Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

Dangerous Liaisons: Tau Interaction with Muscarinic Receptors

Author(s): Adrianna Wysocka, Ewelina Palasz, Marta Steczkowska and Grazyna Niewiadomska*

Volume 17, Issue 3, 2020

Page: [224 - 237] Pages: 14

DOI: 10.2174/1567205017666200424134311

open access plus

Abstract

The molecular processes underlying neurodegenerative diseases (such as Alzheimer's Disease - AD) remain poorly understood. There is also an imperative need for disease-modifying therapies in AD since the present treatments, acetylcholinesterase inhibitors and NMDA antagonists, do not halt its progression. AD and other dementias present unique pathological features such as that of microtubule associated protein tau metabolic regulation. Tau has numerous binding partners, including signaling molecules, cytoskeletal elements and lipids, which suggests that it is a multifunctional protein. AD has also been associated with severe loss of cholinergic markers in the brain and such loss may be due to the toxic interaction of tau with cholinergic muscarinic receptors. By using specific antagonists of muscarinic receptors it was found in vitro that extracellular tau binds to M1 and M3 receptors and which the increase of intracellular calcium found in neuronal cells upon tau-binding. However, so far, the significance of tau signaling through muscarinic receptor in vivo in tauopathic models remains uncertain. The data reviewed in the present paper highlight the significant effect of M1 receptor/tau interaction in exacerbating tauopathy related pathological features and suggest that selective M1 agonists may serve as a prototype for future therapeutic development toward modification of currently intractable neurodegenerative diseases, such as tauopathies.

Keywords: Tau, tauopathies, neurodegenerative diseases, muscarinic receptors, cholinergic system, review.

[1]
Mandelkow E-M, Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2012; 2(7)a006247
[http://dx.doi.org/10.1101/cshperspect.a006247] [PMID: 22762014]
[2]
Lee VM-Y, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu Rev Neurosci 2001; 24(1): 1121-59.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.1121] [PMID: 11520930]
[3]
Ballatore C, Lee VM-Y, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 2007; 8(9): 663-72.
[http://dx.doi.org/10.1038/nrn2194] [PMID: 17684513]
[4]
Goedert M, Falcon B, Clavaguera F, Tolnay M. Prion-like mechanisms in the pathogenesis of tauopathies and synucleinopathies. Curr Neurol Neurosci Rep 2014; 14(11): 495.
[http://dx.doi.org/10.1007/s11910-014-0495-z] [PMID: 25218483]
[5]
Saper CB, Wainer BH, German DC. Axonal and transneuronal transport in the transmission of neurological disease: potential role in system degenerations, including Alzheimer’s disease. Neuroscience 1987; 23(2): 389-98.
[http://dx.doi.org/10.1016/0306-4522(87)90063-7] [PMID: 2449630]
[6]
Fukutani Y, Kobayashi K, Nakamura I, Watanabe K, Isaki K, Cairns NJ. Neurons, intracellular and extracellular neurofibrillary tangles in subdivisions of the hippocampal cortex in normal ageing and Alzheimer’s disease. Neurosci Lett 1995; 200(1): 57-60.
[http://dx.doi.org/10.1016/0304-3940(95)12083-G] [PMID: 8584267]
[7]
de Calignon A, Polydoro M, Suárez-Calvet M, et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 2012; 73(4): 685-97.
[http://dx.doi.org/10.1016/j.neuron.2011.11.033] [PMID: 22365544]
[8]
Liu L, Drouet V, Wu JW, et al. Trans-synaptic spread of tau pathology in vivo. PLoS One 2012; 7(2)e31302
[http://dx.doi.org/10.1371/journal.pone.0031302] [PMID: 22312444]
[9]
Bradley SJ, Bourgognon J-M, Sanger HE, et al. M1 muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss. J Clin Invest 2017; 127(2): 487-99.
[http://dx.doi.org/10.1172/JCI87526] [PMID: 27991860]
[10]
Pooler AM, Phillips EC, Lau DHW, Noble W, Hanger DP. Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep 2013; 14(4): 389-94.
[http://dx.doi.org/10.1038/embor.2013.15] [PMID: 23412472]
[11]
Kanmert D, Cantlon A, Muratore CR, et al. C-terminally truncated forms of tau, but not full-length tau or its c-terminal fragments, are released from neurons independently of cell death. J Neurosci 2015; 35(30): 10851-65.
[http://dx.doi.org/10.1523/JNEUROSCI.0387-15.2015] [PMID: 26224867]
[12]
Simón D, García-García E, Royo F, Falcón-Pérez JM, Avila J. Proteostasis of tau. Tau overexpression results in its secretion via membrane vesicles. FEBS Lett 2012; 586(1): 47-54.
[http://dx.doi.org/10.1016/j.febslet.2011.11.022] [PMID: 22138183]
[13]
Yamada K, Holth JK, Liao F, et al. Neuronal activity regulates extracellular tau in vivo. J Exp Med 2014; 211(3): 387-93.
[http://dx.doi.org/10.1084/jem.20131685] [PMID: 24534188]
[14]
Saman S, Kim W, Raya M, et al. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J Biol Chem 2012; 287(6): 3842-9.
[http://dx.doi.org/10.1074/jbc.M111.277061] [PMID: 22057275]
[15]
Wu JW, Herman M, Liu L, et al. Small misfolded Tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J Biol Chem 2013; 288(3): 1856-70.
[http://dx.doi.org/10.1074/jbc.M112.394528] [PMID: 23188818]
[16]
Evans LD, Wassmer T, Fraser G, et al. Extracellular monomeric and aggregated tau efficiently enter human neurons through overlapping but distinct pathways. Cell Rep 2018; 22(13): 3612-24.
[http://dx.doi.org/10.1016/j.celrep.2018.03.021] [PMID: 29590627]
[17]
Fuster-Matanzo A, Hernández F, Ávila J. Tau Spreading mechanisms; implications for dysfunctional tauopathies. Int J Mol Sci 2018; 19(3): 1-14.
[http://dx.doi.org/10.3390/ijms19030645] [PMID: 29495325]
[18]
Guix FX, Corbett GT, Cha DJ, et al. Detection of aggregation-competent tau in neuron-derived extracellular vesicles. Int J Mol Sci 2018; 19(3): 663.
[http://dx.doi.org/10.3390/ijms19030663] [PMID: 29495441]
[19]
Avila J, Simón D, Díaz-Hernández M, Pintor J, Hernández F. Sources of extracellular tau and its signaling. J Alzheimers Dis 2014; 40(S1): S7-S15.
[http://dx.doi.org/10.3233/JAD-131832] [PMID: 24531154]
[20]
Gómez-Ramos A, Díaz-Hernández M, Cuadros R, Hernández F, Avila J. Extracellular tau is toxic to neuronal cells. FEBS Lett 2006; 580(20): 4842-50.
[http://dx.doi.org/10.1016/j.febslet.2006.07.078] [PMID: 16914144]
[21]
Gómez-Ramos A, Díaz-Hernández M, Rubio A, Díaz-Hernández JI, Miras-Portugal MT, Avila J. Characteristics and consequences of muscarinic receptor activation by tau protein. Eur Neuropsychopharmacol 2009; 19(10): 708-17.
[http://dx.doi.org/10.1016/j.euroneuro.2009.04.006] [PMID: 19423301]
[22]
Zhang Y, Chen L, Shen G, Zhao Q, Shangguan L, He M. GRK5 dysfunction accelerates tau hyperphosphorylation in APP (swe) mice through impaired cholinergic activity. Neuroreport 2014; 25(7): 542-7.
[http://dx.doi.org/10.1097/WNR.0000000000000142] [PMID: 24598771]
[23]
Liu J, Rasul I, Sun Y, et al. GRK5 deficiency leads to reduced hippocampal acetylcholine level via impaired presynaptic M2/M4 autoreceptor desensitization. J Biol Chem 2009; 284(29): 19564-71.
[http://dx.doi.org/10.1074/jbc.M109.005959] [PMID: 19478075]
[24]
Zhang Y, Zhao J, Yin M, et al. The influence of two functional genetic variants of GRK5 on tau phosphorylation and their association with Alzheimer’s disease risk. Oncotarget 2017; 8(42): 72714-26.
[http://dx.doi.org/10.18632/oncotarget.20283] [PMID: 29069820]
[25]
Caccamo A, Fisher A, LaFerla FM. M1 agonists as a potential disease-modifying therapy for Alzheimer’s disease. Curr Alzheimer Res 2009; 6(2): 112-7.
[http://dx.doi.org/10.2174/156720509787602915] [PMID: 19355845]
[26]
Fisher A. Cholinergic modulation of amyloid precursor protein processing with emphasis on M1 muscarinic receptor: perspectives and challenges in treatment of Alzheimer’s disease. J Neurochem 2012; 120(1): 22-33.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07507.x] [PMID: 22122190]
[27]
Clader JW, Wang Y. Muscarinic receptor agonists and antagonists in the treatment of Alzheimer’s disease. Curr Pharm Des 2005; 11(26): 3353-61.
[http://dx.doi.org/10.2174/138161205774370762] [PMID: 16250841]
[28]
Fisher A. M1 muscarinic agonists target major hallmarks of Alzheimer’s disease--the pivotal role of brain M1 receptors. Neurodegener Dis 2008; 5(3-4): 237-40.
[http://dx.doi.org/10.1159/000113712] [PMID: 18322400]
[29]
Zhang F, Zhong R, Li S, et al. Acute hypoxia induced an imbalanced M1/M2 activation of nicroglia through NF-κB signaling in Alzheimer’s disease mice and wild-type littermates. Front Aging Neurosci 2017; 9: 282.
[http://dx.doi.org/10.3389/fnagi.2017.00282] [PMID: 28890695]
[30]
Medeiros R, Kitazawa M, Caccamo A, et al. Loss of muscarinic M1 receptor exacerbates Alzheimer’s disease-like pathology and cognitive decline. Am J Pathol 2011; 179(2): 980-91.
[http://dx.doi.org/10.1016/j.ajpath.2011.04.041] [PMID: 21704011]
[31]
Huber CM, Yee C, May T, Dhanala A, Mitchell CS. Cognitive decline in preclinical Alzheimer’s disease: Amyloid-beta versus tauopathy. J Alzheimers Dis 2018; 61(1): 265-81.
[http://dx.doi.org/10.3233/JAD-170490] [PMID: 29154274]
[32]
Nyakas C, Granic I, Halmy LG, Banerjee P, Luiten PGM. The basal forebrain cholinergic system in aging and dementia. Rescuing cholinergic neurons from neurotoxic amyloid-β42 with memantine. Behav Brain Res 2011; 221(2): 594-603.
[http://dx.doi.org/10.1016/j.bbr.2010.05.033] [PMID: 20553766]
[33]
Liu F, Gong C-X. Tau exon 10 alternative splicing and tauopathies. Mol Neurodegener 2008; 3(1): 8.
[http://dx.doi.org/10.1186/1750-1326-3-8] [PMID: 18616804]
[34]
Fuster-Matanzo A, Llorens-Martín M, Jurado-Arjona J, Avila J, Hernández F. Tau protein and adult hippocampal neurogenesis. Front Neurosci 2012; 6: 104.
[http://dx.doi.org/10.3389/fnins.2012.00104] [PMID: 22787440]
[35]
Avila J, Lucas JJ, Pérez M, Hernández F. Role of tau protein in both physiological and pathological conditions. Physiol Rev 2004; 84(2): 361-84.
[http://dx.doi.org/10.1152/physrev.00024.2003] [PMID: 15044677]
[36]
Dotti CG, Banker GA, Binder LI. The expression and distribution of the microtubule-associated proteins tau and microtubule-associated protein 2 in hippocampal neurons in the rat in situ and in cell culture. Neuroscience 1987; 23(1): 121-30.
[http://dx.doi.org/10.1016/0306-4522(87)90276-4] [PMID: 3120034]
[37]
Kaech S, Banker G. Culturing hippocampal neurons. Nat Protoc 2006; 1(5): 2406-15.
[http://dx.doi.org/10.1038/nprot.2006.356] [PMID: 17406484]
[38]
Niewiadomska G, Baksalerska-Pazera M, Lenarcik I, Riedel G. Compartmental protein expression of Tau, GSK-3β and TrkA in cholinergic neurons of aged rats. J Neural Transm (Vienna) 2006; 113(11): 1733-46.
[http://dx.doi.org/10.1007/s00702-006-0488-4] [PMID: 16736240]
[39]
Ittner LM, Ke YD, Delerue F, et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer’s disease mouse models. Cell 2010; 142(3): 387-97.
[http://dx.doi.org/10.1016/j.cell.2010.06.036] [PMID: 20655099]
[40]
Brandt R, Léger J, Lee G. Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain. J Cell Biol 1995; 131(5): 1327-40.
[http://dx.doi.org/10.1083/jcb.131.5.1327] [PMID: 8522593]
[41]
Arrasate M, Pérez M, Avila J. Tau dephosphorylation at tau-1 site correlates with its association to cell membrane. Neurochem Res 2000; 25(1): 43-50.
[http://dx.doi.org/10.1023/A:1007583214722] [PMID: 10685603]
[42]
Sultan A, Nesslany F, Violet M, et al. Nuclear tau, a key player in neuronal DNA protection. J Biol Chem 2011; 286(6): 4566-75.
[http://dx.doi.org/10.1074/jbc.M110.199976] [PMID: 21131359]
[43]
Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow E-M. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 2002; 156(6): 1051-63.
[http://dx.doi.org/10.1083/jcb.200108057] [PMID: 11901170]
[44]
Knops J, Kosik KS, Lee G, Pardee JD, Cohen-Gould L, McConlogue L. Overexpression of tau in a nonneuronal cell induces long cellular processes. J Cell Biol 1991; 114(4): 725-33.
[http://dx.doi.org/10.1083/jcb.114.4.725] [PMID: 1678391]
[45]
Frandemiche ML, De Seranno S, Rush T, et al. Activity-dependent tau protein translocation to excitatory synapse is disrupted by exposure to amyloid-beta oligomers. J Neurosci 2014; 34(17): 6084-97.
[http://dx.doi.org/10.1523/JNEUROSCI.4261-13.2014] [PMID: 24760868]
[46]
Violet M, Delattre L, Tardivel M, et al. A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions. Front Cell Neurosci 2014; 8: 84.
[http://dx.doi.org/10.3389/fncel.2014.00084] [PMID: 24672431]
[47]
Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci 2016; 17(1): 5-21.
[http://dx.doi.org/10.1038/nrn.2015.1] [PMID: 26631930]
[48]
Martin L, Latypova X, Terro F. Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem Int 2011; 58(4): 458-71.
[http://dx.doi.org/10.1016/j.neuint.2010.12.023] [PMID: 21215781]
[49]
Sergeant N, Bretteville A, Hamdane M, et al. Biochemistry of Tau in Alzheimer’s disease and related neurological disorders. Expert Rev Proteomics 2008; 5(2): 207-24.
[http://dx.doi.org/10.1586/14789450.5.2.207] [PMID: 18466052]
[50]
Lin Y-T, Cheng J-T, Liang L-C, Ko C-Y, Lo Y-K, Lu P-J. The binding and phosphorylation of Thr231 is critical for Tau’s hyperphosphorylation and functional regulation by glycogen synthase kinase 3β. J Neurochem 2007; 103(2): 802-13.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04792.x] [PMID: 17680984]
[51]
Jeganathan S, von Bergen M, Brutlach H, Steinhoff H-J, Mandelkow E. Global hairpin folding of tau in solution. Biochemistry 2006; 45(7): 2283-93.
[http://dx.doi.org/10.1021/bi0521543] [PMID: 16475817]
[52]
Jeganathan S, Hascher A, Chinnathambi S, Biernat J, Mandelkow E-M, Mandelkow E. Proline-directed pseudo-phosphorylation at AT8 and PHF1 epitopes induces a compaction of the paperclip folding of Tau and generates a pathological (MC-1) conformation. J Biol Chem 2008; 283(46): 32066-76.
[http://dx.doi.org/10.1074/jbc.M805300200] [PMID: 18725412]
[53]
Rosseels J, Van den Brande J, Violet M, et al. Tau monoclonal antibody generation based on humanized yeast models: impact on Tau oligomerization and diagnostics. J Biol Chem 2015; 290(7): 4059-74.
[http://dx.doi.org/10.1074/jbc.M114.627919] [PMID: 25540200]
[54]
Kanaan NM, Morfini GA, LaPointe NE, et al. Pathogenic forms of tau inhibit kinesin-dependent axonal transport through a mechanism involving activation of axonal phosphotransferases. J Neurosci 2011; 31(27): 9858-68.
[http://dx.doi.org/10.1523/JNEUROSCI.0560-11.2011] [PMID: 21734277]
[55]
LaPointe NE, Morfini G, Pigino G, et al. The amino terminus of tau inhibits kinesin-dependent axonal transport: implications for filament toxicity. J Neurosci Res 2009; 87(2): 440-51.
[http://dx.doi.org/10.1002/jnr.21850] [PMID: 18798283]
[56]
Kanaan NM, Morfini G, Pigino G, et al. Phosphorylation in the amino terminus of tau prevents inhibition of anterograde axonal transport. Neurobiol Aging 2012; 33(4): 826.e15-30.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.06.006] [PMID: 21794954]
[57]
Gamblin TC, Chen F, Zambrano A, et al. Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci USA 2003; 100(17): 10032-7.
[http://dx.doi.org/10.1073/pnas.1630428100] [PMID: 12888622]
[58]
Medina M, Hernández F, Avila J. New features about tau function and dysfunction. Biomolecules 2016; 6(2): 21.
[http://dx.doi.org/10.3390/biom6020021] [PMID: 27104579]
[59]
Hoover BR, Reed MN, Su J, et al. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 2010; 68(6): 1067-81.
[http://dx.doi.org/10.1016/j.neuron.2010.11.030] [PMID: 21172610]
[60]
Zempel H, Thies E, Mandelkow E, Mandelkow E-M. Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci 2010; 30(36): 11938-50.
[http://dx.doi.org/10.1523/JNEUROSCI.2357-10.2010] [PMID: 20826658]
[61]
Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 1986; 83(13): 4913-7.
[http://dx.doi.org/10.1073/pnas.83.13.4913] [PMID: 3088567]
[62]
Ittner LM, Ke YD, Götz J. Phosphorylated Tau interacts with c-Jun N-terminal kinase-interacting protein 1 (JIP1) in Alzheimer disease. J Biol Chem 2009; 284(31): 20909-16.
[http://dx.doi.org/10.1074/jbc.M109.014472] [PMID: 19491104]
[63]
Min S-W, Chen X, Tracy TE, et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med 2015; 21(10): 1154-62.
[http://dx.doi.org/10.1038/nm.3951] [PMID: 26390242]
[64]
Cook C, Carlomagno Y, Gendron TF, et al. Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance. Hum Mol Genet 2014; 23(1): 104-16.
[http://dx.doi.org/10.1093/hmg/ddt402] [PMID: 23962722]
[65]
David DC, Layfield R, Serpell L, Narain Y, Goedert M, Spillantini MG. Proteasomal degradation of tau protein. J Neurochem 2002; 83(1): 176-85.
[http://dx.doi.org/10.1046/j.1471-4159.2002.01137.x] [PMID: 12358741]
[66]
Grune T, Botzen D, Engels M, et al. Tau protein degradation is catalyzed by the ATP/ubiquitin-independent 20S proteasome under normal cell conditions. Arch Biochem Biophys 2010; 500(2): 181-8.
[http://dx.doi.org/10.1016/j.abb.2010.05.008] [PMID: 20478262]
[67]
Cripps D, Thomas SN, Jeng Y, Yang F, Davies P, Yang AJ. Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-Tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J Biol Chem 2006; 281(16): 10825-38.
[http://dx.doi.org/10.1074/jbc.M512786200] [PMID: 16443603]
[68]
Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Titani K, Ihara Y. Ubiquitin is conjugated with amino-terminally processed tau in paired helical filaments. Neuron 1993; 10(6): 1151-60.
[http://dx.doi.org/10.1016/0896-6273(93)90063-W] [PMID: 8391280]
[69]
Tan JMM, Wong ESP, Kirkpatrick DS, et al. Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum Mol Genet 2008; 17(3): 431-9.
[http://dx.doi.org/10.1093/hmg/ddm320] [PMID: 17981811]
[70]
Paine S, Bedford L, Thorpe JR, et al. Immunoreactivity to Lys63-linked polyubiquitin is a feature of neurodegeneration. Neurosci Lett 2009; 460(3): 205-8.
[http://dx.doi.org/10.1016/j.neulet.2009.05.074] [PMID: 19500650]
[71]
Keck S, Nitsch R, Grune T, Ullrich O. Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J Neurochem 2003; 85(1): 115-22.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01642.x] [PMID: 12641733]
[72]
Del Pino J, Zeballos G, Anadón MJ, et al. Cadmium-induced cell death of basal forebrain cholinergic neurons mediated by muscarinic M1 receptor blockade, increase in GSK-3β enzyme, β-amyloid and tau protein levels. Arch Toxicol 2016; 90(5): 1081-92.
[http://dx.doi.org/10.1007/s00204-015-1540-7] [PMID: 26026611]
[73]
Keller JN, Hanni KB, Markesbery WR. Impaired proteasome function in Alzheimer’s disease. J Neurochem 2000; 75(1): 436-9.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0750436.x] [PMID: 10854289]
[74]
Lopez Salon M, Pasquini L, Besio Moreno M, Pasquini JM, Soto E. Relationship between beta-amyloid degradation and the 26S proteasome in neural cells. Exp Neurol 2003; 180(2): 131-43.
[http://dx.doi.org/10.1016/S0014-4886(02)00060-2] [PMID: 12684027]
[75]
Gupta R, Lan M, Mojsilovic-Petrovic J, Choi WH, Safren N, Barmada S, et al. The proline/arginine dipeptide from hexanucleotide repeat expanded C9ORF72 inhibits the proteasome Neuro 2017. 4(1): ENEURO.0249-16.2017
[76]
Shin ET, Joehlin-Price AS, Agnese DM, Zynger DL. Minimal clinical impact of intraoperative examination of sentinel lymph nodes in patients with ductal carcinoma in situ. Am J Clin Pathol 2017; 148(5): 374-9.
[http://dx.doi.org/10.1093/ajcp/aqx089] [PMID: 29016707]
[77]
Liu F, Zaidi T, Iqbal K, Grundke-Iqbal I, Gong C-X. Aberrant glycosylation modulates phosphorylation of tau by protein kinase A and dephosphorylation of tau by protein phosphatase 2A and 5. Neuroscience 2002; 115(3): 829-37.
[http://dx.doi.org/10.1016/S0306-4522(02)00510-9] [PMID: 12435421]
[78]
Watanabe A, Hong W-K, Dohmae N, Takio K, Morishima-Kawashima M, Ihara Y. Molecular aging of tau: disulfide-independent aggregation and non-enzymatic degradation in vitro and in vivo. J Neurochem 2004; 90(6): 1302-11.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02611.x] [PMID: 15341514]
[79]
Yan SD, Yan SF, Chen X, et al. Non-enzymatically glycated tau in Alzheimer’s disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid beta-peptide. Nat Med 1995; 1(7): 693-9.
[http://dx.doi.org/10.1038/nm0795-693] [PMID: 7585153]
[80]
Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong C-X. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci USA 2004; 101(29): 10804-9.
[http://dx.doi.org/10.1073/pnas.0400348101] [PMID: 15249677]
[81]
Yuzwa SA, Cheung AH, Okon M, McIntosh LP, Vocadlo DJ. O-GlcNAc modification of tau directly inhibits its aggregation without perturbing the conformational properties of tau monomers. J Mol Biol 2014; 426(8): 1736-52.
[http://dx.doi.org/10.1016/j.jmb.2014.01.004] [PMID: 24444746]
[82]
Babu JR, Geetha T, Wooten MW. Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J Neurochem 2005; 94(1): 192-203.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03181.x] [PMID: 15953362]
[83]
Luo H-B, Xia Y-Y, Shu X-J, et al. SUMOylation at K340 inhibits tau degradation through deregulating its phosphorylation and ubiquitination. Proc Natl Acad Sci USA 2014; 111(46): 16586-91.
[http://dx.doi.org/10.1073/pnas.1417548111] [PMID: 25378699]
[84]
Chai Y, Tian D, Yang Y, et al. Apoptotic regulators promote cytokinetic midbody degradation in C. elegans. J Cell Biol 2012; 199(7): 1047-55.
[http://dx.doi.org/10.1083/jcb.201209050] [PMID: 23253479]
[85]
Díaz-Hernández M, Gómez-Ramos A, Rubio A, et al. Tissue-nonspecific alkaline phosphatase promotes the neurotoxicity effect of extracellular tau. J Biol Chem 2010; 285(42): 32539-48.
[http://dx.doi.org/10.1074/jbc.M110.145003] [PMID: 20634292]
[86]
Gómez-Ramos A, Díaz-Hernández M, Rubio A, Miras-Portugal MT, Avila J. Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells. Mol Cell Neurosci 2008; 37(4): 673-81.
[http://dx.doi.org/10.1016/j.mcn.2007.12.010] [PMID: 18272392]
[87]
Barten DM, Fanara P, Andorfer C, et al. Hyperdynamic microtubules, cognitive deficits, and pathology are improved in tau transgenic mice with low doses of the microtubule-stabilizing agent BMS-241027. J Neurosci 2012; 32(21): 7137-45.
[http://dx.doi.org/10.1523/JNEUROSCI.0188-12.2012] [PMID: 22623658]
[88]
Yamada K, Cirrito JR, Stewart FR, et al. In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. J Neurosci 2011; 31(37): 13110-7.
[http://dx.doi.org/10.1523/JNEUROSCI.2569-11.2011] [PMID: 21917794]
[89]
Bright J, Hussain S, Dang V, et al. Human secreted tau increases amyloid-beta production. Neurobiol Aging 2015; 36(2): 693-709.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.09.007] [PMID: 25442111]
[90]
Yamada K. Extracellular tau and its potential role in the propagation of tau pathology. Front Neurosci 2017; 11: 667.
[http://dx.doi.org/10.3389/fnins.2017.00667] [PMID: 29238289]
[91]
Gauthier-Kemper A, Weissmann C, Golovyashkina N, et al. The frontotemporal dementia mutation R406W blocks tau’s interaction with the membrane in an annexin A2-dependent manner. J Cell Biol 2011; 192(4): 647-61.
[http://dx.doi.org/10.1083/jcb.201007161] [PMID: 21339331]
[92]
Kalra H, Simpson RJ, Ji H, et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol 2012; 10(12)e1001450
[http://dx.doi.org/10.1371/journal.pbio.1001450] [PMID: 23271954]
[93]
Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics 2010; 73(10): 1907-20.
[http://dx.doi.org/10.1016/j.jprot.2010.06.006] [PMID: 20601276]
[94]
Davizon P, Munday AD, López JA. Tissue factor, lipid rafts, and microparticles. Semin Thromb Hemost 2010; 36(8): 857-64.
[http://dx.doi.org/10.1055/s-0030-1267039] [PMID: 21049386]
[95]
Dujardin S, Bégard S, Caillierez R, et al. Ectosomes: a new mechanism for non-exosomal secretion of tau protein. PLoS One 2014; 9(6)e100760
[http://dx.doi.org/10.1371/journal.pone.0100760] [PMID: 24971751]
[96]
Fontaine SN, Zheng D, Sabbagh JJ, et al. DnaJ/Hsc70 chaperone complexes control the extracellular release of neurodegenerative-associated proteins. EMBO J 2016; 35(14): 1537-49.
[http://dx.doi.org/10.15252/embj.201593489] [PMID: 27261198]
[97]
Rodriguez L, Mohamed N-V, Desjardins A, Lippé R, Fon EA, Leclerc N. Rab7A regulates tau secretion. J Neurochem 2017; 141(4): 592-605.
[http://dx.doi.org/10.1111/jnc.13994] [PMID: 28222213]
[98]
Mohamed NV, Desjardins A, Leclerc N. Tau secretion is correlated to an increase of Golgi dynamics. PLoS One 2017; 12(5)e0178288
[http://dx.doi.org/10.1371/journal.pone.0178288] [PMID: 28552936]
[99]
Rustom LE, Boudou T, Lou S, et al. Micropore-induced capillarity enhances bone distribution in vivo in biphasic calcium phosphate scaffolds. Acta Biomater 2016; 44: 144-54.
[http://dx.doi.org/10.1016/j.actbio.2016.08.025] [PMID: 27544807]
[100]
Rustom A, Saffrich R, Markovic I, Walther P, Gerdes H-H. Nanotubular highways for intercellular organelle transport Science (80- ) 2004; 303(5660): 1007-.
[http://dx.doi.org/10.1126/science.1093133]
[101]
Tardivel M, Bégard S, Bousset L, et al. Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies. Acta Neuropathol Commun 2016; 4(1): 117.
[http://dx.doi.org/10.1186/s40478-016-0386-4] [PMID: 27809932]
[102]
Abounit S, Wu JW, Duff K, Victoria GS, Zurzolo C. Tunneling nanotubes: A possible highway in the spreading of tau and other prion-like proteins in neurodegenerative diseases. Prion 2016; 10(5): 344-51.
[http://dx.doi.org/10.1080/19336896.2016.1223003] [PMID: 27715442]
[103]
Karch CM, Jeng AT, Goate AM. Extracellular Tau levels are influenced by variability in Tau that is associated with tauopathies. J Biol Chem 2012; 287(51): 42751-62.
[http://dx.doi.org/10.1074/jbc.M112.380642] [PMID: 23105105]
[104]
Plouffe V, Mohamed N-V, Rivest-McGraw J, Bertrand J, Lauzon M, Leclerc N. Hyperphosphorylation and cleavage at D421 enhance tau secretion. PLoS One 2012; 7(5)e36873
[http://dx.doi.org/10.1371/journal.pone.0036873] [PMID: 22615831]
[105]
Mohamed N-V, Plouffe V, Rémillard-Labrosse G, Planel E, Leclerc N. Starvation and inhibition of lysosomal function increased tau secretion by primary cortical neurons. Sci Rep 2014; 4(1): 5715.
[http://dx.doi.org/10.1038/srep05715] [PMID: 25030297]
[106]
Jiang S, Li Y, Zhang C. Zhao Y, Bu G, Xu H, et al.M1 muscarinic acetylcholine receptor in Alzheimer’s disease. Neurosci Bull 2014; 30(2): 295-307.
[107]
Caulfield MP, Birdsall NJ. International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 1998; 50(2): 279-90.
[PMID: 9647869]
[108]
Felder CC, Bymaster FP, Ward J, DeLapp N. Therapeutic opportunities for muscarinic receptors in the central nervous system. J Med Chem 2000; 43(23): 4333-53.
[http://dx.doi.org/10.1021/jm990607u] [PMID: 11087557]
[109]
Matsui M, Yamada S, Oki T, Manabe T, Taketo MM, Ehlert FJ. Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sci 2004; 75(25): 2971-81.
[http://dx.doi.org/10.1016/j.lfs.2004.05.034] [PMID: 15474550]
[110]
Puri V, Wang X, Vardigan JD, Kuduk SD, Uslaner JM. The selective positive allosteric M1 muscarinic receptor modulator PQCA attenuates learning and memory deficits in the Tg2576 Alzheimer’s disease mouse model. Behav Brain Res 2015; 287: 96-9.
[http://dx.doi.org/10.1016/j.bbr.2015.03.029] [PMID: 25800972]
[111]
Jakubík J, El-Fakahany EE. Allosteric modulation of muscarinic acetylcholine receptors. Pharmaceuticals (Basel) 2010; 3(9): 2838-60.
[http://dx.doi.org/10.3390/ph3092838] [PMID: 27713379]
[112]
Wess J. Allosteric binding sites on muscarinic acetylcholine receptors. Mol Pharmacol 2005; 68(6): 1506-9.
[http://dx.doi.org/10.1124/mol.105.019141] [PMID: 16183853]
[113]
Dencker D, Thomsen M, Wörtwein G, et al. Muscarinic acetylcholine receptor subtypes as potential drug targets for the treatment of schizophrenia, drug abuse, and Parkinson’s disease. ACS Chem Neurosci 2012; 3(2): 80-9.
[http://dx.doi.org/10.1021/cn200110q] [PMID: 22389751]
[114]
Gould RW, Dencker D, Grannan M, et al. Role for the M1 muscarinic acetylcholine receptor in top-down cognitive processing using a touchscreen visual discrimination task in mice. ACS Chem Neurosci 2015; 6(10): 1683-95.
[http://dx.doi.org/10.1021/acschemneuro.5b00123] [PMID: 26176846]
[115]
Anagnostaras SG, Murphy GG, Hamilton SE, et al. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci 2003; 6(1): 51-8.
[http://dx.doi.org/10.1038/nn992] [PMID: 12483218]
[116]
Bell KFS, Zheng L, Fahrenholz F, Cuello AC. ADAM-10 over-expression increases cortical synaptogenesis. Neurobiol Aging 2008; 29(4): 554-65.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.11.004] [PMID: 17187903]
[117]
Haring R, Gurwitz D, Barg J, et al. Amyloid precursor protein secretion via muscarinic receptors: reduced desensitization using the M1-selective agonist AF102B. Biochem Biophys Res Commun 1994; 203(1): 652-8.
[http://dx.doi.org/10.1006/bbrc.1994.2232] [PMID: 8074717]
[118]
Caccamo A, Oddo S, Billings LM, et al. M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron 2006; 49(5): 671-82.
[http://dx.doi.org/10.1016/j.neuron.2006.01.020] [PMID: 16504943]
[119]
Lebois EP, Schroeder JP, Esparza TJ, et al. Disease-modifying effects of M1 muscarinic acetylcholine receptor activation in an Alzheimer’s disease mouse model. ACS Chem Neurosci 2017; 8(6): 1177-87.
[http://dx.doi.org/10.1021/acschemneuro.6b00278] [PMID: 28230352]
[120]
Davis AA, Fritz JJ, Wess J, Lah JJ, Levey AI. Deletion of M1 muscarinic acetylcholine receptors increases amyloid pathology in vitro and in vivo. J Neurosci 2010; 30(12): 4190-6.
[http://dx.doi.org/10.1523/JNEUROSCI.6393-09.2010] [PMID: 20335454]
[121]
Sheardown MJ. Muscarinic M1 receptor agonists and M2 receptor antagonists as therapeutic targets in Alzheimer’s disease. Expert Opin Ther Pat 2002; 12(6): 863-70.
[122]
Gautam D, Han S-J, Duttaroy A, et al. Role of the M3 muscarinic acetylcholine receptor in beta-cell function and glucose homeostasis. Diabetes Obes Metab 2007; 9(s2)(Suppl. 2): 158-69.
[http://dx.doi.org/10.1111/j.1463-1326.2007.00781.x] [PMID: 17919190]
[123]
Gautam D, Jeon J, Li JH, et al. Metabolic roles of the M3 muscarinic acetylcholine receptor studied with M3 receptor mutant mice: a review. J Recept Signal Transduct Res 2008; 28(1-2): 93-108.
[http://dx.doi.org/10.1080/10799890801942002] [PMID: 18437633]
[124]
Gautam D, Jeon J, Starost MF, et al. Neuronal M3 muscarinic acetylcholine receptors are essential for somatotroph proliferation and normal somatic growth. Proc Natl Acad Sci USA 2009; 106(15): 6398-403.
[http://dx.doi.org/10.1073/pnas.0900977106] [PMID: 19332789]
[125]
Wang H, Lu Y, Wang Z. Function of cardiac M3 receptors. Auton Autacoid Pharmacol 2007; 27(1): 1-11.
[http://dx.doi.org/10.1111/j.1474-8673.2006.00381.x] [PMID: 17199870]
[126]
Gericke A, Sniatecki JJ, Mayer VGA, et al. Role of M1, M3, and M5 muscarinic acetylcholine receptors in cholinergic dilation of small arteries studied with gene-targeted mice. Am J Physiol Heart Circ Physiol 2011; 300(5): H1602-8.
[http://dx.doi.org/10.1152/ajpheart.00982.2010] [PMID: 21335473]
[127]
Bodick NC, Offen WW, Levey AI, et al. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 1997; 54(4): 465-73.
[http://dx.doi.org/10.1001/archneur.1997.00550160091022] [PMID: 9109749]
[128]
Bodick NC, Offen WW, Shannon HE, et al. The selective muscarinic agonist xanomeline improves both the cognitive deficits and behavioral symptoms of Alzheimer disease. Alzheimer Dis Assoc Disord 1997; 11(Suppl. 4): S16-22.
[PMID: 9339268]
[129]
Veroff AE, Bodick NC, Offen WW, Sramek JJ, Cutler NR. Efficacy of xanomeline in Alzheimer disease: cognitive improvement measured using the Computerized Neuropsychological Test Battery (CNTB). Alzheimer Dis Assoc Disord 1998; 12(4): 304-12.
[http://dx.doi.org/10.1097/00002093-199812000-00010] [PMID: 9876958]
[130]
Jones CK, Eberle EL, Shaw DB, McKinzie DL, Shannon HE. Pharmacologic interactions between the muscarinic cholinergic and dopaminergic systems in the modulation of prepulse inhibition in rats. J Pharmacol Exp Ther 2005; 312(3): 1055-63.
[http://dx.doi.org/10.1124/jpet.104.075887] [PMID: 15574685]
[131]
Dencker D, Wörtwein G, Weikop P, et al. Involvement of a subpopulation of neuronal M4 muscarinic acetylcholine receptors in the antipsychotic-like effects of the M1/M4 preferring muscarinic receptor agonist xanomeline. J Neurosci 2011; 31(16): 5905-8.
[http://dx.doi.org/10.1523/JNEUROSCI.0370-11.2011] [PMID: 21508215]
[132]
Koshimizu H, Leiter LM, Miyakawa T. M4 muscarinic receptor knockout mice display abnormal social behavior and decreased prepulse inhibition. Mol Brain 2012; 5: 10.
[http://dx.doi.org/10.1186/1756-6606-5-10] [PMID: 22463818]
[133]
Pancani T, Foster DJ, Moehle MS, et al. Allosteric activation of M4 muscarinic receptors improve behavioral and physiological alterations in early symptomatic YAC128 mice. Proc Natl Acad Sci USA 2015; 112(45): 14078-83.
[http://dx.doi.org/10.1073/pnas.1512812112] [PMID: 26508634]
[134]
Ince E, Ciliax BJ, Levey AI. Differential expression of D1 and D2 dopamine and m4 muscarinic acetylcholine receptor proteins in identified striatonigral neurons. Synapse 1997; 27(4): 357-66.
[PMID: 9372558]
[135]
Santiago MP, Potter LT. Biotinylated m4-toxin demonstrates more M4 muscarinic receptor protein on direct than indirect striatal projection neurons. Brain Res 2001; 894(1): 12-20.
[http://dx.doi.org/10.1016/S0006-8993(00)03170-X] [PMID: 11245810]
[136]
Moehle MS, Pancani T, Byun N, et al. Cholinergic projections to the substantia nigra pars reticulata inhibit dopamine modulation of basal ganglia through the M4 muscarinic receptor. Neuron 2017; 96(6): 1358-1372.e4.
[http://dx.doi.org/10.1016/j.neuron.2017.12.008] [PMID: 29268098]
[137]
Foster DJ, Wilson JM, Remke DH, et al. Antipsychotic-like effects of M4 positive allosteric modulators are mediated by CB2 receptor-dependent inhibition of dopamine release. Neuron 2016; 91(6): 1244-52.
[http://dx.doi.org/10.1016/j.neuron.2016.08.017] [PMID: 27618677]
[138]
Basile AS, Fedorova I, Zapata A, et al. Deletion of the M5 muscarinic acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. Proc Natl Acad Sci USA 2002; 99(17): 11452-7.
[http://dx.doi.org/10.1073/pnas.162371899] [PMID: 12154229]
[139]
Steidl S, Yeomans JS. M5 muscarinic receptor knockout mice show reduced morphine-induced locomotion but increased locomotion after cholinergic antagonism in the ventral tegmental area. J Pharmacol Exp Ther 2009; 328(1): 263-75.
[http://dx.doi.org/10.1124/jpet.108.144824] [PMID: 18849356]
[140]
Raffa RB. The M5 muscarinic receptor as possible target for treatment of drug abuse. J Clin Pharm Ther 2009; 34(6): 623-9.
[http://dx.doi.org/10.1111/j.1365-2710.2009.01059.x] [PMID: 20175795]
[141]
Fink-Jensen A, Fedorova I, Wörtwein G, et al. Role for M5 muscarinic acetylcholine receptors in cocaine addiction. J Neurosci Res 2003; 74(1): 91-6.
[http://dx.doi.org/10.1002/jnr.10728] [PMID: 13130510]
[142]
Steidl S, Miller AD, Blaha CD, Yeomans JS. M5 muscarinic receptors mediate striatal dopamine activation by ventral tegmental morphine and pedunculopontine stimulation in mice. PLoS One 2011; 6(11)e27538
[http://dx.doi.org/10.1371/journal.pone.0027538] [PMID: 22102904]
[143]
Zhang Y, Huang N-Q, Yan F, et al. Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link. Behav Brain Res 2018; 339: 57-65.
[http://dx.doi.org/10.1016/j.bbr.2017.11.015] [PMID: 29158110]
[144]
Lucas JJ, Hernández F, Gómez-Ramos P, Morán MA, Hen R, Avila J. Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J 2001; 20(1-2): 27-39.
[http://dx.doi.org/10.1093/emboj/20.1.27] [PMID: 11226152]
[145]
Hernández F, Borrell J, Guaza C, Avila J, Lucas JJ. Spatial learning deficit in transgenic mice that conditionally over-express GSK-3β in the brain but do not form tau filaments. J Neurochem 2002; 83(6): 1529-33.
[http://dx.doi.org/10.1046/j.1471-4159.2002.01269.x] [PMID: 12472906]
[146]
Hernández F, de Barreda EG, Fuster-Matanzo A, Goñi-Oliver P, Lucas JJ, Avila J. The role of GSK3 in Alzheimer disease. Brain Res Bull 2009; 80(4-5): 248-50.
[http://dx.doi.org/10.1016/j.brainresbull.2009.05.017] [PMID: 19477245]
[147]
Engel T, Lucas JJ, Gómez-Ramos P, Moran MA, Ávila J, Hernández F. Cooexpression of FTDP-17 tau and GSK-3β in transgenic mice induce tau polymerization and neurodegeneration. Neurobiol Aging 2006; 27(9): 1258-68.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.06.010] [PMID: 16054268]
[148]
Kaytor MD, Orr HT. The GSK3 β signaling cascade and neurodegenerative disease. Curr Opin Neurobiol 2002; 12(3): 275-8.
[http://dx.doi.org/10.1016/S0959-4388(02)00320-3] [PMID: 12049933]
[149]
Henriksen EJ, Dokken BB. Role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Curr Drug Targets 2006; 7(11): 1435-41.
[http://dx.doi.org/10.2174/1389450110607011435] [PMID: 17100583]
[150]
Liu Y, Tanabe K, Baronnier D, et al. Conditional ablation of Gsk-3β in islet beta cells results in expanded mass and resistance to fat feeding-induced diabetes in mice. Diabetologia 2010; 53(12): 2600-10.
[http://dx.doi.org/10.1007/s00125-010-1882-x] [PMID: 20821187]
[151]
Zhu L-Q, Liu D, Hu J, et al. GSK-3 beta inhibits presynaptic vesicle exocytosis by phosphorylating P/Q-type calcium channel and interrupting SNARE complex formation. J Neurosci 2010; 30(10): 3624-33.
[http://dx.doi.org/10.1523/JNEUROSCI.5223-09.2010] [PMID: 20219996]
[152]
Suo WZ, Li L. Dysfunction of G protein-coupled receptor kinases in Alzheimer’s disease. ScientificWorldJournal 2010; 10: 1667-78.
[http://dx.doi.org/10.1100/tsw.2010.154] [PMID: 20730384]
[153]
Kellett KAB, Hooper NM. The role of tissue non-specific alkaline phosphatase (TNAP) in neurodegenerative diseases: Alzheimer’s disease in the focus In: Sub-cellular biochemistry In: 2015; pp. 363-74.
[154]
Négyessy L, Xiao J, Kántor O, et al. Layer-specific activity of tissue non-specific alkaline phosphatase in the human neocortex. Neuroscience 2011; 172: 406-18.
[http://dx.doi.org/10.1016/j.neuroscience.2010.10.049] [PMID: 20977932]
[155]
Street SE, Kramer NJ, Walsh PL, et al. Tissue-nonspecific alkaline phosphatase acts redundantly with PAP and NT5E to generate adenosine in the dorsal spinal cord. J Neurosci 2013; 33(27): 11314-22.
[http://dx.doi.org/10.1523/JNEUROSCI.0133-13.2013] [PMID: 23825434]
[156]
Kellett KA, Williams J, Vardy ER, Smith AD, Hooper NM. Plasma alkaline phosphatase is elevated in Alzheimer’s disease and inversely correlates with cognitive function. Int J Mol Epidemiol Genet 2011; 2(2): 114-21.
[PMID: 21686125]
[157]
Vardy ERLC, Kellett KAB, Cocklin SL, Hooper NM. Alkaline phosphatase is increased in both brain and plasma in Alzheimer’s disease. Neurodegener Dis 2012; 9(1): 31-7.
[http://dx.doi.org/10.1159/000329722] [PMID: 22024719]
[158]
Martinez-Aguila A, Fonseca B, Hernandez F, Díaz-Hernandez M, Avila J, Pintor J. Tau triggers tear secretion by interacting with muscarinic acetylcholine receptors in New Zealand white rabbits. J Alzheimers Dis 2014; 40(Suppl. 1): S71-7.
[http://dx.doi.org/10.3233/JAD-132255] [PMID: 24503615]
[159]
Kristofikova Z, Ripova D, Hegnerová K, Sirova J, Homola J. Protein τ-mediated effects on rat hippocampal choline transporters CHT1 and τ-amyloid β interactions. Neurochem Res 2013; 38(9): 1949-59.
[http://dx.doi.org/10.1007/s11064-013-1101-5] [PMID: 23824558]

© 2024 Bentham Science Publishers | Privacy Policy