Abstract
Background: Diabetic neuropathies (DN) are the most common complications in diabetic patients, affecting about 70% of them. Patients with DN may lose sensation in certain areas of the body, facilitating the onset of foot ulcers, as well as chronic pain. This is due to the progressive degeneration of nerve fibers, demyelination, and axonopathy. Recent studies about stem cell therapies for the treatment of DN show promising potential for tissue regeneration. Results with mesenchymal stem cells derived from various organs/tissues demonstrate great therapeutic potential considering their easy obtainment, as well as their immunomodulatory and pro-regenerative effects. However, problems such as cell transplant rejection, tumor formation, transplantation safety, and effectiveness still need to be solved. Developmental biology lacks detailed insights into some aspects of cell mechanisms, like the genetic components of cell growth or differentiation. These gaps can limit a rapid advance in stem cell therapy research and put it in the future a little bit farther from the expectations that have emerged in recent media.
Conclusion: In the present review, we attempt to discuss the potential of most studied types of stem cells, their application for the treatment of experimental diabetic neuropathies and associated clinical manifestations including future perspectives around these themes.
Keywords: Diabetes mellitus, diabetic neuropathy, diabetes complications, cell therapy, stem cells, mesenchymal stem cell.