alr0765 was inferred from its binding affinity with different ligand molecules as analyzed by FTIR and TNP-ATP binding assay. AAS and real time-PCR were applied to evaluate the iron acquisition property and cyclic voltammetry was employed to check the redox sensitivity of the target protein. Transcript levels under different abiotic stresses, as well as spot assay, CFU count, ROS level and cellular H2O2 level, were used to show the potential role of Alr0765 in abiotic stress tolerance. In-silico analysis of Alr0765 included molecular function probability analysis, multiple sequence analysis, protein domain and motif finding, secondary structure analysis, protein-ligand interaction, homologous modeling, model refinement and verification and molecular docking was performed with COFACTOR, PROMALS-3D, InterProScan, MEME, TheaDomEx, COACH, Swiss modeller, Modrefiner, PROCHECK, ERRAT, MolProbity, ProSA, TM-align, and Discovery studio, respectively.

Results: Transcript levels of alr0765 significantly increased by 20, 13, 15, 14.8, 12, 7, 6 and 2.5 fold when Anabaena PCC7120 treated with LC50 dose of heat, arsenic, cadmium, butachlor, salt, mannitol (drought), UV-B, and methyl viologen respectively, with respect to control (untreated). Heterologous expression resulted in 23KDa protein observed on the SDS-PAGE. Immunoblotting and MALDI-TOF-MS/MS, followed by MASCOT search analysis, confirmed the identity of the protein and ESI/MS revealed that the purified protein was a dimer. Binding possibility of Alr0765 with ATP was observed with an almost 6-fold increment in relative fluorescence during TNP-ATP binding assay with a λ max of 538 nm. FTIR spectra revealed modification in protein confirmation upon binding of Alr0765 with ATP, ADP, AMP and NADH. A 10-fold higher accumulation of iron was observed in digests of E. coli with recombinant vector after induction as compared to control, which affirms the iron acquisition property of the protein. Moreover, the generation of the redox potential of 146 mV by Alr0765 suggested its probable role in maintaining the redox status of the cell under environmental constraints. As per CFU count recombinant, E. coli BL21 cells showed about 14.7, 7.3, 6.9, 1.9, 3 and 4.9 fold higher number of colonies under heat, cadmium (CdCl2), arsenic (Na3AsO4), salt (NaCl), UV-B and drought (mannitol) respectively compared to pET21a harboring E. coli BL21 cells. Deterioration in the cellular ROS level and total cellular H2O2 concentration validated the stress tolerance ability of Alr0765. In-silico analysis unraveled novel findings and attested experimental findings in determining the role of Alr0765.

Conclusion: Alr0765 is a novel CBS-CP12 domain protein that maintains cellular energy level and iron homeostasis which provides tolerance against multiple abiotic stresses.

Keywords: Anabaena PCC7120, hypothetical proteins, adenosyl ligand binding, redox-active protein, iron homeostasis, abiotic stress management.

Graphical Abstract

[1]
Babele, P.K.; Kumar, J.; Chaturvedi, V. Proteomic de-regulation in cyanobacteria in response to abiotic stresses. Front. Microbiol., 2019, 10, 1315.
[http://dx.doi.org/10.3389/fmicb.2019.01315] [PMID: 31263458]
[2]
Stanley, D.N.; Raines, C.A.; Kerfeld, C.A. Comparative analysis of 126 cyanobacterial genomes reveals evidence of functional diversity among homologs of the redox-regulated CP12 protein. Plant Physiol., 2013, 161(2), 824-835.
[http://dx.doi.org/10.1104/pp.112.210542] [PMID: 23184231]
[3]
Scott, J.W.; Hawley, S.A.; Green, K.A.; Anis, M.; Stewart, G.; Scullion, G.A.; Norman, D.G.; Hardie, D.G. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J. Clin. Invest., 2004, 113(2), 274-284.
[http://dx.doi.org/10.1172/JCI19874] [PMID: 14722619]
[4]
Biemans-Oldehinkel, E.; Mahmood, N.A.B.; Poolman, B. A sensor for intracellular ionic strength. Proc. Natl. Acad. Sci. USA, 2006, 103(28), 10624-10629.
[http://dx.doi.org/10.1073/pnas.0603871103] [PMID: 16815971]
[5]
Ishitani, R.; Sugita, Y.; Dohmae, N.; Furuya, N.; Hattori, M.; Nureki, O. Mg2+-sensing mechanism of Mg2+ transporter MgtE probed by molecular dynamics study. Proc. Natl. Acad. Sci. USA, 2008, 105(40), 15393-15398.
[http://dx.doi.org/10.1073/pnas.0802991105] [PMID: 18832160]
[6]
Carr, G.; Simmons, N.; Sayer, J. A role for CBS domain 2 in trafficking of chloride channel CLC-5. Biochem. Biophys. Res. Commun., 2003, 310(2), 600-605.
[http://dx.doi.org/10.1016/j.bbrc.2003.09.057] [PMID: 14521953]
[7]
De, A.A.; Moran, O.; Wege, S.; Filleur, S.; Ephritikhine, G.; Thomine, S.; Barbier-Brygoo, H.; Gambale, F. ATP binding to the C terminus of the Arabidopsis thaliana nitrate/proton antiporter, AtCLCa, regulates nitrate transport into plant vacuoles. J. Biol. Chem., 2009, 284, 26526-26532.
[http://dx.doi.org/10.1074/jbc.M109.005132]
[8]
Tuominen, H.; Salminen, A.; Oksanen, E.; Jämsen, J.; Heikkilä, O.; Lehtiö, L.; Magretova, N.N.; Goldman, A.; Baykov, A.A.; Lahti, R. Crystal structures of the CBS and DRTGG domains of the regulatory region of Clostridiumperfringens pyrophosphatase complexed with the inhibitor, AMP, and activator, diadenosine tetraphosphate. J. Mol. Biol., 2010, 398(3), 400-413.
[http://dx.doi.org/10.1016/j.jmb.2010.03.019] [PMID: 20303981]
[9]
Bateman, A. The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem. Sci., 1997, 22(1), 12-13.
[http://dx.doi.org/10.1016/S0968-0004(96)30046-7] [PMID: 9020585]
[10]
Kushwaha, H.R.; Singh, A.K.; Sopory, S.K.; Singla-Pareek, S.L.; Pareek, A. Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation. BMC Genomics, 2009, 10, 200.
[http://dx.doi.org/10.1186/1471-2164-10-200] [PMID: 19400948]
[11]
Yoo, K.S.; Ok, S.H.; Jeong, B.C.; Jung, K.W.; Cui, M.H.; Hyoung, S.; Lee, M.R.; Song, H.K.; Shin, J.S. Single cystathionine β-synthase domain-containing proteins modulate development by regulating the thioredoxin system in Arabidopsis. Plant Cell, 2011, 23(10), 3577-3594.
[http://dx.doi.org/10.1105/tpc.111.089847] [PMID: 22021414]
[12]
Singh, A.K.; Kumar, R.; Pareek, A.; Sopory, S.K.; Singla-Pareek, S.L. Overexpression of rice CBS domain containing protein improves salinity, oxidative, and heavy metal tolerance in transgenic tobacco. Mol. Biotechnol., 2012, 52(3), 205-216.
[http://dx.doi.org/10.1007/s12033-011-9487-2] [PMID: 22302312]
[13]
Wang, X.; Ren, X.; Zhu, L.; He, G. A rice gene, encodes a novel protein with a CBS-like domain and its expression is induced in responses to herbivore feeding. Plant Sci., 2004, 166, 1581-1588.
[http://dx.doi.org/10.1016/j.plantsci.2004.02.011]
[14]
Wedel, N.; Soll, J.; Paap, B.K. CP12 provides a new mode of light regulation of Calvin cycle activity in higher plants. Proc. Natl. Acad. Sci. USA, 1997, 94(19), 10479-10484.
[http://dx.doi.org/10.1073/pnas.94.19.10479] [PMID: 9294236]
[15]
Erales, J.; Gontero, B.; Maberly, S.C. Specificity and function of glyceraldehyde-3phosphate dehydrogenase in a freshwater diatom, Asterionella formosa (Bacillariophyceae). J. Phycol., 2008, 44(6), 1455-1464.
[http://dx.doi.org/10.1111/j.1529-8817.2008.00600.x] [PMID: 27039860]
[16]
Groben, R.; Kaloudas, D.; Raines, C.A.; Offmann, B.; Maberly, S.C.; Gontero, B. Comparative sequence analysis of CP12, a small protein involved in the formation of a Calvin cycle complex in photosynthetic organisms. Photosynth. Res., 2010, 103(3), 183-194.
[http://dx.doi.org/10.1007/s11120-010-9542-z] [PMID: 20224939]
[17]
Marri, L.; Trost, P.; Pupillo, P.; Sparla, F. Reconstitution and properties of the recombinant glyceraldehyde-3-phosphate dehydrogenase/CP12/phosphoribulokinase supramolecular complex of Arabidopsis. Plant Physiol., 2005, 139(3), 1433-1443.
[http://dx.doi.org/10.1104/pp.105.068445] [PMID: 16258009]
[18]
Marri, L.; Zaffagnini, M.; Collin, V.; Issakidis-Bourguet, E.; Lemaire, S.D.; Pupillo, P.; Sparla, F.; Miginiac-Maslow, M.; Trost, P. Prompt and easy activation by specific thioredoxins of calvin cycle enzymes of Arabidopsis thaliana associated in the GAPDH/CP12/PRK supramolecular complex. Mol. Plant, 2009, 2(2), 259-269.
[http://dx.doi.org/10.1093/mp/ssn061] [PMID: 19825612]
[19]
Buchanan, B.B.; Balmer, Y. Redox regulation: a broadening horizon. Annu. Rev. Plant Biol., 2005, 56, 187-220.
[http://dx.doi.org/10.1146/annurev.arplant.56.032604.144246] [PMID: 15862094]
[20]
Marri, L.; Thieulin-Pardo, G.; Lebrun, R.; Puppo, R.; Zaffagnini, M.; Trost, P.; Gontero, B.; Sparla, F. CP12-mediated protection of Calvin-Benson cycle enzymes from oxidative stress. Biochimie, 2014, 97, 228-237.
[http://dx.doi.org/10.1016/j.biochi.2013.10.018] [PMID: 24211189]
[21]
Rai, L.C.; Kumar, H.D.; Mohn, F.H.; Soeder, C.J. Services of algae to the environment. J. Microbiol. Biotechnol., 2000, 10, 119-136.
[22]
Shcolnick, S.; Shaked, Y.; Keren, N. A role for mrgA, a DPS family protein, in the internal transport of Fe in the cyanobacterium Synechocystis sp. PCC6803. Biochim. Biophys. Acta, 2007, 1767(6), 814-819.
[http://dx.doi.org/10.1016/j.bbabio.2006.11.015] [PMID: 17234153]
[23]
Holden, V.I.; Wright, M.S.; Houle, S.; Collingwood, A.; Dozois, C.M.; Adams, M.D.; Bachman, M.A. Iron acquisition and siderophore release by carbapenem-resistant sequence type 258 Klebsiella pneumonia. MSphere, 2018, 3(2), e00125-e18.
[http://dx.doi.org/10.1128/mSphere.00125-18] [PMID: 29669884]
[24]
Pandey, S.; Rai, R.; Rai, L.C. Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC7120 under arsenic stress. J. Proteomics, 2012, 75(3), 921-937.
[http://dx.doi.org/10.1016/j.jprot.2011.10.011] [PMID: 22057044]
[25]
Rai, S.; Agrawal, C.; Shrivastava, A.K.; Singh, P.K.; Rai, L.C. Comparative proteomics unveils cross species variations in Anabaena under salt stress. J. Proteomics, 2014, 98, 254-270.
[http://dx.doi.org/10.1016/j.jprot.2013.12.020] [PMID: 24406298]
[26]
Rajaram, H.; Apte, S.K. Nitrogen status and heat-stress-dependent differential expression of the cpn60 chaperonin gene influences thermotolerance in the cyanobacterium Anabaena. Microbiology, 2008, 154(Pt 1), 317-325.
[http://dx.doi.org/10.1099/mic.0.2007/011064-0] [PMID: 18174150]
[27]
Shrivastava, A.K.; Chatterjee, A.; Yadav, S.; Singh, P.K.; Singh, S.; Rai, L.C. UV-B stress induced metabolic rearrangements explored with comparative proteomics in three Anabaena species. J. Proteomics, 2015, 127(Pt A), 122-133.
[http://dx.doi.org/10.1016/j.jprot.2015.05.014] [PMID: 25997677]
[28]
Sen, S.; Rai, S.; Yadav, S.; Agrawal, C.; Rai, R.; Chatterjee, A.; Rai, L.C. Dehydration and rehydration-induced temporal changes in cytosolic and membrane proteome of the nitrogen fixing cyanobacterium Anabaena PCC7120. Algal Res., 2017, 27, 244-258.
[http://dx.doi.org/10.1016/j.algal.2017.09.012]
[29]
Agrawal, C.; Sen, S.; Singh, S.; Rai, S.; Singh, P.K.; Singh, V.K.; Rai, L.C. Comparative proteomics reveals association of early accumulated proteins in conferring butachlor tolerance in three N(2)-fixing Anabaena spp. J. Proteomics, 2014, 96, 271-290.
[http://dx.doi.org/10.1016/j.jprot.2013.11.015] [PMID: 24291601]
[30]
Singh, P.K.; Shrivastava, A.K.; Chatterjee, A.; Pandey, S.; Rai, S.; Singh, S.; Rai, L.C. Cadmium toxicity in diazotrophic Anabaena spp. adjudged by hasty up-accumulation of transporter and signaling and severe down-accumulation of nitrogen metabolism proteins J. Proteomics, 2015, 127(Pt A), 134-146.
[http://dx.doi.org/10.1016/j.jprot.2015.05.019] [PMID: 26021478]
[31]
Panda, B.; Basu, B.; Rajaram, H.; Apte, S.K. Comparative proteomics of oxidative stress response in three cyanobacterial strains native to Indian paddy fields J. Proteomics, 2015, 127(Pt A), 152-160.
[http://dx.doi.org/10.1016/j.jprot.2015.05.020] [PMID: 26013413]
[32]
Chaurasia, N.; Mishra, Y.; Chatterjee, A.; Rai, R.; Yadav, S.; Rai, L.C. Overexpression of phytochelatin synthase (pcs) enhances abiotic stress tolerance by altering the proteome of transformed Anabaena sp. PCC 7120. Protoplasma, 2017, 254(4), 1715-1724.
[http://dx.doi.org/10.1007/s00709-016-1059-7] [PMID: 28000119]
[33]
Banerjee, S.; Mazumdar, S. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int. J. Anal. Chem., 2012, 2012282574
[http://dx.doi.org/10.1155/2012/282574] [PMID: 22611397]
[34]
Martínez-Cruz, L.A.; Encinar, J.A.; Sevilla, P.; Oyenarte, I.; Gómez-García, I.; Aguado-Llera, D.; García-Blanco, F.; Gómez, J.; Neira, J.L. Nucleotide-induced conformational transitions in the CBS domain protein MJ0729 of Methanocaldococcus jannaschii. Protein Eng. Des. Sel., 2011, 24(1-2), 161-169.
[http://dx.doi.org/10.1093/protein/gzq073] [PMID: 20959390]
[35]
Bates, S.S.; Tessier, A.; Campbell, P.G.C.; Buffle, J. Zinc adsorption and transport by Chlamydomonas variabilis and Scenedesmus subspicatus (Chlorophyceae) grown in semicontinuous culture. J. Phycol., 1982, 18, 521-529.
[http://dx.doi.org/10.1111/j.1529-8817.1982.tb03218.x]
[36]
Nishio, K.; Pornpitra, T.; Izawa, S.; Nishiwaki-Ohkawa, T.; Kato, S.; Hashimoto, K.; Nakanishi, S. Electrochemical detection of circadian redox rhythm in cyanobacterial cells via extracellular electron transfer. Plant Cell Physiol., 2015, 56(6), 1053-1058.
[http://dx.doi.org/10.1093/pcp/pcv066] [PMID: 25975263]
[37]
Jakubowski, W.; Bartosz, G. 2,7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol. Int., 2000, 24(10), 757-760.
[http://dx.doi.org/10.1006/cbir.2000.0556] [PMID: 11023655]
[38]
Rao, M.V.; Paliyath, G.; Ormrod, D.P.; Murr, D.P.; Watkins, C.B. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Salicylic acid-mediated oxidative damage requires H2O2. Plant Physiol., 1997, 115(1), 137-149.
[http://dx.doi.org/10.1104/pp.115.1.137] [PMID: 9306697]
[39]
Agrawal, C.; Sen, S.; Yadav, S.; Rai, S.; Rai, L.C. A novel aldo-ketoreductase (AKR17A1) of Anabaena PCC7120 degrades the rice field herbicide butachlor and confers abiotic stress tolerance in E. coli. PLoS One, 2015, 100137744
[http://dx.doi.org/10.1371/journal.pone.0137744]
[40]
Zdobnov, E.M.; Apweiler, R. InterProScan--an integration platform for the signature-recognition methods in InterPro. Bioinformatics, 2001, 17(9), 847-848.
[http://dx.doi.org/10.1093/bioinformatics/17.9.847] [PMID: 11590104]
[41]
Zhang, C.; Freddolino, P.L.; Zhang, Y. COFACTOR: improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids Res., 2017, 45(W1), W291-W299.
[http://dx.doi.org/10.1093/nar/gkx366] [PMID: 28472402]
[42]
Yang, J.; Roy, A.; Zhang, Y. BioLiP: a semi-manually curated database for biologically relevant ligand-protein interactions. Nucleic Acids Res., 2013, 41(Database issue), D1096-D1103.
[PMID: 23087378]
[43]
Rost, B.; Yachdav, G.; Liu, J. The predict protein server Nucleic Acids Res, 2004, 32(Web Server issue), W321-W326.
[44]
Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Gallo Cassarino, T.; Bertoni, M.; Bordoli, L.; Schwede, T. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information Nucleic Acids Res, 2014, 42(Web Server issue), W252-W258.
[http://dx.doi.org/10.1093/nar/gku340] [PMID: 24782522]
[45]
Xu, D.; Zhang, Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys. J., 2011, 101(10), 2525-2534.
[http://dx.doi.org/10.1016/j.bpj.2011.10.024] [PMID: 22098752]
[46]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK-A program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26, 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[47]
Colovos, C.; Yeates, T.O. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci., 1993, 2(9), 1511-1519.
[http://dx.doi.org/10.1002/pro.5560020916] [PMID: 8401235]
[48]
Davis, I.W.; Leaver-Fay, A.; Chen, V.B.; Block, J.N.; Kapral, G.J.; Wang, X.; Murray, L.W.; Arendall, W.B., III; Snoeyink, J.; Richardson, J.S.; Richardson, D.C. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids Nucleic Acids Res, 2007, 35(Web Server issue), W375-W383.
[http://dx.doi.org/10.1093/nar/gkm216] [PMID: 17452350]
[49]
Wiederstein, M.; Sippl, M.J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res, 2007, 35(Web Server issue), W407-W410.
[http://dx.doi.org/10.1093/nar/gkm290] [PMID: 17517781]
[50]
Zhang, Y.; Skolnick, J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res., 2005, 33(7), 2302-2309.
[http://dx.doi.org/10.1093/nar/gki524] [PMID: 15849316]
[51]
Day, P.; Sharff, A.; Parra, L.; Cleasby, A.; Williams, M.; Hörer, S.; Nar, H.; Redemann, N.; Tickle, I.; Yon, J. Structure of a CBS-domain pair from the regulatory gamma1 subunit of human AMPK in complex with AMP and ZMP. Acta Crystallogr. D Biol. Crystallogr., 2007, 63(Pt 5), 587-596.
[http://dx.doi.org/10.1107/S0907444907009110] [PMID: 17452784]
[52]
Soti, C.; Vermes, A.; Haystead, T.A.; Csermely, P. Comparative analysis of the ATP-binding sites of Hsp90 by nucleotide affinity cleavage: a distinct nucleotide specificity of the C-terminal ATP-binding site. Eur. J. Biochem., 2003, 270(11), 2421-2428.
[http://dx.doi.org/10.1046/j.1432-1033.2003.03610.x] [PMID: 12755697]
[53]
Hiratsuka, T. Fluorescent and colored trinitrophenylated analogs of ATP and GTP. Eur. J. Biochem., 2003, 270(17), 3479-3485.
[http://dx.doi.org/10.1046/j.1432-1033.2003.03748.x] [PMID: 12919312]
[54]
Plesniak, L.; Horiuchi, Y.; Sem, D.; Meinenger, D.; Stiles, L.; Shaffer, J.; Jennings, P.A.; Adams, J.A. Probing the nucleotide binding domain of the osmoregulator EnvZ using fluorescent nucleotide derivatives. Biochemistry, 2002, 41(47), 13876-13882.
[http://dx.doi.org/10.1021/bi020331j] [PMID: 12437344]
[55]
Kong, J.; Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. (Shanghai), 2007, 39(8), 549-559.
[http://dx.doi.org/10.1111/j.1745-7270.2007.00320.x] [PMID: 17687489]
[56]
Banyay, M.; Sarkar, M.; Gräslund, A. A library of IR bands of nucleic acids in solution. Biophys. Chem., 2003, 104(2), 477-488.
[http://dx.doi.org/10.1016/S0301-4622(03)00035-8] [PMID: 12878315]
[57]
Wang, Y.; Wang, J.; Li, R.; Shi, Q.; Xue, Z.; Zhang, Y. ThreaDomEx: a unified platform for predicting continuous and discontinuous protein domains by multiple-threading and segment assembly. Nucleic Acids Res., 2017, 45(W1), W400-W407.
[http://dx.doi.org/10.1093/nar/gkx410] [PMID: 28498994]
[58]
Shcolnick, S.; Summerfield, T.C.; Reytman, L.; Sherman, L.A.; Keren, N. The mechanism of iron homeostasis in the unicellular cyanobacterium synechocystis sp. PCC 6803 and its relationship to oxidative stress. Plant Physiol., 2009, 150(4), 2045-2056.
[http://dx.doi.org/10.1104/pp.109.141853] [PMID: 19561120]
[59]
Kemp, B.E. Bateman domains and adenosine derivatives form a binding contract. J. Clin. Invest., 2004, 113(2), 182-184.
[http://dx.doi.org/10.1172/JCI200420846] [PMID: 14722609]
[60]
Lucas, M.; Encinar, J.A.; Arribas, E.A.; Oyenarte, I.; García, I.G.; Kortazar, D.; Ferna’ndez, J.A.; Mato, J.M.; Martínez-Chantar, M.L.; Martínez-Cruz, L.A. Cystathionine β-Synthase (CBS) Domains 1 and 2 fulfill different roles in ionic strength sensing of the ATP-binding cassette (ABC) transporter OpuA. J. Mol. Biol., 2010, 396, 800-820.
[http://dx.doi.org/10.1016/j.jmb.2009.12.012] [PMID: 20026078]
[61]
Hardie, D.G.; Scott, J.W.; Pan, D.A.; Hudson, E.R. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett., 2003, 546(1), 113-120.
[http://dx.doi.org/10.1016/S0014-5793(03)00560-X] [PMID: 12829246]
[62]
Léger, C.; Elliott, S.J.; Hoke, K.R.; Jeuken, L.J.C.; Jones, A.K.; Armstrong, F.A. Enzyme electrokinetics: using protein film voltammetry to investigate redox enzymes and their mechanisms. Biochemistry, 2003, 42(29), 8653-8662.
[http://dx.doi.org/10.1021/bi034789c] [PMID: 12873124]
[63]
Hardie, D.G.; Hawley, S.A. AMP-activated protein kinase: the energy charge hypothesis revisited. BioEssays, 2001, 23(12), 1112-1119.
[http://dx.doi.org/10.1002/bies.10009] [PMID: 11746230]
[64]
Ereño-Orbea, J.; Oyenarte, I.; Martínez-Cruz, L.A. CBS domains: ligand binding sites and conformational variability. Arch. Biochem. Biophys., 2013, 540(1-2), 70-81.
[http://dx.doi.org/10.1016/j.abb.2013.10.008] [PMID: 24161944]
[65]
Hackenberg, C.; Hakanpää, J.; Cai, F.; Antonyuk, S.; Eigner, C.; Meissner, S.; Laitaoja, M.; Jänis, J.; Kerfeld, C.A.; Dittmann, E.; Lamzin, V.S. Structural and functional insights into the unique CBS-CP12 fusion protein family in cyanobacteria. Proc. Natl. Acad. Sci. USA, 2018, 115(27), 7141-7146.
[http://dx.doi.org/10.1073/pnas.1806668115] [PMID: 29915055]
[66]
Gutteridge, J.M.C.; Halliwell, B. Mini-review: oxidative stress, redox stress or redox success? Biochem. Biophys. Res. Commun., 2018, 502(2), 183-186.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.045] [PMID: 29752940]
[67]
Proudfoot, M.; Sanders, S.A.; Singer, A.; Zhang, R.; Brown, G.; Binkowski, A.; Xu, L.; Lukin, J.A.; Murzin, A.G.; Joachimiak, A.; Arrowsmith, C.H.; Edwards, A.M.; Savchenko, A.V.; Yakunin, A.F. Biochemical and structural characterization of a novel family of cystathionine beta-synthase domain proteins fused to a Zn ribbon-like domain. J. Mol. Biol., 2008, 375(1), 301-315.
[http://dx.doi.org/10.1016/j.jmb.2007.10.060] [PMID: 18021800]
[68]
Rudolf, M.; Kranzler, C.; Lis, H.; Margulis, K.; Stevanovic, M.; Keren, N.; Schleiff, E. Multiple modes of iron uptake by the filamentous, siderophore-producing cyanobacterium, Anabaena sp. PCC 7120. Mol. Microbiol., 2015, 97(3), 577-588.
[http://dx.doi.org/10.1111/mmi.13049] [PMID: 25943160]
[69]
Fang, H.M.; Wang, Y. Characterization of iron-binding motifs in Candida albicans high-affinity iron permease CaFtr1p by site-directed mutagenesis. Biochem. J., 2002, 368(Pt 2), 641-647.
[http://dx.doi.org/10.1042/bj20021005] [PMID: 12207560]
[70]
Ma, J.F.; Ochsner, U.A.; Klotz, M.G.; Nanayakkara, V.K.; Howell, M.L.; Johnson, Z.; Posey, J.E.; Vasil, M.L.; Monaco, J.J.; Hassett, D.J. Bacterioferritin A modulates catalase A (KatA) activity and resistance to hydrogen peroxide in Pseudomonas aeruginosa. J. Bacteriol., 1999, 181(12), 3730-3742.
[http://dx.doi.org/10.1128/JB.181.12.3730-3742.1999] [PMID: 10368148]
[71]
Almirón, M.A.; Ugalde, R.A. Iron homeostasis in Brucella abortus: the role of bacterioferritin. J. Microbiol., 2010, 48(5), 668-673.
[http://dx.doi.org/10.1007/s12275-010-0145-3] [PMID: 21046346]
[72]
Reddy, P.V.; Puri, R.V.; Khera, A.; Tyagi, A.K. Iron storage proteins are essential for the survival and pathogenesis of Mycobacterium tuberculosis in THP-1 macrophages and the guinea pig model of infection. J. Bacteriol., 2012, 194(3), 567-575.
[http://dx.doi.org/10.1128/JB.05553-11] [PMID: 22101841]
[73]
Hosseinzadeh, P.; Lu, Y. Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics. Biochim. Biophys. Acta, 2016, 1857(5), 557-581.
[http://dx.doi.org/10.1016/j.bbabio.2015.08.006] [PMID: 26301482]
[74]
Lu, Y. Electron transfer: Cupredoxins In: Biocoordination Chemistry; J.L., Que; W.B., Tolman, Eds.; Elsevier, Oxford, UK, 2004; pp. 91-122.
[75]
Lopez-Calcagno, P.E.; Howard, T.P.; Raines, C.A. The CP-12 protein family: a thioredoxin metabolic switch? Front. Plant Sci., 2014, 5, 1-9.
[http://dx.doi.org/10.3389/fpls.2014.00009]
[76]
Sjöholm, J.; Oliveira, P.; Lindblad, P. Transcription and regulation of the bidirectional hydrogenase in the cyanobacterium Nostoc sp. strain PCC 7120. Appl. Environ. Microbiol., 2007, 73(17), 5435-5446.
[http://dx.doi.org/10.1128/AEM.00756-07] [PMID: 17630298]
[77]
Ehira, S.; Ohmori, M.; Sato, N. Genome-wide expression analysis of the responses to nitrogen deprivation in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. DNA Res., 2003, 10(3), 97-113.
[http://dx.doi.org/10.1093/dnares/10.3.97] [PMID: 12886952]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy