Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Pro-inflammatory Cytokines in Acute Coronary Syndromes

Author(s): Konstantinos Mourouzis, Evangelos Oikonomou, Gerasimos Siasos, Sotiris Tsalamadris, Georgia Vogiatzi, Alexios Antonopoulos, Petros Fountoulakis, Athina Goliopoulou, Spyridon Papaioannou and Dimitris Tousoulis*

Volume 26, Issue 36, 2020

Page: [4624 - 4647] Pages: 24

DOI: 10.2174/1381612826666200413082353

Price: $65

Abstract

Background: Over the last decades, the role of inflammation and immune system activation in the initiation and progression of coronary artery disease (CAD) has been established.

Objectives: The study aimed to present the interplay between cytokines and their actions preceding and shortly after ACS.

Methods: We searched in a systemic manner the most relevant articles to the topic of inflammation, cytokines, vulnerable plaque and myocardial infarction in MEDLINE, COCHRANE and EMBASE databases.

Results: Different classes of cytokines (intereleukin [IL]-1 family, Tumor necrosis factor-alpha (TNF-α) family, chemokines, adipokines, interferons) are implicated in the entire process leading to destabilization of the atherosclerotic plaque, and consequently, to the incidence of myocardial infarction. Especially IL-1 and TNF-α family are involved in inflammatory cell accumulation, vulnerable plaque formation, platelet aggregation, cardiomyocyte apoptosis and adverse remodeling following the myocardial infarction. Several cytokines such as IL-6, adiponectin, interferon-γ, appear with significant prognostic value in ACS patients. Thus, research interest focuses on the modulation of inflammation in ACS to improve clinical outcomes.

Conclusion: Understanding the unique characteristics that accompany each cytokine-cytokine receptor interaction could illuminate the signaling pathways involved in plaque destabilization and indicate future treatment strategies to improve cardiovascular prognosis in ACS patients.

Keywords: Acute coronary syndrome, atherosclerosis, inflammation, cytokines, adipokines, vulnerable plaque.

[1]
Jiang M, Zhang WW, Liu P, Yu W, Liu T, Yu J. Dysregulation of SOCS-mediated negative feedback of cytokine signaling in carcinogenesis and its significance in cancer treatment. Front Immunol 2017; 8: 70.
[http://dx.doi.org/10.3389/fimmu.2017.00070 ] [PMID: 28228755]
[2]
Tousoulis D, Oikonomou E, Economou EK, Crea F, Kaski JC. Inflammatory cytokines in atherosclerosis: current therapeutic approaches. Eur Heart J 2016; 37(22): 1723-32.
[http://dx.doi.org/10.1093/eurheartj/ehv759 ] [PMID: 26843277]
[3]
El Husseny MW, Mamdouh M, Shaban S, et al. Adipokines: Potential therapeutic targets for vascular dysfunction in Type II Diabetes Mellitus and Obesity. J Diabetes Res 2017; 2017: 8095926
[http://dx.doi.org/10.1155/2017/8095926 ] [PMID: 28286779]
[4]
Briasoulis A, Androulakis E, Christophides T, Tousoulis D. The role of inflammation and cell death in the pathogenesis, progression and treatment of heart failure. Heart Fail Rev 2016; 21(2): 169-76.
[http://dx.doi.org/10.1007/s10741-016-9533-z ] [PMID: 26872673]
[5]
Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018; 285(16): 2944-71.
[http://dx.doi.org/10.1111/febs.14466 ] [PMID: 29637711]
[6]
Brili S, Antonopoulos AS, Oikonomou E, et al. Impairment of arterial elastic properties and elevated circulating levels of transforming growth factor-beta in subjects with repaired coarctation of aorta. Int J Cardiol 2016; 207: 282-3.
[http://dx.doi.org/10.1016/j.ijcard.2016.01.168 ] [PMID: 26812641]
[7]
Foussas SG. Acute coronary syndromes and diabetes mellitus. Hellenic J Cardiol 2017; 57(5): 375-7.
[PMID: 28302514]
[8]
Toutouzas K, Klettas D, Anousakis-Vlachochristou N, et al. The -174 G>C interleukin-6 gene polymorphism is associated with angiographic progression of coronary artery disease over a 4-year period. Hellenic J Cardiol 2017; 58(1): 80-6.
[http://dx.doi.org/10.1016/j.hjc.2017.02.002 ] [PMID: 28212870]
[9]
Liberale L, Bonaventura A, Vecchiè A, et al. The role of adipocytokines in coronary atherosclerosis. Curr Atheroscler Rep 2017; 19(2): 10.
[http://dx.doi.org/10.1007/s11883-017-0644-3 ] [PMID: 28185154]
[10]
Briasoulis A, Tousoulis D, Antoniades C, Papageorgiou N, Stefanadis C. The role of endothelial progenitor cells in vascular repair after arterial injury and atherosclerotic plaque development. Cardiovasc Ther 2011; 29(2): 125-39.
[http://dx.doi.org/10.1111/j.1755-5922.2009.00131.x ] [PMID: 20406237]
[11]
Lazaros G, Tousoulis D. Rheumatoid arthritis and atherosclerosis: could common pathogenesis translate into common therapies? Hellenic J Cardiol 2015; 56(5): 414-7.
[PMID: 26429370]
[12]
Wong WT, Ma S, Tian XY, Gonzalez AB, Ebong EE, Shen H. Targeted delivery of shear stress-inducible micrornas by nanoparticles to prevent vulnerable atherosclerotic lesions. Methodist DeBakey Cardiovasc J 2016; 12(3): 152-6.
[http://dx.doi.org/10.14797/mdcj-12-3-152 ] [PMID: 27826369]
[13]
Teng N, Maghzal GJ, Talib J, Rashid I, Lau AK, Stocker R. The roles of myeloperoxidase in coronary artery disease and its potential implication in plaque rupture. Redox Rep 2017; 22(2): 51-73.
[http://dx.doi.org/10.1080/13510002.2016.1256119 ] [PMID: 27884085]
[14]
Yan W, Song Y, Zhou L, et al. Immune cell repertoire and their mediators in patients with acute myocardial infarction or stable angina pectoris. Int J Med Sci 2017; 14(2): 181-90.
[http://dx.doi.org/10.7150/ijms.17119 ] [PMID: 28260995]
[15]
Chen B, Frangogiannis NG. Immune cells in repair of the infarcted myocardium. Microcirculation 2017; 24(1): 24.
[http://dx.doi.org/10.1111/micc.12305 ] [PMID: 27542099]
[16]
Frangogiannis NG. Interleukin-1 in cardiac injury, repair, and remodeling: pathophysiologic and translational concepts. Discoveries (Craiova) 2015; 3(1): 3.
[http://dx.doi.org/10.15190/d.2015.33 ] [PMID: 26273700]
[17]
Kassimis G, Bourantas CV, Tushar R, et al. Percutaneous coronary intervention vs. cardiac surgery in diabetic patients. Where are we now and where should we be going? Hellenic J Cardiol 2017; 58(3): 178-89.
[http://dx.doi.org/10.1016/j.hjc.2017.01.028 ] [PMID: 28212871]
[18]
Giansante C, Fiotti N, Di Chiara A, et al. In-hospital outcome of patients with acute coronary syndrome: relationship with inflammation and remodeling markers. J Cardiovasc Med (Hagerstown) 2007; 8(8): 602-7.
[http://dx.doi.org/10.2459/JCM.0b013e32802e6c28 ] [PMID: 17667031]
[19]
Zhou J, Deng G, Yang T, Ma Q, Luo X. Association between interleukin-18 and Global Registry of Acute Coronary Events score in patients with acute coronary syndrome. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2014; 39(6): 570-6.
[PMID: 25011970]
[20]
Chalikias GK, Tziakas DN, Kaski JC, et al. Interleukin-18: interleukin-10 ratio and in-hospital adverse events in patients with acute coronary syndrome. Atherosclerosis 2005; 182(1): 135-43.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.02.002 ] [PMID: 16115484]
[21]
Hartford M, Wiklund O, Hultén LM, et al. Interleukin-18 as a predictor of future events in patients with acute coronary syndromes. Arterioscler Thromb Vasc Biol 2010; 30(10): 2039-46.
[http://dx.doi.org/10.1161/ATVBAHA.109.202697 ] [PMID: 20689079]
[22]
Furtado MV, Rossini AP, Campani RB, et al. Interleukin-18: an independent predictor of cardiovascular events in patients with acute coronary syndrome after 6 months of follow-up. Coron Artery Dis 2009; 20(5): 327-31.
[http://dx.doi.org/10.1097/MCA.0b013e32832e5c73 ] [PMID: 19593889]
[23]
Gao Y, Tong GX, Zhang XW, et al. Interleukin-18 levels on admission are associated with mid-term adverse clinical events in patients with ST-segment elevation acute myocardial infarction undergoing percutaneous coronary intervention. Int Heart J 2010; 51(2): 75-81.
[http://dx.doi.org/10.1536/ihj.51.75 ] [PMID: 20379038]
[24]
Youssef AA, Chang LT, Hang CL, et al. Level and value of interleukin-18 in patients with acute myocardial infarction undergoing primary coronary angioplasty. Circ J 2007; 71(5): 703-8.
[http://dx.doi.org/10.1253/circj.71.703 ] [PMID: 17456995]
[25]
Zhang K, Zhang XC, Mi YH, Liu J. Predicting value of serum soluble ST2 and interleukin-33 for risk stratification and prognosis in patients with acute myocardial infarction. Chin Med J (Engl) 2013; 126(19): 3628-31.
[PMID: 24112154]
[26]
Brunetti ND, Munno I, Pellegrino PL, et al. Inflammatory cytokines imbalance in the very early phase of acute coronary syndrome: correlations with angiographic findings and in-hospital events. Inflammation 2011; 34(1): 58-66.
[http://dx.doi.org/10.1007/s10753-010-9208-1 ] [PMID: 20405189]
[27]
Cherneva ZV, Denchev SV, Gospodinova MV, Cakova A, Cherneva RV. Inflammatory cytokines at admission--independent prognostic markers in patients with acute coronary syndrome and hyperglycaemia. Acute Card Care 2012; 14(1): 13-9.
[http://dx.doi.org/10.3109/17482941.2011.655292 ] [PMID: 22356568]
[28]
Gonzálvez M, Ruiz-Ros JA, Pérez-Paredes M, et al. Prognostic value of tumor necrosis factor-alpha in patients with ST-segment elevation acute myocardial infarction. Rev Esp Cardiol 2007; 60(12): 1233-41.
[PMID: 18082088]
[29]
Osmancik P, Teringova E, Tousek P, Paulu P, Widimsky P. Prognostic value of TNF-related apoptosis inducing ligand (TRAIL) in acute coronary syndrome patients. PLoS One 2013; 8(2): e53860
[http://dx.doi.org/10.1371/journal.pone.0053860 ] [PMID: 23441146]
[30]
Dominguez-Rodriguez A, Abreu-Gonzalez P, Garcia-Gonzalez MJ, Kaski JC. Soluble CD40 ligand: interleukin-10 ratio predicts in-hospital adverse events in patients with ST-segment elevation myocardial infarction. Thromb Res 2007; 121(3): 293-9.
[http://dx.doi.org/10.1016/j.thromres.2007.04.007 ] [PMID: 17521712]
[31]
Pusuroglu H, Akgul O, Erturk M, et al. Predictive value of elevated soluble CD40 ligand in patients undergoing primary angioplasty for ST-segment elevation myocardial infarction. Coron Artery Dis 2014; 25(7): 558-64.
[http://dx.doi.org/10.1097/MCA.0000000000000142 ] [PMID: 25004238]
[32]
Morrow DA, Sabatine MS, Brennan ML, et al. Concurrent evaluation of novel cardiac biomarkers in acute coronary syndrome: myeloperoxidase and soluble CD40 ligand and the risk of recurrent ischaemic events in TACTICS-TIMI 18. Eur Heart J 2008; 29(9): 1096-102.
[http://dx.doi.org/10.1093/eurheartj/ehn071 ] [PMID: 18339606]
[33]
Varo N, de Lemos JA, Libby P, et al. Soluble CD40L: risk prediction after acute coronary syndromes. Circulation 2003; 108(9): 1049-52.
[http://dx.doi.org/10.1161/01.CIR.0000088521.04017.13 ] [PMID: 12912804]
[34]
Hsiao PG, Hsieh CA, Yeh CF, et al. Early prediction of acute kidney injury in patients with acute myocardial injury. J Crit Care 2012. 27: 525 e1-7.
[http://dx.doi.org/10.1016/j.jcrc.2012.05.003]
[35]
Kanikowska D, Pyda M, Korybalska K, et al. Age-related limitations of interleukin-6 in predicting early mortality in acute ST-elevation myocardial infarction. Immun Ageing 2014; 11(1): 23.
[http://dx.doi.org/10.1186/s12979-014-0023-7 ] [PMID: 25516764]
[36]
García-Salas JM, Tello-Montoliu A, Manzano-Fernández S, et al. Interleukin-6 as a predictor of cardiovascular events in troponin-negative non-ST elevation acute coronary syndrome patients. Int J Clin Pract 2014; 68(3): 294-303.
[http://dx.doi.org/10.1111/ijcp.12245 ] [PMID: 24372920]
[37]
López-Cuenca Á, Manzano-Fernández S, Lip GY, et al. Interleukin-6 and high-sensitivity C-reactive protein for the prediction of outcomes in non-ST-segment elevation acute coronary syndromes. Rev Esp Cardiol (Engl Ed) 2013; 66(3): 185-92.
[http://dx.doi.org/10.1016/j.rec.2012.07.019 ] [PMID: 24775452]
[38]
Tan J, Hua Q, Li J, Fan Z. Prognostic value of interleukin-6 during a 3-year follow-up in patients with acute ST-segment elevation myocardial infarction. Heart Vessels 2009; 24(5): 329-34.
[http://dx.doi.org/10.1007/s00380-008-1128-8 ] [PMID: 19784814]
[39]
Ammirati E, Cannistraci CV, Cristell NA, et al. Identification and predictive value of interleukin-6+ interleukin-10+ and interleukin-6- interleukin-10+ cytokine patterns in ST-elevation acute myocardial infarction. Circ Res 2012; 111(10): 1336-48.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.262477 ] [PMID: 22931953]
[40]
Ritschel VN, Seljeflot I, Arnesen H, et al. Circulating levels of IL-6 receptor and gp130 and long-term clinical outcomes in ST-elevation myocardial infarction. J Am Heart Assoc 2016; 5(6): 5.
[http://dx.doi.org/10.1161/JAHA.115.003014 ] [PMID: 27412895]
[41]
Claessen BE, Stone GW, Mehran R, et al. Relationship between biomarkers and subsequent clinical and angiographic restenosis after paclitaxel-eluting stents for treatment of STEMI: a HORIZONS-AMI substudy. J Thromb Thrombolysis 2012; 34(2): 165-79.
[http://dx.doi.org/10.1007/s11239-012-0706-x ] [PMID: 22466810]
[42]
Ritsinger V, Brismar K, Malmberg K, et al. Elevated levels of adipokines predict outcome after acute myocardial infarction: A long-term follow-up of the glucose tolerance in patients with acute myocardial infarction cohort. Diab Vasc Dis Res 2017; 14(2): 77-87.
[http://dx.doi.org/10.1177/1479164116678156 ] [PMID: 28185529]
[43]
Wallander M, Söderberg S, Norhammar A. Leptin: a predictor of abnormal glucose tolerance and prognosis in patients with myocardial infarction and without previously known Type 2 diabetes. Diabet Med 2008; 25(8): 949-55.
[http://dx.doi.org/10.1111/j.1464-5491.2008.02509.x ] [PMID: 18959608]
[44]
Morita Y, Maeda K, Kondo T, et al. Impact of adiponectin and leptin on long-term adverse events in Japanese patients with acute myocardial infarction. Results from the Nagoya Acute Myocardial Infarction Study (NAMIS). Circ J 2013; 77(11): 2778-85.
[http://dx.doi.org/10.1253/circj.CJ-13-0251 ] [PMID: 23924849]
[45]
Khafaji HA, Bener AB, Rizk NM, Al Suwaidi J. Elevated serum leptin levels in patients with acute myocardial infarction; correlation with coronary angiographic and echocardiographic findings. BMC Res Notes 2012; 5: 262.
[http://dx.doi.org/10.1186/1756-0500-5-262 ] [PMID: 22642879]
[46]
Khera AV, Qamar A, Murphy SA, Cannon CP, Sabatine MS, Rader DJ. On-Statin Resistin, leptin, and risk of recurrent coronary events after hospitalization for an acute coronary syndrome (from the pravastatin or atorvastatin evaluation and infection therapy-thrombolysis in myocardial infarction 22 study). Am J Cardiol 2015; 116(5): 694-8.
[http://dx.doi.org/10.1016/j.amjcard.2015.05.038 ] [PMID: 26119654]
[47]
Grzywocz P, Mizia-Stec K, Wybraniec M, Chudek J. Adipokines and endothelial dysfunction in acute myocardial infarction and the risk of recurrent cardiovascular events. J Cardiovasc Med (Hagerstown) 2015; 16(1): 37-44.
[PMID: 24933198]
[48]
Erer HB, Sayar N, Guvenc TS, et al. Prognostic value of serum resistin levels in patients with acute myocardial infarction. Kardiol Pol 2014; 72(2): 181-6.
[http://dx.doi.org/10.5603/KP.a2013.0086 ] [PMID: 23633273]
[49]
Li L, Han JL, Mao JM, Guo LJ, Gao W. Association between serum resistin level and cardiovascular events in postmenopausal women with acute coronary syndrome undergoing percutaneous coronary intervention. Chin Med J (Engl) 2013; 126(6): 1058-62.
[PMID: 23506578]
[50]
Lee SH, Ha JW, Kim JS, et al. Plasma adiponectin and resistin levels as predictors of mortality in patients with acute myocardial infarction: data from infarction prognosis study registry. Coron Artery Dis 2009; 20(1): 33-9.
[http://dx.doi.org/10.1097/MCA.0b013e328318ecb0 ] [PMID: 18997620]
[51]
Hung WC, Yu TH, Hsu CC, et al. Plasma visfatin levels are associated with major adverse cardiovascular events in patients with acute ST-elevation myocardial infarction. Clin Invest Med 2015; 38(3): E100-9.
[http://dx.doi.org/10.25011/cim.v38i3.22705 ] [PMID: 26026637]
[52]
Khan SQ, Kelly D, Quinn P, Davies JE, Ng LL. Cardiotrophin-1 predicts death or heart failure following acute myocardial infarction. J Card Fail 2006; 12(8): 635-40.
[http://dx.doi.org/10.1016/j.cardfail.2006.06.470 ] [PMID: 17045183]
[53]
Cavusoglu E, Marmur JD, Yanamadala S, et al. Elevated baseline plasma IL-8 levels are an independent predictor of long-term all-cause mortality in patients with acute coronary syndrome. Atherosclerosis 2015; 242(2): 589-94.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.08.022 ] [PMID: 26318109]
[54]
Husebye T, Eritsland J, Arnesen H, et al. Association of interleukin 8 and myocardial recovery in patients with ST-elevation myocardial infarction complicated by acute heart failure. PLoS One 2014; 9(11): e112359
[http://dx.doi.org/10.1371/journal.pone.0112359 ] [PMID: 25390695]
[55]
Buyukkaya E, Poyraz F, Karakas MF, et al. Usefulness of monocyte chemoattractant protein-1 to predict no-reflow and three-year mortality in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am J Cardiol 2013; 112(2): 187-93.
[http://dx.doi.org/10.1016/j.amjcard.2013.03.011 ] [PMID: 23601576]
[56]
Weir RA, Murphy CA, Petrie CJ, et al. Monocyte chemoattractant protein-1: a dichotomous role in cardiac remodeling following acute myocardial infarction in man? Cytokine 2010; 50(2): 158-62.
[http://dx.doi.org/10.1016/j.cyto.2010.02.020 ] [PMID: 20299238]
[57]
Correia LC, Andrade BB, Borges VM, et al. Prognostic value of cytokines and chemokines in addition to the GRACE Score in non-ST-elevation acute coronary syndromes. Clin Chim Acta 2010; 411(7-8): 540-5.
[http://dx.doi.org/10.1016/j.cca.2010.01.011 ] [PMID: 20083097]
[58]
Lipkova J, Parenica J, Duris K, et al. Association of circulating levels of RANTES and -403G/A promoter polymorphism to acute heart failure after STEMI and to cardiogenic shock. Clin Exp Med 2015; 15(3): 405-14.
[http://dx.doi.org/10.1007/s10238-014-0294-5 ] [PMID: 24934326]
[59]
de Jager SC, Kraaijeveld AO, Grauss RW, et al. CCL3 (MIP-1 alpha) levels are elevated during acute coronary syndromes and show strong prognostic power for future ischemic events. J Mol Cell Cardiol 2008; 45(3): 446-52.
[http://dx.doi.org/10.1016/j.yjmcc.2008.06.003 ] [PMID: 18619972]
[60]
Prondzinsky R, Unverzagt S, Lemm H, et al. Acute myocardial infarction and cardiogenic shock: prognostic impact of cytokines: INF-γ, TNF-α, MIP-1β, G-CSF, and MCP-1β. Med Klin Intensivmed Notf Med 2012; 107(6): 476-84.
[http://dx.doi.org/10.1007/s00063-012-0117-y ] [PMID: 22810435]
[61]
Sajedi Khanian M, Abdi Ardekani A, Khosropanah S, Doroudchi M. Correlation of early and late ejection fractions with CCL5 and CCL18 levels in acute anterior myocardial infarction. Iran J Immunol 2016; 13(2): 100-13.
[PMID: 27350631]
[62]
Tousoulis D, Papageorgiou N, Briasoulis A, Antoniades C, Stefanadis C. The failure of immunomodulation therapy in heart failure: does the statins “paradigm” prove the rule? Curr Vasc Pharmacol 2010; 8(1): 114-21.
[http://dx.doi.org/10.2174/157016110790226589 ] [PMID: 19485928]
[63]
Fang L, Moore XL, Dart AM, Wang LM. Systemic inflammatory response following acute myocardial infarction. J Geriatr Cardiol 2015; 12(3): 305-12.
[PMID: 26089856]
[64]
Antoniades C, Tousoulis D, Vasiliadou C, et al. Genetic polymorphism on endothelial nitric oxide synthase affects endothelial activation and inflammatory response during the acute phase of myocardial infarction. J Am Coll Cardiol 2005; 46(6): 1101-9.
[http://dx.doi.org/10.1016/j.jacc.2005.05.072 ] [PMID: 16168297]
[65]
Ridker PM. From C-reactive protein to interleukin-6 to Interleukin-1: Moving upstream to identify novel targets for atheroprotection. Circ Res 2016; 118(1): 145-56.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306656 ] [PMID: 26837745]
[66]
Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 2000; 102(18): 2165-8.
[http://dx.doi.org/10.1161/01.CIR.102.18.2165 ] [PMID: 11056086]
[67]
Libby P. Interleukin-1 Beta as a Target for atherosclerosis therapy: Biological basis of CANTOS and beyond. J Am Coll Cardiol 2017; 70(18): 2278-89.
[http://dx.doi.org/10.1016/j.jacc.2017.09.028 ] [PMID: 29073957]
[68]
Ho CM, Ho SL, Jeng YM, et al. Accumulation of free cholesterol and oxidized low-density lipoprotein is associated with portal inflammation and fibrosis in nonalcoholic fatty liver disease. J Inflamm (Lond) 2019; 16: 7.
[http://dx.doi.org/10.1186/s12950-019-0211-5 ] [PMID: 30983887]
[69]
Wang Y, Liu J, Chen X, et al. Dysfunctional endothelial-derived microparticles promote inflammatory macrophage formation via NF-кB and IL-1β signal pathways. J Cell Mol Med 2019; 23(1): 476-86.
[http://dx.doi.org/10.1111/jcmm.13950 ] [PMID: 30334371]
[70]
Tabrez S, Jabir NR, Firoz CK, et al. Estimation of Interleukin-1β Promoter (-31 C/T and -511 T/C) polymorphisms and its level in coronary artery disease patients. J Cell Biochem 2017; 118(9): 2977-82.
[http://dx.doi.org/10.1002/jcb.25958 ] [PMID: 28247937]
[71]
Yang B, Zhao HXB, et al. Influence of interleukin-1 beta gene polymorphisms on the risk of myocardial infarction and ischemic stroke at young age in vivo and in vitro. Int J Clin Exp Pathol 2015; 8(11): 13806-13.
[PMID: 26823694]
[72]
Yang TC, Chang PY, Lu SC. L5-LDL from ST-elevation myocardial infarction patients induces IL-1β production via LOX-1 and NLRP3 inflammasome activation in macrophages. Am J Physiol Heart Circ Physiol 2017; 312(2): H265-74.
[http://dx.doi.org/10.1152/ajpheart.00509.2016 ] [PMID: 27864235]
[73]
van Hout GP, Bosch L, Ellenbroek GH, et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur Heart J 2016; 38(11): 828-36.
[http://dx.doi.org/10.1093/eurheartj/ehw247 ] [PMID: 27432019]
[74]
Toldo S, Mauro AG, Cutter Z, Abbate A. Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2018; 315(6): H1553-68.
[http://dx.doi.org/10.1152/ajpheart.00158.2018 ] [PMID: 30168729]
[75]
Sardella G, Mariani P, D’Alessandro M, et al. Early elevation of interleukin-1beta and interleukin-6 levels after bare or drug-eluting stent implantation in patients with stable angina. Thromb Res 2006; 117(6): 659-64.
[http://dx.doi.org/10.1016/j.thromres.2005.06.002 ] [PMID: 16005497]
[76]
Gargiulo S, Gamba P, Testa G, et al. Relation between TLR4/NF-κB signaling pathway activation by 27-hydroxycholesterol and 4-hydroxynonenal, and atherosclerotic plaque instability. Aging Cell 2015; 14(4): 569-81.
[http://dx.doi.org/10.1111/acel.12322 ] [PMID: 25757594]
[77]
Ikeda U, Hojo Y, Ueno S, Arakawa H, Shimada K. Amlodipine inhibits expression of matrix metalloproteinase-1 and its inhibitor in human vascular endothelial cells. J Cardiovasc Pharmacol 2000; 35(6): 887-90.
[http://dx.doi.org/10.1097/00005344-200006000-00009 ] [PMID: 10836722]
[78]
Li Y, Guo Y, Chen Y, et al. Establishment of an interleukin-1β-induced inflammation-activated endothelial cell-smooth muscle cell-mononuclear cell co-culture model and evaluation of the anti-inflammatory effects of tanshinone IIA on atherosclerosis. Mol Med Rep 2015; 12(2): 1665-76.
[http://dx.doi.org/10.3892/mmr.2015.3668 ] [PMID: 25936371]
[79]
Nabata A, Kuroki M, Ueba H, et al. C-reactive protein induces endothelial cell apoptosis and matrix metalloproteinase-9 production in human mononuclear cells: Implications for the destabilization of atherosclerotic plaque. Atherosclerosis 2008; 196(1): 129-35.
[http://dx.doi.org/10.1016/j.atherosclerosis.2007.03.003 ] [PMID: 17531242]
[80]
Wang H, Kleiman K, Wang J, Luo W, Guo C, Eitzman DT. Deficiency of P-selectin glycoprotein ligand-1 is protective against the prothrombotic effects of interleukin-1β. J Thromb Haemost 2015; 13(12): 2273-6.
[http://dx.doi.org/10.1111/jth.13146 ] [PMID: 26386314]
[81]
Turner NA, Das A, O’Regan DJ, Ball SG, Porter KE. Human cardiac fibroblasts express ICAM-1, E-selectin and CXC chemokines in response to proinflammatory cytokine stimulation. Int J Biochem Cell Biol 2011; 43(10): 1450-8.
[http://dx.doi.org/10.1016/j.biocel.2011.06.008 ] [PMID: 21718796]
[82]
Muller-Calleja N, Manukyan D, Canisius A, Strand D, Lackner KJ. Hydroxychloroquine inhibits proinflammatory signalling pathways by targeting endosomal NADPH oxidase. Ann Rheum Dis 2016; 76(5): 891-7.
[PMID: 27903507]
[83]
Nymo S, Gustavsen A, Nilsson PH, Lau C, Espevik T, Mollnes TE. Human endothelial cell activation by Escherichia coli and Staphylococcus aureus is mediated by TNF and IL-1β secondarily to activation of C5 and CD14 in whole blood. J Immunol 2016; 196(5): 2293-9.
[http://dx.doi.org/10.4049/jimmunol.1502220 ] [PMID: 26800874]
[84]
Chibana H, Kajimoto H, Ueno T, et al. Interleukin-1β is associated with coronary endothelial dysfunction in patients with mTOR-inhibitor-eluting stent implantation. Heart Vessels 2017; 32(7): 823-32.
[http://dx.doi.org/10.1007/s00380-017-0947-x ] [PMID: 28116487]
[85]
Krychtiuk KA, Watzke L, Kaun C, et al. Levosimendan exerts anti-inflammatory effects on cardiac myocytes and endothelial cells in vitro. Thromb Haemost 2015; 113(2): 350-62.
[http://dx.doi.org/10.1160/TH14-06-0549 ] [PMID: 25273157]
[86]
Duan J, Yang Y, Liu H, Dou PC, Tan SY. Osthole ameliorates acute myocardial infarction in rats by decreasing the expression of inflammatory-related cytokines, diminishing MMP-2 expression and activating p-ERK. Int J Mol Med 2016; 37(1): 207-16.
[http://dx.doi.org/10.3892/ijmm.2015.2402 ] [PMID: 26549213]
[87]
He S, Chousterman BG, Fenn A, et al. Lp-PLA2 antagonizes left ventricular healing after myocardial infarction by impairing the appearance of reparative macrophages. Circ Heart Fail 2015; 8(5): 980-7.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.115.002334 ] [PMID: 26232205]
[88]
Kiris I, Kapan S, Narin C, et al. Relationship between site of myocardial infarction, left ventricular function and cytokine levels in patients undergoing coronary artery surgery. Cardiovasc J Afr 2016; 27(5): 299-306.
[http://dx.doi.org/10.5830/CVJA-2016-027 ] [PMID: 27805242]
[89]
De Jesus NM, Wang L, Lai J, et al. Antiarrhythmic effects of interleukin 1 inhibition after myocardial infarction. Heart Rhythm 2017; 14(5): 727-36.
[http://dx.doi.org/10.1016/j.hrthm.2017.01.027 ] [PMID: 28111350]
[90]
Podolec J, Trąbka-Zawicki A, Badacz R, et al. Chemokine RANTES and IL-1β in mild therapeutic hypothermia-treated patients after out-of-hospital sudden cardiac arrest. Postepy Kardiol Interwencyjnej 2019; 15(1): 98-106.
[http://dx.doi.org/10.5114/aic.2019.83653 ] [PMID: 31043991]
[91]
Coverstone ED, Bach RG, Chen L, et al. A novel genetic marker of decreased inflammation and improved survival after acute myocardial infarction. Basic Res Cardiol 2018; 113(5): 38.
[http://dx.doi.org/10.1007/s00395-018-0697-7 ] [PMID: 30097758]
[92]
Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377(12): 1119-31.
[http://dx.doi.org/10.1056/NEJMoa1707914 ] [PMID: 28845751]
[93]
Rho YH, Chung CP, Oeser A, et al. Inflammatory mediators and premature coronary atherosclerosis in rheumatoid arthritis. Arthritis Rheum 2009; 61(11): 1580-5.
[http://dx.doi.org/10.1002/art.25009 ] [PMID: 19877084]
[94]
Tajfard M, Latiff LA, Rahimi HR, et al. Serum concentrations of MCP-1 and IL-6 in combination predict the presence of coronary artery disease and mortality in subjects undergoing coronary angiography. Mol Cell Biochem 2017; 435(1-2): 37-45.
[http://dx.doi.org/10.1007/s11010-017-3054-5 ] [PMID: 28534120]
[95]
McCarthy DA, Ranganathan A, Subbaram S, et al. Redox-control of the alarmin, Interleukin-1α. Redox Biol 2013; 1: 218-25.
[http://dx.doi.org/10.1016/j.redox.2013.03.001 ] [PMID: 24024155]
[96]
Rassoul F, Salvetter J, Reissig D, Schneider W, Thiery J, Richter V. The influence of garlic (Allium sativum) extract on interleukin 1alpha-induced expression of endothelial intercellular adhesion molecule-1 and vascular cell adhesion molecule-1. Phytomedicine 2006; 13(4): 230-5.
[http://dx.doi.org/10.1016/j.phymed.2005.01.010 ] [PMID: 16492524]
[97]
Freigang S, Ampenberger F, Weiss A, et al. Fatty acid-induced mitochondrial uncoupling elicits inflammasome-independent IL-1α and sterile vascular inflammation in atherosclerosis. Nat Immunol 2013; 14(10): 1045-53.
[http://dx.doi.org/10.1038/ni.2704 ] [PMID: 23995233]
[98]
Roncal C, Orbe J, Belzunce M, Rodríguez JA, Páramo JA. The 4G/5G PAI-1 polymorphism influences the endothelial response to IL-1 and the modulatory effect of pravastatin. J Thromb Haemost 2006; 4(8): 1798-803.
[http://dx.doi.org/10.1111/j.1538-7836.2006.02031.x ] [PMID: 16879223]
[99]
Lugrin J, Parapanov R, Rosenblatt-Velin N, et al. Cutting edge: IL-1α is a crucial danger signal triggering acute myocardial inflammation during myocardial infarction. J Immunol 2015; 194(2): 499-503.
[http://dx.doi.org/10.4049/jimmunol.1401948 ] [PMID: 25505286]
[100]
Brunn GJ, Saadi S, Platt JL. Differential regulation of endothelial cell activation by complement and interleukin 1alpha. Circ Res 2006; 98(6): 793-800.
[http://dx.doi.org/10.1161/01.RES.0000216071.87981.16 ] [PMID: 16514066]
[101]
Zhang W, Lavine KJ, Epelman S, et al. Necrotic myocardial cells release damage-associated molecular patterns that provoke fibroblast activation in vitro and trigger myocardial inflammation and fibrosis in vivo. J Am Heart Assoc 2015; 4(6): e001993
[http://dx.doi.org/10.1161/JAHA.115.001993 ] [PMID: 26037082]
[102]
Turner NA, Mughal RS, Warburton P, O’Regan DJ, Ball SG, Porter KE. Mechanism of TNFalpha-induced IL-1alpha, IL-1beta and IL-6 expression in human cardiac fibroblasts: effects of statins and thiazolidinediones. Cardiovasc Res 2007; 76(1): 81-90.
[http://dx.doi.org/10.1016/j.cardiores.2007.06.003 ] [PMID: 17612514]
[103]
Maqbool A, Hemmings KE, O’Regan DJ, Ball SG, Porter KE, Turner NA. Interleukin-1 has opposing effects on connective tissue growth factor and tenascin-C expression in human cardiac fibroblasts. Matrix Biol 2013; 32(3-4): 208-14.
[http://dx.doi.org/10.1016/j.matbio.2013.02.003 ] [PMID: 23454256]
[104]
Bageghni SA, Hemmings KE, Yuldasheva NY, et al. Fibroblast-specific deletion of interleukin-1 receptor-1 reduces adverse cardiac remodeling following myocardial infarction. JCI Insight 2019; 5: 5.
[PMID: 31393855]
[105]
Tang X. Analysis of interleukin-17 and interleukin-18 levels in animal models of atherosclerosis. Exp Ther Med 2019; 18(1): 517-22.
[http://dx.doi.org/10.3892/etm.2019.7634 ] [PMID: 31281442]
[106]
Xie SL, Chen YY, Zhang HF, et al. Interleukin 18 and extracellular matrix metalloproteinase inducer cross-regulation: implications in acute myocardial infarction. Transl Res 2015; 165(3): 387-95.
[http://dx.doi.org/10.1016/j.trsl.2014.09.001 ] [PMID: 25267095]
[107]
Woldbaek PR, Tønnessen T, Henriksen UL, et al. Increased cardiac IL-18 mRNA, pro-IL-18 and plasma IL-18 after myocardial infarction in the mouse; a potential role in cardiac dysfunction. Cardiovasc Res 2003; 59(1): 122-31.
[http://dx.doi.org/10.1016/S0008-6363(03)00339-0 ] [PMID: 12829183]
[108]
Åkerblom A, James SK, Lakic TG, et al. Interleukin-18 in patients with acute coronary syndromes. Clin Cardiol 2019; 42(12): 1202-9.
[http://dx.doi.org/10.1002/clc.23274 ] [PMID: 31596518]
[109]
van der Pouw Kraan TC, Bernink FJ, Yildirim C, et al. Systemic toll-like receptor and interleukin-18 pathway activation in patients with acute ST elevation myocardial infarction. J Mol Cell Cardiol 2014; 67: 94-102.
[http://dx.doi.org/10.1016/j.yjmcc.2013.12.021 ] [PMID: 24389343]
[110]
Yoshida T, Friehs I, Mummidi S, et al. Pressure overload induces IL-18 and IL-18R expression, but markedly suppresses IL-18BP expression in a rabbit model. IL-18 potentiates TNF-α-induced cardiomyocyte death. J Mol Cell Cardiol 2014; 75: 141-51.
[http://dx.doi.org/10.1016/j.yjmcc.2014.07.007 ] [PMID: 25108227]
[111]
Murray DR, Mummidi S, Valente AJ, et al. β2 adrenergic activation induces the expression of IL-18 binding protein, a potent inhibitor of isoproterenol induced cardiomyocyte hypertrophy in vitro and myocardial hypertrophy in vivo. J Mol Cell Cardiol 2012; 52(1): 206-18.
[http://dx.doi.org/10.1016/j.yjmcc.2011.09.022 ] [PMID: 22004899]
[112]
Rauf A, Shah M, Yellon DM, Davidson SM. Role of caspase 1 in ischemia/reperfusion injury of the myocardium. J Cardiovasc Pharmacol 2019; 74(3): 194-200.
[http://dx.doi.org/10.1097/FJC.0000000000000694 ] [PMID: 31356550]
[113]
Papageorgiou N, Tousoulis D, Androulakis E, Antoniades C, Tentolouris C, Stefanadis C. Inflammation and right ventricle: the hunting of the missing link. Int J Cardiol 2013; 168(4): 3152-4.
[http://dx.doi.org/10.1016/j.ijcard.2013.07.082 ] [PMID: 23910446]
[114]
Veeraveedu PT, Sanada S, Okuda K, et al. Ablation of IL-33 gene exacerbate myocardial remodeling in mice with heart failure induced by mechanical stress. Biochem Pharmacol 2017; 138: 73-80.
[http://dx.doi.org/10.1016/j.bcp.2017.04.022 ] [PMID: 28450225]
[115]
Aimo A, Migliorini P, Vergaro G, et al. The IL-33/ST2 pathway, inflammation and atherosclerosis: Trigger and target? Int J Cardiol 2018; 267: 188-92.
[http://dx.doi.org/10.1016/j.ijcard.2018.05.056 ] [PMID: 29793758]
[116]
Wang YP, Wang JH, Wang XL, et al. Roles of ST2, IL-33 and BNP in predicting major adverse cardiovascular events in acute myocardial infarction after percutaneous coronary intervention. J Cell Mol Med 2017; 21(11): 2677-84.
[http://dx.doi.org/10.1111/jcmm.13183 ] [PMID: 28623858]
[117]
Demyanets S, Tentzeris I, Jarai R, et al. An increase of interleukin-33 serum levels after coronary stent implantation is associated with coronary in-stent restenosis. Cytokine 2014; 67(2): 65-70.
[http://dx.doi.org/10.1016/j.cyto.2014.02.014 ] [PMID: 24725541]
[118]
Tousoulis D, Kampoli AM, Stefanadi E, et al. New biochemical markers in acute coronary syndromes. Curr Med Chem 2008; 15(13): 1288-96.
[http://dx.doi.org/10.2174/092986708784534965 ] [PMID: 18537608]
[119]
Hua XP, Qian J, Cao CB, Xie J, Zeng XT, Zhang ZJ. Association between TNF-α rs1800629 polymorphism and the risk of myocardial infarction: A meta-analysis. Genet Mol Res 2016; 15(3): 15.
[http://dx.doi.org/10.4238/gmr.15037292 ] [PMID: 27706628]
[120]
Zelová H, Hošek J. TNF-α signalling and inflammation: interactions between old acquaintances. Inflamm Res 2013; 62(7): 641-51.
[http://dx.doi.org/10.1007/s00011-013-0633-0 ] [PMID: 23685857]
[121]
Gao F, Si F, Feng S, Yi Q, Liu R. Resistin Enhances inflammatory cytokine production in coronary artery tissues by activating the nf-κb signaling. BioMed Res Int 2016; 2016: 3296437
[http://dx.doi.org/10.1155/2016/3296437 ] [PMID: 27800490]
[122]
Jiang Y, Jiang LL, Maimaitirexiati XM, Zhang Y, Wu L. Irbesartan attenuates TNF-α-induced ICAM-1, VCAM-1, and E-selectin expression through suppression of NF-κB pathway in HUVECs. Eur Rev Med Pharmacol Sci 2015; 19(17): 3295-302.
[PMID: 26400537]
[123]
Rao VH, Rai V, Stoupa S, Subramanian S, Agrawal DK. Tumor necrosis factor-α regulates triggering receptor expressed on myeloid cells-1-dependent matrix metalloproteinases in the carotid plaques of symptomatic patients with carotid stenosis. Atherosclerosis 2016; 248: 160-9.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.03.021 ] [PMID: 27017522]
[124]
Charakida M, Tousoulis D, Skoumas I, et al. Inflammatory and thrombotic processes are associated with vascular dysfunction in children with familial hypercholesterolemia. Atherosclerosis 2009; 204(2): 532-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.09.025 ] [PMID: 19004443]
[125]
Wilkowska A, Pikuła M, Rynkiewicz A, Wdowczyk-Szulc J, Trzonkowski P, Landowski J. Increased plasma pro-inflammatory cytokine concentrations after myocardial infarction and the presence of depression during next 6-months. Psychiatr Pol 2015; 49(3): 455-64.
[http://dx.doi.org/10.12740/PP/33179 ] [PMID: 26276914]
[126]
Brunetti ND, Correale M, Pellegrino PL, et al. Early inflammatory cytokine response: a direct comparison between spontaneous coronary plaque destabilization vs angioplasty induced. Atherosclerosis 2014; 236(2): 456-60.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.07.037 ] [PMID: 25173071]
[127]
Frostegård J, Zhang Y, Sun J, Yan K, Liu A. Oxidized low-density lipoprotein (oxldl)-treated dendritic cells promote activation of t cells in human atherosclerotic plaque and blood, which is repressed by statins: microRNA let-7c is integral to the effect. J Am Heart Assoc 2016; 5(9): 5.
[http://dx.doi.org/10.1161/JAHA.116.003976 ] [PMID: 27650878]
[128]
Edsfeldt A, Grufman H, Asciutto G, et al. Circulating cytokines reflect the expression of pro-inflammatory cytokines in atherosclerotic plaques. Atherosclerosis 2015; 241(2): 443-9.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.05.019 ] [PMID: 26074318]
[129]
Brokopp CE, Schoenauer R, Richards P, et al. Fibroblast activation protein is induced by inflammation and degrades type I collagen in thin-cap fibroatheromata. Eur Heart J 2011; 32(21): 2713-22.
[http://dx.doi.org/10.1093/eurheartj/ehq519 ] [PMID: 21292680]
[130]
Nymo S, Niyonzima N, Espevik T, Mollnes TE. Cholesterol crystal-induced endothelial cell activation is complement-dependent and mediated by TNF. Immunobiology 2014; 219(10): 786-92.
[http://dx.doi.org/10.1016/j.imbio.2014.06.006 ] [PMID: 25053140]
[131]
Buszman PP, Wojakowski W, Milewski K, et al. Controlled reperfusion with intravenous bivalirudin and intracoronary abciximab combination therapy in the porcine myocardial infarction model. Thromb Res 2012; 130(2): 265-72.
[http://dx.doi.org/10.1016/j.thromres.2011.10.020 ] [PMID: 22079444]
[132]
Guo L, Sun G, Wang G, Ning W, Zhao K. Soluble P-selectin promotes acute myocardial infarction onset but not severity. Mol Med Rep 2015; 11(3): 2027-33.
[http://dx.doi.org/10.3892/mmr.2014.2917 ] [PMID: 25384966]
[133]
Pischke SE, Gustavsen A, Orrem HL, et al. Complement factor 5 blockade reduces porcine myocardial infarction size and improves immediate cardiac function. Basic Res Cardiol 2017; 112(3): 20.
[http://dx.doi.org/10.1007/s00395-017-0610-9 ] [PMID: 28258298]
[134]
Mueller M, Herzog C, Larmann J, et al. The receptor for activated complement factor 5 (C5aR) conveys myocardial ischemic damage by mediating neutrophil transmigration. Immunobiology 2013; 218(9): 1131-8.
[http://dx.doi.org/10.1016/j.imbio.2013.03.006 ] [PMID: 23642836]
[135]
Théroux P, Armstrong PW, Mahaffey KW, et al. Prognostic significance of blood markers of inflammation in patients with ST-segment elevation myocardial infarction undergoing primary angioplasty and effects of pexelizumab, a C5 inhibitor: a substudy of the COMMA trial. Eur Heart J 2005; 26(19): 1964-70.
[http://dx.doi.org/10.1093/eurheartj/ehi292 ] [PMID: 15872036]
[136]
Kretzschmar D, Betge S, Windisch A, et al. Recruitment of circulating dendritic cell precursors into the infarcted myocardium and pro-inflammatory response in acute myocardial infarction. Clin Sci (Lond) 2012; 123(6): 387-98.
[http://dx.doi.org/10.1042/CS20110561 ] [PMID: 22494099]
[137]
Nauta AJ, Bottazzi B, Mantovani A, et al. Biochemical and functional characterization of the interaction between pentraxin 3 and C1q. Eur J Immunol 2003; 33(2): 465-73.
[http://dx.doi.org/10.1002/immu.200310022 ] [PMID: 12645945]
[138]
Akgul O, Baycan OF, Bulut U, et al. Long-term prognostic value of elevated pentraxin 3 in patients undergoing primary angioplasty for ST-elevation myocardial infarction. Coron Artery Dis 2015; 26(7): 592-7.
[http://dx.doi.org/10.1097/MCA.0000000000000280 ] [PMID: 26061437]
[139]
Casula M, Montecucco F, Bonaventura A, et al. Update on the role of Pentraxin 3 in atherosclerosis and cardiovascular diseases. Vascul Pharmacol 2017; 99: 1-12.
[http://dx.doi.org/10.1016/j.vph.2017.10.003 ] [PMID: 29051088]
[140]
Selle J, Asare Y, Köhncke J, et al. Atheroprotective role of C5ar2 deficiency in apolipoprotein E-deficient mice. Thromb Haemost 2015; 114(4): 848-58.
[http://dx.doi.org/10.1160/TH14-12-1075 ] [PMID: 26084965]
[141]
Li L, Qu N, Li DH, Wen WM, Huang WQ. Coronary microembolization induced myocardial contractile dysfunction and tumor necrosis factor-α mRNA expression partly inhibited by SB203580 through a p38 mitogen-activated protein kinase pathway. Chin Med J (Engl) 2011; 124(1): 100-5.
[PMID: 21362316]
[142]
Kleinbongard P, Schulz R, Heusch G. TNFα in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail Rev 2011; 16(1): 49-69.
[http://dx.doi.org/10.1007/s10741-010-9180-8 ] [PMID: 20571888]
[143]
Bozkurt B, Kribbs SB, Clubb FJ Jr, et al. Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation 1998; 97(14): 1382-91.
[http://dx.doi.org/10.1161/01.CIR.97.14.1382 ] [PMID: 9577950]
[144]
Capetanaki Y, Papathanasiou S, Diokmetzidou A, Vatsellas G, Tsikitis M. Desmin related disease: a matter of cell survival failure. Curr Opin Cell Biol 2015; 32: 113-20.
[http://dx.doi.org/10.1016/j.ceb.2015.01.004 ] [PMID: 25680090]
[145]
Wang X, Bai J, Xue Q, et al. Tumor necrosis factor-α inhibitor protects against myocardial ischemia/reperfusion injury via Notch1 mediated inhibition of oxidative/nitrative stress in traumatic mice. Zhonghua Xin Xue Guan Bing Za Zhi 2016; 44(2): 156-60.
[PMID: 26926510]
[146]
Kurrelmeyer KM, Michael LH, Baumgarten G, et al. Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci USA 2000; 97(10): 5456-61.
[http://dx.doi.org/10.1073/pnas.070036297 ] [PMID: 10779546]
[147]
Papathanasiou S, Rickelt S, Soriano ME, et al. Tumor necrosis factor-α confers cardioprotection through ectopic expression of keratins K8 and K18. Nat Med 2015; 21(9): 1076-84.
[http://dx.doi.org/10.1038/nm.3925 ] [PMID: 26280121]
[148]
Cheng W, Zhao Y, Wang S, Jiang F. Tumor necrosis factor-related apoptosis-inducing ligand in vascular inflammation and atherosclerosis: a protector or culprit? Vascul Pharmacol 2014; 63(3): 135-44.
[http://dx.doi.org/10.1016/j.vph.2014.10.004 ] [PMID: 25451562]
[149]
Zhang Y, Zhao J, Lau WB, et al. Tumor necrosis factor-α and lymphotoxin-α mediate myocardial ischemic injury via TNF receptor 1, but are cardioprotective when activating TNF receptor 2. PLoS One 2013; 8(5): e60227
[http://dx.doi.org/10.1371/journal.pone.0060227 ] [PMID: 23704873]
[150]
Eghbalzadeh K, Georgi L, Louis T, et al. Compromised anti-inflammatory action of neutrophil extracellular traps in PAD4-deficient mice contributes to aggravated acute inflammation after myocardial infarction. Front Immunol 2019; 10: 2313.
[http://dx.doi.org/10.3389/fimmu.2019.02313 ] [PMID: 31632398]
[151]
Jacobs M, Staufenberger S, Gergs U, et al. Tumor necrosis factor-alpha at acute myocardial infarction in rats and effects on cardiac fibroblasts. J Mol Cell Cardiol 1999; 31(11): 1949-59.
[http://dx.doi.org/10.1006/jmcc.1999.1007 ] [PMID: 10591022]
[152]
Tousoulis D, Antoniades C, Nikolopoulou A, et al. Interaction between cytokines and sCD40L in patients with stable and unstable coronary syndromes. Eur J Clin Invest 2007; 37(8): 623-8.
[http://dx.doi.org/10.1111/j.1365-2362.2007.01834.x ] [PMID: 17635572]
[153]
Antoniades C, Bakogiannis C, Tousoulis D, Antonopoulos AS, Stefanadis C. The CD40/CD40 ligand system: linking inflammation with atherothrombosis. J Am Coll Cardiol 2009; 54(8): 669-77.
[http://dx.doi.org/10.1016/j.jacc.2009.03.076 ] [PMID: 19679244]
[154]
Büchner K, Henn V, Gräfe M, de Boer OJ, Becker AE, Kroczek RA. CD40 ligand is selectively expressed on CD4+ T cells and platelets: implications for CD40-CD40L signalling in atherosclerosis. J Pathol 2003; 201(2): 288-95.
[http://dx.doi.org/10.1002/path.1425 ] [PMID: 14517846]
[155]
Wang XL, Sun W, Zhou YL, Li L. Rosuvastatin stabilizes atherosclerotic plaques by reducing CD40L overexpression-induced downregulation of P4Hα1 in ApoE-/- mice. Int J Biochem Cell Biol 2018; 105: 70-7.
[http://dx.doi.org/10.1016/j.biocel.2018.10.002 ] [PMID: 30336263]
[156]
Urban D, Thanabalasingam U, Stibenz D, et al. CD40/CD40L interaction induces E-selectin dependent leukocyte adhesion to human endothelial cells and inhibits endothelial cell migration. Biochem Biophys Res Commun 2011; 404(1): 448-52.
[http://dx.doi.org/10.1016/j.bbrc.2010.11.142 ] [PMID: 21138731]
[157]
Vavuranakis M, Latsios G, Aggelis D, et al. Randomized comparison of the effects of ASA plus clopidogrel versus ASA alone on early platelet activation in acute coronary syndromes with elevated high-sensitivity C-reactive protein and soluble CD40 ligand levels. Clin Ther 2006; 28(6): 860-71.
[http://dx.doi.org/10.1016/j.clinthera.2006.06.010 ] [PMID: 16860169]
[158]
Munk PS, Breland UM, Aukrust P, Skadberg O, Ueland T, Larsen AI. Inflammatory response to percutaneous coronary intervention in stable coronary artery disease. J Thromb Thrombolysis 2011; 31(1): 92-8.
[http://dx.doi.org/10.1007/s11239-010-0471-7 ] [PMID: 20373128]
[159]
Tousoulis D, Androulakis E, Papageorgiou N, et al. From atherosclerosis to acute coronary syndromes: the role of soluble CD40 ligand. Trends Cardiovasc Med 2010; 20(5): 153-64.
[http://dx.doi.org/10.1016/j.tcm.2010.12.004 ] [PMID: 21742271]
[160]
Gerdes N, Seijkens T, Lievens D, et al. Platelet CD40 exacerbates atherosclerosis by transcellular activation of endothelial cells and leukocytes. Arterioscler Thromb Vasc Biol 2016; 36(3): 482-90.
[http://dx.doi.org/10.1161/ATVBAHA.115.307074 ] [PMID: 26821950]
[161]
Gremmel T, Frelinger AL III, Michelson AD. Soluble CD40 ligand in aspirin-treated patients undergoing cardiac catheterization. PLoS One 2015; 10(8): e0134599
[http://dx.doi.org/10.1371/journal.pone.0134599 ] [PMID: 26237513]
[162]
Silvain J, O’Connor SA, Yan Y, et al. Biomarkers of thrombosis in ST-segment elevation myocardial infarction: A substudy of the ATOLL trial comparing enoxaparin versus unfractionated heparin. Am J Cardiovasc Drugs 2018; 18(6): 503-11.
[http://dx.doi.org/10.1007/s40256-018-0294-z ] [PMID: 30144017]
[163]
Calvieri C, Tanzilli G, Bartimoccia S, et al. Interplay between oxidative stress and platelet activation in coronary thrombus of STEMI Patients. Antioxidants 2018; 7(7): 7.
[http://dx.doi.org/10.3390/antiox7070083 ] [PMID: 29970802]
[164]
Yan JC, Zhu J, Gao L, et al. The effect of elevated serum soluble CD40 ligand on the prognostic value in patients with acute coronary syndromes. Clin Chim Acta 2004; 343(1-2): 155-9.
[http://dx.doi.org/10.1016/j.cccn.2004.01.012 ] [PMID: 15115688]
[165]
Wang JH, Zhang YW, Zhang P, et al. CD40 ligand as a potential biomarker for atherosclerotic instability. Neurol Res 2013; 35(7): 693-700.
[http://dx.doi.org/10.1179/1743132813Y.0000000190 ] [PMID: 23561892]
[166]
García-García HM, Klauss V, Gonzalo N, et al. Relationship between cardiovascular risk factors and biomarkers with necrotic core and atheroma size: a serial intravascular ultrasound radiofrequency data analysis. Int J Cardiovasc Imaging 2012; 28(4): 695-703.
[http://dx.doi.org/10.1007/s10554-011-9882-6 ] [PMID: 21594650]
[167]
Kang WQ, Song DL, Guo XG. Relationship between serum vasoactive factors and plaque morphology in patients with acute coronary syndrome. Zhonghua Xin Xue Guan Bing Za Zhi 2007; 35(11): 1020-3.
[PMID: 18269823]
[168]
Yoshioka T, Funayama H, Hoshino H, et al. Association of CD40 ligand levels in the culprit coronary arteries with subsequent prognosis of acute myocardial infarction. Atherosclerosis 2010; 213(1): 268-72.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.07.044 ] [PMID: 20832064]
[169]
Schönbeck U, Mach F, Sukhova GK, et al. Regulation of matrix metalloproteinase expression in human vascular smooth muscle cells by T lymphocytes: a role for CD40 signaling in plaque rupture? Circ Res 1997; 81(3): 448-54.
[http://dx.doi.org/10.1161/01.RES.81.3.448 ] [PMID: 9285647]
[170]
Qi C, Deng L, Li D, et al. Identifying vulnerable atherosclerotic plaque in rabbits using DMSA-USPIO enhanced magnetic resonance imaging to investigate the effect of atorvastatin. PLoS One 2015; 10(5): e0125677
[http://dx.doi.org/10.1371/journal.pone.0125677 ] [PMID: 25973795]
[171]
Erbel C, Sato K, Meyer FB, et al. Functional profile of activated dendritic cells in unstable atherosclerotic plaque. Basic Res Cardiol 2007; 102(2): 123-32.
[http://dx.doi.org/10.1007/s00395-006-0636-x ] [PMID: 17136419]
[172]
Abu el-Makrem MA, Mahmoud YZ, Sayed D, et al. The role of platelets CD40 ligand (CD154) in acute coronary syndromes. Thromb Res 2009; 124(6): 683-8.
[http://dx.doi.org/10.1016/j.thromres.2009.06.028 ] [PMID: 19656553]
[173]
Browatzki M, Pfeiffer CA, Schmidt J, Kranzhöfer R. Endothelin-1 induces functionally active CD40 protein via nuclear factor-kappaB in human vascular smooth muscle cells. Eur J Med Res 2007; 12(3): 129-33.
[PMID: 17507309]
[174]
Silvain J, Collet JP, Nagaswami C, et al. Composition of coronary thrombus in acute myocardial infarction. J Am Coll Cardiol 2011; 57(12): 1359-67.
[http://dx.doi.org/10.1016/j.jacc.2010.09.077 ] [PMID: 21414532]
[175]
Lee Y, Lee WH, Lee SC, et al. CD40L activation in circulating platelets in patients with acute coronary syndrome. Cardiology 1999; 92(1): 11-6.
[http://dx.doi.org/10.1159/000006940 ] [PMID: 10640791]
[176]
Zhao W, Zhang F, Li Z, Yu H, Li Z, Gao W. Soluble CD40 ligand is associated with angiographic severity of coronary artery disease in patients with acute coronary syndrome. Chin Med J (Engl) 2014; 127(12): 2218-21.
[PMID: 24931231]
[177]
Youssef AA, Chang LT, Sheu JJ, et al. Association between circulating level of CD40 ligand and angiographic morphologic features indicating high-burden thrombus formation in patients with acute myocardial infarction undergoing primary coronary intervention. Circ J 2007; 71(12): 1857-61.
[http://dx.doi.org/10.1253/circj.71.1857 ] [PMID: 18037736]
[178]
Mobarrez F, Sjövik C, Soop A, et al. CD40L expression in plasma of volunteers following LPS administration: A comparison between assay of CD40L on platelet microvesicles and soluble CD40L. Platelets 2015; 26(5): 486-90.
[http://dx.doi.org/10.3109/09537104.2014.932339 ] [PMID: 24964251]
[179]
Kafian S, Mobarrez F, Wallén H, Samad B. Association between platelet reactivity and circulating platelet-derived microvesicles in patients with acute coronary syndrome. Platelets 2015; 26(5): 467-73.
[http://dx.doi.org/10.3109/09537104.2014.940304 ] [PMID: 25025694]
[180]
Tascanov MB, Tanriverdi Z, Gungoren F, et al. Association between the No-reflow phenomenon and soluble CD40 ligand level in patients with acute st-segment elevation myocardial infarction. Medicina (Kaunas) 2019; 55(7): 55.
[PMID: 31311177]
[181]
Schmidt R, Bültmann A, Fischel S, et al. Extracellular matrix metalloproteinase inducer (CD147) is a novel receptor on platelets, activates platelets, and augments nuclear factor kappaB-dependent inflammation in monocytes. Circ Res 2008; 102(3): 302-9.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.157990 ] [PMID: 18048771]
[182]
Sugiyama S, Okada Y, Sukhova GK, Virmani R, Heinecke JW, Libby P. Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am J Pathol 2001; 158(3): 879-91.
[http://dx.doi.org/10.1016/S0002-9440(10)64036-9 ] [PMID: 11238037]
[183]
Kälsch T, Nguyen XD, Elmas E, et al. Coagulation activation and expression of CD40 ligand on platelets upon in vitro lipopolysaccharide-challenge in patients with unstable angina. Int J Cardiol 2006; 111(2): 217-23.
[http://dx.doi.org/10.1016/j.ijcard.2005.08.001 ] [PMID: 16182391]
[184]
Di Stefano R, Di Bello V, Barsotti MC, et al. Inflammatory markers and cardiac function in acute coronary syndrome: difference in ST-segment elevation myocardial infarction (STEMI) and in non-STEMI models. Biomed Pharmacother 2009; 63(10): 773-80.
[http://dx.doi.org/10.1016/j.biopha.2009.06.004 ] [PMID: 19906505]
[185]
Seko Y, Yagita H, Okumura K, Azuma M, Nagai R. Roles of programmed death-1 (PD-1)/PD-1 ligands pathway in the development of murine acute myocarditis caused by coxsackievirus B3. Cardiovasc Res 2007; 75(1): 158-67.
[http://dx.doi.org/10.1016/j.cardiores.2007.03.012 ] [PMID: 17434153]
[186]
Napoleão P, Santos MC, Selas M, Viegas-Crespo AM, Pinheiro T, Ferreira RC. Variations in inflammatory markers in acute myocardial infarction: a longitudinal study. Rev Port Cardiol 2007; 26(12): 1357-63.
[PMID: 18338665]
[187]
Song Z, Zhu X, Jin R, et al. Roles of the kinase TAK1 in CD40-mediated effects on vascular oxidative stress and neointima formation after vascular injury. PLoS One 2014; 9(7): e101671
[http://dx.doi.org/10.1371/journal.pone.0101671 ] [PMID: 25050617]
[188]
Song Z, Jin R, Yu S, Nanda A, Granger DN, Li G. Crucial role of CD40 signaling in vascular wall cells in neointimal formation and vascular remodeling after vascular interventions. Arterioscler Thromb Vasc Biol 2012; 32(1): 50-64.
[http://dx.doi.org/10.1161/ATVBAHA.111.238329 ] [PMID: 21998133]
[189]
Abeywardena MY, Leifert WR, Warnes KE, Varghese JN, Head RJ. Cardiovascular biology of interleukin-6. Curr Pharm Des 2009; 15(15): 1809-21.
[http://dx.doi.org/10.2174/138161209788186290 ] [PMID: 19442192]
[190]
Tousoulis D, Kampoli AM, Papageorgiou N, et al. Pathophysiology of atherosclerosis: the role of inflammation. Curr Pharm Des 2011; 17(37): 4089-110.
[http://dx.doi.org/10.2174/138161211798764843 ] [PMID: 22204371]
[191]
Çelik A, Özçetin M, Ateş Ö, et al. Analyses of C-reactive protein, endothelial nitric oxide synthase and interleukin-6 gene polymorphisms in adolescents with a family history of premature coronary artery disease: A Pilot Study. Balkan Med J 2015; 32(4): 397-402.
[http://dx.doi.org/10.5152/balkanmedj.2015.151190 ] [PMID: 26740900]
[192]
Hung MJ, Cherng WJ, Hung MY, Wu HT, Pang JH. Interleukin-6 inhibits endothelial nitric oxide synthase activation and increases endothelial nitric oxide synthase binding to stabilized caveolin-1 in human vascular endothelial cells. J Hypertens 2010; 28(5): 940-51.
[http://dx.doi.org/10.1097/HJH.0b013e32833992ef ] [PMID: 20375905]
[193]
Hashizume M, Mihara M. Blockade of IL-6 and TNF-α inhibited oxLDL-induced production of MCP-1 via scavenger receptor induction. Eur J Pharmacol 2012; 689(1-3): 249-54.
[http://dx.doi.org/10.1016/j.ejphar.2012.05.035 ] [PMID: 22683409]
[194]
Weiss TW, Arnesen H, Seljeflot I. Components of the interleukin-6 transsignalling system are associated with the metabolic syndrome, endothelial dysfunction and arterial stiffness. Metabolism 2013; 62(7): 1008-13.
[http://dx.doi.org/10.1016/j.metabol.2013.01.019 ] [PMID: 23428306]
[195]
Frisdal E, Lesnik P, Olivier M, et al. Interleukin-6 protects human macrophages from cellular cholesterol accumulation and attenuates the proinflammatory response. J Biol Chem 2011; 286(35): 30926-36.
[http://dx.doi.org/10.1074/jbc.M111.264325 ] [PMID: 21757719]
[196]
Wang F, Zhang Z, Fang A, et al. Macrophage foam cell-targeting immunization attenuates atherosclerosis. Front Immunol 2019; 9: 3127.
[http://dx.doi.org/10.3389/fimmu.2018.03127 ] [PMID: 30687328]
[197]
Fanola CL, Morrow DA, Cannon CP, et al. Interleukin-6 and the risk of adverse outcomes in patients after an acute coronary syndrome: observations from the SOLID-TIMI 52 (Stabilization of plaque using darapladib-thrombolysis in myocardial infarction 52) Trial. J Am Heart Assoc 2017; 6(10): 6.
[http://dx.doi.org/10.1161/JAHA.117.005637 ] [PMID: 29066436]
[198]
Wang X, Chen Q, Pu H, et al. Adiponectin improves NF-κB-mediated inflammation and abates atherosclerosis progression in apolipoprotein E-deficient mice. Lipids Health Dis 2016; 15: 33.
[http://dx.doi.org/10.1186/s12944-016-0202-y ] [PMID: 26965176]
[199]
Li L, Zhang K, Cai XJ, Feng M, Zhang Y, Zhang M. Adiponectin upregulates prolyl-4-hydroxylase α1 expression in interleukin 6-stimulated human aortic smooth muscle cells by regulating ERK 1/2 and Sp1. PLoS One 2011; 6(7): e22819
[http://dx.doi.org/10.1371/journal.pone.0022819 ] [PMID: 21829524]
[200]
Sironi M, Breviario F, Proserpio P, et al. IL-1 stimulates IL-6 production in endothelial cells. J Immunol 1989; 142(2): 549-53.
[PMID: 2783442]
[201]
Jin JO, Han X, Yu Q. Interleukin-6 induces the generation of IL-10-producing Tr1 cells and suppresses autoimmune tissue inflammation. J Autoimmun 2013; 40: 28-44.
[http://dx.doi.org/10.1016/j.jaut.2012.07.009 ] [PMID: 22921334]
[202]
Aderka D, Le JM, Vilcek J. IL-6 inhibits lipopolysaccharide-induced tumor necrosis factor production in cultured human monocytes, U937 cells, and in mice. J Immunol 1989; 143(11): 3517-23.
[PMID: 2584704]
[203]
Yang S, Zheng R, Hu S, et al. Mechanism of cardiac depression after trauma-hemorrhage: increased cardiomyocyte IL-6 and effect of sex steroids on IL-6 regulation and cardiac function. Am J Physiol Heart Circ Physiol 2004; 287(5): H2183-91.
[http://dx.doi.org/10.1152/ajpheart.00624.2003 ] [PMID: 15475534]
[204]
Yu X, Kennedy RH, Liu SJ. JAK2/STAT3, not ERK1/2, mediates interleukin-6-induced activation of inducible nitric-oxide synthase and decrease in contractility of adult ventricular myocytes. J Biol Chem 2003; 278(18): 16304-9.
[http://dx.doi.org/10.1074/jbc.M212321200 ] [PMID: 12595539]
[205]
Olivas A, Gardner RT, Wang L, Ripplinger CM, Woodward WR, Habecker BA. Myocardial infarction causes transient cholinergic transdifferentiation of cardiac sympathetic nerves via gp130. J Neurosci 2016; 36(2): 479-88.
[http://dx.doi.org/10.1523/JNEUROSCI.3556-15.2016 ] [PMID: 26758839]
[206]
Jing R, Long TY, Pan W, Li F, Xie QY. IL-6 knockout ameliorates myocardial remodeling after myocardial infarction by regulating activation of M2 macrophages and fibroblast cells. Eur Rev Med Pharmacol Sci 2019; 23(14): 6283-91.
[PMID: 31364133]
[207]
Gwechenberger M, Mendoza LH, Youker KA, et al. Cardiac myocytes produce interleukin-6 in culture and in viable border zone of reperfused infarctions. Circulation 1999; 99(4): 546-51.
[http://dx.doi.org/10.1161/01.CIR.99.4.546 ] [PMID: 9927402]
[208]
Smart N, Mojet MH, Latchman DS, Marber MS, Duchen MR, Heads RJ. IL-6 induces PI 3-kinase and nitric oxide-dependent protection and preserves mitochondrial function in cardiomyocytes. Cardiovasc Res 2006; 69(1): 164-77.
[http://dx.doi.org/10.1016/j.cardiores.2005.08.017 ] [PMID: 16219301]
[209]
Caliskan S, Besli F, Yildirim A, et al. The relationship between cardiotrophin-1 and troponin-i in coronary arterial bypass grafting on the beating heart: a prospective study. Heart Surg Forum 2015; 18(4): E146-50.
[http://dx.doi.org/10.1532/hsf.1386 ] [PMID: 26334851]
[210]
Kanda M, Nagai T, Takahashi T, et al. Leukemia inhibitory factor enhances endogenous cardiomyocyte regeneration after myocardial infarction. PLoS One 2016; 11(5): e0156562
[http://dx.doi.org/10.1371/journal.pone.0156562 ] [PMID: 27227407]
[211]
Ushakov AV, Ivanchenko VS, Gagarina AA. Regulation of myocardial extracellular matrix dynamic changes in myocardial infarction and postinfarct remodeling. Curr Cardiol Rev 2020; 16(1)
[PMID: 31072294]
[212]
Hu J, Zhang L, Zhao Z, et al. OSM mitigates post-infarction cardiac remodeling and dysfunction by up-regulating autophagy through Mst1 suppression. Biochim Biophys Acta Mol Basis Dis 2017; 1863(8): 1951-61.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.004 ] [PMID: 27825852]
[213]
Hilfiker-Kleiner D, Shukla P, Klein G, et al. Continuous glycoprotein-130-mediated signal transducer and activator of transcription-3 activation promotes inflammation, left ventricular rupture, and adverse outcome in subacute myocardial infarction. Circulation 2010; 122(2): 145-55.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.933127 ] [PMID: 20585009]
[214]
Jugdutt BI. Preventing adverse remodeling and rupture during healing after myocardial infarction in mice and humans. Circulation 2010; 122(2): 103-5.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.969410 ] [PMID: 20585006]
[215]
Smekal A, Vaclavik J. Adipokines and cardiovascular disease: A comprehensive review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017; 161(1): 31-40.
[http://dx.doi.org/10.5507/bp.2017.002 ] [PMID: 28228651]
[216]
Antonopoulos AS, Antoniades C, Tousoulis D. Epicardial adipose tissue and no-reflow phenomenon: adipokines as regulators of coronary microcirculation? Hellenic J Cardiol 2015; 56(4): 320-3.
[PMID: 26233772]
[217]
Antonopoulos AS, Antoniades C, Tousoulis D. Unravelling the “adipokine paradox”: When the classic proatherogenic adipokine leptin is deemed the beneficial one. Int J Cardiol 2015; 197: 125-7.
[http://dx.doi.org/10.1016/j.ijcard.2015.06.044 ] [PMID: 26126055]
[218]
Siasos G, Tousoulis D, Kollia C, et al. Adiponectin and cardiovascular disease: mechanisms and new therapeutic approaches. Curr Med Chem 2012; 19(8): 1193-209.
[http://dx.doi.org/10.2174/092986712799320583 ] [PMID: 22257055]
[219]
Al-Jiffri OH, Al-Sharif FM, Al-Jiffri EH, Uversky VN. Intrinsic disorder in biomarkers of insulin resistance, hypoadiponectinemia, and endothelial dysfunction among the type 2 diabetic patients. Intrinsically Disord Proteins 2016; 4(1): e1171278
[http://dx.doi.org/10.1080/21690707.2016.1171278 ] [PMID: 28232897]
[220]
Antonopoulos AS, Margaritis M, Coutinho P, et al. Adiponectin as a link between type 2 diabetes and vascular NADPH oxidase activity in the human arterial wall: the regulatory role of perivascular adipose tissue. Diabetes 2015; 64(6): 2207-19.
[http://dx.doi.org/10.2337/db14-1011 ] [PMID: 25552596]
[221]
Schneiderman J, Schaefer K, Kolodgie FD, et al. Leptin locally synthesized in carotid atherosclerotic plaques could be associated with lesion instability and cerebral emboli. J Am Heart Assoc 2012; 1(5): e001727
[http://dx.doi.org/10.1161/JAHA.112.001727 ] [PMID: 23316287]
[222]
Caselli C, De Graaf MA, Lorenzoni V, et al. HDL cholesterol, leptin and interleukin-6 predict high risk coronary anatomy assessed by CT angiography in patients with stable chest pain. Atherosclerosis 2015; 241(1): 55-61.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.04.811 ] [PMID: 25966440]
[223]
Hellberg S, Silvola JM, Kiugel M, et al. Type 2 diabetes enhances arterial uptake of choline in atherosclerotic mice: an imaging study with positron emission tomography tracer 18F-fluoromethylcholine. Cardiovasc Diabetol 2016; 15: 26.
[http://dx.doi.org/10.1186/s12933-016-0340-6 ] [PMID: 26852231]
[224]
Lee K, Santibanez-Koref M, Polvikoski T, Birchall D, Mendelow AD, Keavney B. Increased expression of fatty acid binding protein 4 and leptin in resident macrophages characterises atherosclerotic plaque rupture. Atherosclerosis 2013; 226(1): 74-81.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.09.037 ] [PMID: 23122912]
[225]
Liu R, Chen B, Chen J, Lan J. Leptin upregulates smooth muscle cell expression of MMP-9 to promote plaque destabilization by activating AP-1 via the leptin receptor/MAPK/ERK signaling pathways. Exp Ther Med 2018; 16(6): 5327-33.
[http://dx.doi.org/10.3892/etm.2018.6853 ] [PMID: 30542491]
[226]
Gundala R, Chava VK, Ramalingam K. Association of leptin in periodontitis and acute myocardial infarction. J Periodontol 2014; 85(7): 917-24.
[http://dx.doi.org/10.1902/jop.2012.110620 ] [PMID: 22631881]
[227]
Rajendran K, Devarajan N, Ganesan M, Ragunathan M. Obesity, inflammation and acute myocardial infarction - expression of leptin, IL-6 and high sensitivity-CRP in Chennai based population. Thromb J 2012; 10(1): 13.
[http://dx.doi.org/10.1186/1477-9560-10-13 ] [PMID: 22891684]
[228]
Piestrzeniewicz K, Łuczak K, Komorowski J, Jankiewicz-Wika J, Goch JH. Relation of C-reactive protein to obesity, adipose tissue hormones and cardiovascular risk factors in men treated with early percutaneous intervention in course of acute myocardial infarction. Neuroendocrinol Lett 2007; 28(4): 427-32.
[PMID: 17693973]
[229]
Yan GT, Xue H, Lin J, Hao XH, Zhang K, Wang LH. Correlation analysis of increase in serum level of leptin with that of C reactive protein, troponin T and endothelin in patients with acute myocardial infarction. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2005; 17(9): 530-2.
[PMID: 16146596]
[230]
Ekmen N, Helvaci A, Gunaldi M, Sasani H, Yildirmak ST. Leptin as an important link between obesity and cardiovascular risk factors in men with acute myocardial infarction. Indian Heart J 2016; 68(2): 132-7.
[http://dx.doi.org/10.1016/j.ihj.2015.07.032 ] [PMID: 27133319]
[231]
Krasnodebski P, Bak MI, Opolski G, Karnafel W. Leptin in acute myocardial infarction and period of convalescence in patients with type 2 diabetes mellitus. Kardiol Pol 2010; 68(6): 648-53.
[PMID: 20806194]
[232]
Dobaczewski M, Frangogiannis NG. The cellular specificity of leptin-mediated actions in the infarcted heart. Cardiovasc Res 2011; 89(1): 9-11.
[http://dx.doi.org/10.1093/cvr/cvq354 ] [PMID: 21062917]
[233]
Chen P, Wu R, Zhu W, et al. Hypoxia preconditioned mesenchymal stem cells prevent cardiac fibroblast activation and collagen production via leptin. PLoS One 2014; 9(8): e103587
[http://dx.doi.org/10.1371/journal.pone.0103587 ] [PMID: 25116394]
[234]
Drosos I, Chalikias G, Pavlaki M, et al. Differences between perivascular adipose tissue surrounding the heart and the internal mammary artery: possible role for the leptin-inflammation-fibrosis-hypoxia axis. Clin Res Cardiol 2016; 105(11): 887-900.
[http://dx.doi.org/10.1007/s00392-016-0996-7 ] [PMID: 27337945]
[235]
Purdham DM, Rajapurohitam V, Zeidan A, Huang C, Gross GJ, Karmazyn M. A neutralizing leptin receptor antibody mitigates hypertrophy and hemodynamic dysfunction in the postinfarcted rat heart. Am J Physiol Heart Circ Physiol 2008; 295(1): H441-6.
[http://dx.doi.org/10.1152/ajpheart.91537.2007 ] [PMID: 18469142]
[236]
Abe Y, Ono K, Kawamura T, et al. Leptin induces elongation of cardiac myocytes and causes eccentric left ventricular dilatation with compensation. Am J Physiol Heart Circ Physiol 2007; 292(5): H2387-96.
[http://dx.doi.org/10.1152/ajpheart.00579.2006 ] [PMID: 17220191]
[237]
Matsui H, Motooka M, Koike H, et al. Ischemia/reperfusion in rat heart induces leptin and leptin receptor gene expression. Life Sci 2007; 80(7): 672-80.
[http://dx.doi.org/10.1016/j.lfs.2006.10.027 ] [PMID: 17134725]
[238]
Sardu C, D’Onofrio N, Torella M, et al. Pericoronary fat inflammation and Major Adverse Cardiac Events (MACE) in prediabetic patients with acute myocardial infarction: effects of metformin. Cardiovasc Diabetol 2019; 18(1): 126.
[http://dx.doi.org/10.1186/s12933-019-0931-0 ] [PMID: 31570103]
[239]
Gruzdeva O, Uchasova E, Belik E, Dyleva Y, Shurygina E, Barbarash O. Lipid, adipokine and ghrelin levels in myocardial infarction patients with insulin resistance. BMC Cardiovasc Disord 2014; 14: 7.
[http://dx.doi.org/10.1186/1471-2261-14-7 ] [PMID: 24433403]
[240]
Thim T, Bentzon JF, Kristiansen SB, et al. Size of myocardial infarction induced by ischaemia/reperfusion is unaltered in rats with metabolic syndrome. Clin Sci (Lond) 2006; 110(6): 665-71.
[http://dx.doi.org/10.1042/CS20050326 ] [PMID: 16448385]
[241]
Xue H, Yan GT, Lin J, Hao XH. Preliminary investigation of the changes and mechanism of Leptin after myocardial ischemia/reperfusion injury. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2010; 22(11): 680-3.
[PMID: 21122204]
[242]
Xu TT, Liu SP, Wang XS. Amelioration of myocardial ischemia/reperfusion injury by leptin pretreatment and ischemic preconditioning in mouse. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2010; 22(2): 105-8.
[PMID: 20170616]
[243]
Eguchi M, Liu Y, Shin EJ, Sweeney G. Leptin protects H9c2 rat cardiomyocytes from H2O2-induced apoptosis. FEBS J 2008; 275(12): 3136-44.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06465.x ] [PMID: 18479463]
[244]
Gruzdeva O, Uchasova E, Dyleva Y, et al. Relationships between epicardial adipose tissue thickness and adipo-fibrokine indicator profiles post-myocardial infarction. Cardiovasc Diabetol 2018; 17(1): 40.
[http://dx.doi.org/10.1186/s12933-018-0679-y ] [PMID: 29548286]
[245]
Kim JH, Hong SJ, Park CY, et al. Intramyocardial adipose-derived stem cell transplantation increases pericardial fat with recovery of myocardial function after acute myocardial infarction. PLoS One 2016; 11(6): e0158067
[http://dx.doi.org/10.1371/journal.pone.0158067 ] [PMID: 27336402]
[246]
Chiu CA, Yu TH, Hung WC, et al. Increased expression of visfatin in monocytes and macrophages in male acute myocardial infarction patients. Mediators Inflamm 2012; 2012: 469852
[http://dx.doi.org/10.1155/2012/469852 ] [PMID: 23304061]
[247]
Lu LF, Wang CP, Yu TH, et al. Interpretation of elevated plasma visfatin concentrations in patients with ST-elevation myocardial infarction. Cytokine 2012; 57(1): 74-80.
[http://dx.doi.org/10.1016/j.cyto.2011.10.015 ] [PMID: 22137121]
[248]
Huang P, Riordan SM, Heruth DP, Grigoryev DN, Zhang LQ, Ye SQ. A critical role of nicotinamide phosphoribosyltransferase in human telomerase reverse transcriptase induction by resveratrol in aortic smooth muscle cells. Oncotarget 2015; 6(13): 10812-24.
[http://dx.doi.org/10.18632/oncotarget.3580 ] [PMID: 25926556]
[249]
Beiser DG, Wang H, Li J, et al. Plasma and myocardial visfatin expression changes are associated with therapeutic hypothermia protection during murine hemorrhagic shock/resuscitation. Resuscitation 2010; 81(6): 742-8.
[http://dx.doi.org/10.1016/j.resuscitation.2010.02.019 ] [PMID: 20347206]
[250]
Cakmak HA, Aslan S, Yalcin AA, et al. Relationship between serum visfatin levels and coronary slow-flow phenomenon. Herz 2015; 40(6): 921-8.
[http://dx.doi.org/10.1007/s00059-015-4313-4 ] [PMID: 25939438]
[251]
Montecucco F, Bauer I, Braunersreuther V, et al. Inhibition of nicotinamide phosphoribosyltransferase reduces neutrophil-mediated injury in myocardial infarction. Antioxid Redox Signal 2013; 18(6): 630-41.
[http://dx.doi.org/10.1089/ars.2011.4487 ] [PMID: 22452634]
[252]
Qiao XZ, Yang YM, Xu ZR, Yang LA. Relationship between resistin level in serum and acute coronary syndrome or stable angina pectoris. J Zhejiang Univ Sci B 2007; 8(12): 875-80.
[http://dx.doi.org/10.1631/jzus.2007.B0875 ] [PMID: 18257120]
[253]
Lubos E, Messow CM, Schnabel R, et al. Resistin, acute coronary syndrome and prognosis results from the AtheroGene study. Atherosclerosis 2007; 193(1): 121-8.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.05.039 ] [PMID: 16814296]
[254]
El-Beshbishy HA, Maria RA, Bardi FA. Biochemical and C-reactive protein alterations in myocardial infarction periodontitis patients. Am J Med Sci 2014; 348(3): 181-5.
[http://dx.doi.org/10.1097/MAJ.0000000000000253 ] [PMID: 24670724]
[255]
Sinan UY, Canbolat IP, Baydar O, et al. Relationship between increased serum resistin level and severity of coronary artery disease. Angiology 2014; 65(3): 239-42.
[http://dx.doi.org/10.1177/0003319713502718 ] [PMID: 24052521]
[256]
Korah TE, Ibrahim HH, Badr EA, ElShafie MK. Serum resistin in acute myocardial infarction patients with and without diabetes mellitus. Postgrad Med J 2011; 87(1029): 463-7.
[http://dx.doi.org/10.1136/pgmj.2010.113571 ] [PMID: 21447495]
[257]
Canga A, Cetin M, Kocaman SA, et al. Increased serum resistin levels in patients with coronary slow-flow phenomenon. Herz 2013; 38(7): 773-8.
[http://dx.doi.org/10.1007/s00059-013-3758-6 ] [PMID: 23400345]
[258]
Piestrzeniewicz K, Łuczak K, Lelonek M, Wranicz JK, Goch JH. Obesity and heart rate variability in men with myocardial infarction. Cardiol J 2008; 15(1): 43-9.
[PMID: 18651384]
[259]
Piestrzeniewicz K, Łuczak K, Goch JH. Factors associated with C-reactive protein at the early stage of acute myocardial infarction in men. Cardiol J 2009; 16(1): 36-42.
[PMID: 19130414]
[260]
Fang WQ, Zhang Q, Peng YB, et al. Resistin level is positively correlated with thrombotic complications in Southern Chinese metabolic syndrome patients. J Endocrinol Invest 2011; 34(2): e36-42.
[http://dx.doi.org/10.1007/BF03347059 ] [PMID: 20671416]
[261]
Chemaly ER, Kang S, Zhang S, et al. Differential patterns of replacement and reactive fibrosis in pressure and volume overload are related to the propensity for ischaemia and involve resistin. J Physiol 2013; 591(21): 5337-55.
[http://dx.doi.org/10.1113/jphysiol.2013.258731 ] [PMID: 24018949]
[262]
Xiao J, Sun B, Li M, Wu Y, Sun XB. A novel adipocytokine visfatin protects against H(2)O(2) -induced myocardial apoptosis: a missing link between obesity and cardiovascular disease. J Cell Physiol 2013; 228(3): 495-501.
[http://dx.doi.org/10.1002/jcp.24257 ] [PMID: 23065734]
[263]
Lim SY, Davidson SM, Paramanathan AJ, Smith CC, Yellon DM, Hausenloy DJ. The novel adipocytokine visfatin exerts direct cardioprotective effects. J Cell Mol Med 2008; 12(4): 1395-403.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00332.x ] [PMID: 18400051]
[264]
Hsu CP, Oka S, Shao D, Hariharan N, Sadoshima J. Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes. Circ Res 2009; 105(5): 481-91.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.203703 ] [PMID: 19661458]
[265]
Yamamoto T, Byun J, Zhai P, Ikeda Y, Oka S, Sadoshima J. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One 2014; 9(6): e98972
[http://dx.doi.org/10.1371/journal.pone.0098972 ] [PMID: 24905194]
[266]
Ji Q, Lin Y, Liang Z, et al. Chemerin is a novel biomarker of acute coronary syndrome but not of stable angina pectoris. Cardiovasc Diabetol 2014; 13: 145.
[http://dx.doi.org/10.1186/s12933-014-0145-4 ] [PMID: 25367628]
[267]
Ateş AH, Arslan U, Aksakal A, Yanık A, Özdemir M, Kul S. Plasma chemerin levels are increased in st elevation myocardial infarction patients with high thrombus burden. Cardiol Res Pract 2018; 2018: 5812704
[http://dx.doi.org/10.1155/2018/5812704 ] [PMID: 29780640]
[268]
Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Victor VM, Mauricio MD. Targeting early atherosclerosis: A focus on oxidative stress and inflammation. Oxid Med Cell Longev 2019; 2019: 8563845
[http://dx.doi.org/10.1155/2019/8563845 ] [PMID: 31354915]
[269]
Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity 2000; 12(2): 121-7.
[http://dx.doi.org/10.1016/S1074-7613(00)80165-X ] [PMID: 10714678]
[270]
Anroedh SS, Akkerhuis KM, Oemrawsingh RM, et al. Associations of 26 circulating inflammatory and renal biomarkers with near-infrared spectroscopy and long-term cardiovascular outcome in patients undergoing coronary angiography (ATHEROREMO-NIRS Substudy). Curr Atheroscler Rep 2018; 20(10): 52.
[http://dx.doi.org/10.1007/s11883-018-0752-8 ] [PMID: 30218437]
[271]
van der Vorst EP, Döring Y, Weber C. Chemokines and their receptors in Atherosclerosis. J Mol Med (Berl) 2015; 93(9): 963-71.
[http://dx.doi.org/10.1007/s00109-015-1317-8 ] [PMID: 26175090]
[272]
Li J, Guo Y, Luan X, et al. Independent roles of monocyte chemoattractant protein-1, regulated on activation, normal T-cell expressed and secreted and fractalkine in the vulnerability of coronary atherosclerotic plaques. Circ J 2012; 76(9): 2167-73.
[http://dx.doi.org/10.1253/circj.CJ-11-1457 ] [PMID: 22664781]
[273]
Turillazzi E, Di Paolo M, Neri M, Riezzo I, Fineschi V. A theoretical timeline for myocardial infarction: immunohistochemical evaluation and western blot quantification for Interleukin-15 and Monocyte chemotactic protein-1 as very early markers. J Transl Med 2014; 12: 188.
[http://dx.doi.org/10.1186/1479-5876-12-188 ] [PMID: 24989171]
[274]
Tucker B, Kurup R, Barraclough J, et al. Colchicine as a novel therapy for suppressing chemokine production in patients with an acute coronary syndrome: A Pilot study. Clin Ther 2019; 41(10): 2172-81.
[http://dx.doi.org/10.1016/j.clinthera.2019.07.015 ] [PMID: 31409556]
[275]
Benson VL, McMahon AC, Khachigian LM, Lowe HC. Acute local elevation in monocyte chemoattractant protein-1 (MCP-1), distal to the culprit lesion in acute ST elevation myocardial infarction. Int J Cardiol 2013; 168(2): 1679-80.
[http://dx.doi.org/10.1016/j.ijcard.2013.03.078 ] [PMID: 23618428]
[276]
Dong M, Zhou C, Ji L, Pan B, Zheng L. AG1296 enhances plaque stability via inhibiting inflammatory responses and decreasing MMP-2 and MMP-9 expression in ApoE-/- mice. Biochem Biophys Res Commun 2017; 489(4): 426-31.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.159 ] [PMID: 28559142]
[277]
Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res 2016; 119(1): 91-112.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303577 ] [PMID: 27340270]
[278]
Niu J, Jin Z, Kim H, Kolattukudy PE. MCP-1-induced protein attenuates post-infarct cardiac remodeling and dysfunction through mitigating NF-κB activation and suppressing inflammation-associated microRNA expression. Basic Res Cardiol 2015; 110(3): 26.
[http://dx.doi.org/10.1007/s00395-015-0483-8 ] [PMID: 25840774]
[279]
Grisanti LA, Traynham CJ, Repas AA, Gao E, Koch WJ, Tilley DG. β2-Adrenergic receptor-dependent chemokine receptor 2 expression regulates leukocyte recruitment to the heart following acute injury. Proc Natl Acad Sci USA 2016; 113(52): 15126-31.
[http://dx.doi.org/10.1073/pnas.1611023114 ] [PMID: 27956622]
[280]
Singla DK, Singla RD, Abdelli LS, Glass C. Fibroblast growth factor-9 enhances M2 macrophage differentiation and attenuates adverse cardiac remodeling in the infarcted diabetic heart. PLoS One 2015; 10(3): e0120739
[http://dx.doi.org/10.1371/journal.pone.0120739 ] [PMID: 25768089]
[281]
Zhu Y, Hu C, Du Y, et al. Significant association between admission serum monocyte chemoattractant protein-1 and early changes in myocardial function in patients with first ST-segment elevation myocardial infarction after primary percutaneous coronary intervention. BMC Cardiovasc Disord 2019; 19(1): 107.
[http://dx.doi.org/10.1186/s12872-019-1098-z ] [PMID: 31077149]
[282]
Wang J, Seo MJ, Deci MB, Weil BR, Canty JM, Nguyen J. Effect of CCR2 inhibitor-loaded lipid micelles on inflammatory cell migration and cardiac function after myocardial infarction. Int J Nanomedicine 2018; 13: 6441-51.
[http://dx.doi.org/10.2147/IJN.S178650 ] [PMID: 30410330]
[283]
Leocádio PCL, Menta PLDR, Dias MTS, et al. Low serum levels of CCL2 are associated with worse prognosis in patients with Acute Coronary Syndrome: 2-year survival analysis. Biomed Pharmacother 2019; 109: 1411-6.
[http://dx.doi.org/10.1016/j.biopha.2018.10.087 ] [PMID: 30551392]
[284]
Wei XH, Liu YY, Li Q, et al. Treatment with cardiotonic pills® after ischemia-reperfusion ameliorates myocardial fibrosis in rats. Microcirculation 2013; 20(1): 17-29.
[http://dx.doi.org/10.1111/micc.12002 ] [PMID: 22913380]
[285]
Mukaida N. Interleukin-8: an expanding universe beyond neutrophil chemotaxis and activation. Int J Hematol 2000; 72(4): 391-8.
[PMID: 11197203]
[286]
Xie Q, Sun Z, Chen M, Zhong Q, Yang T, Yi J. IL-8 up-regulates proliferative angiogenesis in ischemic myocardium in rabbits through phosphorylation of Akt/GSK-3β(ser9) dependent pathways. Int J Clin Exp Med 2015; 8(8): 12498-508.
[PMID: 26550160]
[287]
Takami M, Terry V, Petruzzelli L. Signaling pathways involved in IL-8-dependent activation of adhesion through Mac-1. J Immunol 2002; 168(9): 4559-66.
[http://dx.doi.org/10.4049/jimmunol.168.9.4559 ] [PMID: 11971003]
[288]
Hou Y, Ryu CH, Jun JA, Kim SM, Jeong CH, Jeun SS. IL-8 enhances the angiogenic potential of human bone marrow mesenchymal stem cells by increasing vascular endothelial growth factor. Cell Biol Int 2014; 38(9): 1050-9.
[http://dx.doi.org/10.1002/cbin.10294 ] [PMID: 24797366]
[289]
Haleagrahara N, Chakravarthi S, Mathews L. Insulin like growth factor-1 (IGF-1) causes overproduction of IL-8, an angiogenic cytokine and stimulates neovascularization in isoproterenol-induced myocardial infarction in rats. Int J Mol Sci 2011; 12(12): 8562-74.
[http://dx.doi.org/10.3390/ijms12128562 ] [PMID: 22272091]
[290]
Zhao X, Zhang W, Xing D, et al. Endothelial cells overexpressing IL-8 receptor reduce cardiac remodeling and dysfunction following myocardial infarction. Am J Physiol Heart Circ Physiol 2013; 305(4): H590-8.
[http://dx.doi.org/10.1152/ajpheart.00571.2012 ] [PMID: 23771691]
[291]
Yao K, Zhang S, Lu H, et al. Changes in fractalkine in patients with ST-elevation myocardial infarction. Coron Artery Dis 2015; 26(6): 516-20.
[http://dx.doi.org/10.1097/MCA.0000000000000273 ] [PMID: 26049921]
[292]
Taube D, Xu J, Yang XP, Undrovinas A, Peterson E, Harding P. Fractalkine depresses cardiomyocyte contractility. PLoS One 2013; 8(7): e69832
[http://dx.doi.org/10.1371/journal.pone.0069832 ] [PMID: 23936109]
[293]
Nahrendorf M, Swirski FK, Aikawa E, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 2007; 204(12): 3037-47.
[http://dx.doi.org/10.1084/jem.20070885 ] [PMID: 18025128]
[294]
Boag SE, Das R, Shmeleva EV, et al. T lymphocytes and fractalkine contribute to myocardial ischemia/reperfusion injury in patients. J Clin Invest 2015; 125(8): 3063-76.
[http://dx.doi.org/10.1172/JCI80055 ] [PMID: 26168217]
[295]
Riopel M, Vassallo M, Ehinger E, et al. CX3CL1-Fc treatment prevents atherosclerosis in Ldlr KO mice. Mol Metab 2019; 20: 89-101.
[http://dx.doi.org/10.1016/j.molmet.2018.11.011 ] [PMID: 30553772]
[296]
Xuan W, Liao Y, Chen B, et al. Detrimental effect of fractalkine on myocardial ischaemia and heart failure. Cardiovasc Res 2011; 92(3): 385-93.
[http://dx.doi.org/10.1093/cvr/cvr221 ] [PMID: 21840883]
[297]
Gu X, Xu J, Yang XP, Peterson E, Harding P. Fractalkine neutralization improves cardiac function after myocardial infarction. Exp Physiol 2015; 100(7): 805-17.
[http://dx.doi.org/10.1113/EP085104 ] [PMID: 25943588]
[298]
Husberg C, Nygård S, Finsen AV, et al. Cytokine expression profiling of the myocardium reveals a role for CX3CL1 (fractalkine) in heart failure. J Mol Cell Cardiol 2008; 45(2): 261-9.
[http://dx.doi.org/10.1016/j.yjmcc.2008.05.009 ] [PMID: 18585734]
[299]
Xu B, Qian Y, Zhao Y, et al. Prognostic value of fractalkine/CX3CL1 concentration in patients with acute myocardial infarction treated with primary percutaneous coronary intervention. Cytokine 2019; 113: 365-70.
[http://dx.doi.org/10.1016/j.cyto.2018.10.006 ] [PMID: 30352758]
[300]
Dewald O, Ren G, Duerr GD, et al. Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am J Pathol 2004; 164(2): 665-77.
[http://dx.doi.org/10.1016/S0002-9440(10)63154-9 ] [PMID: 14742270]
[301]
Alard JE, Ortega-Gomez A, Wichapong K, et al. Recruitment of classical monocytes can be inhibited by disturbing heteromers of neutrophil HNP1 and platelet CCL5. Sci Transl Med 2015; 7(317): 317ra196
[http://dx.doi.org/10.1126/scitranslmed.aad5330 ] [PMID: 26659570]
[302]
Montecucco F, Braunersreuther V, Lenglet S, et al. CC chemokine CCL5 plays a central role impacting infarct size and post-infarction heart failure in mice. Eur Heart J 2012; 33(15): 1964-74.
[http://dx.doi.org/10.1093/eurheartj/ehr127 ] [PMID: 21606075]
[303]
Vajen T, Koenen RR, Werner I, et al. Blocking CCL5-CXCL4 heteromerization preserves heart function after myocardial infarction by attenuating leukocyte recruitment and NETosis. Sci Rep 2018; 8(1): 10647.
[http://dx.doi.org/10.1038/s41598-018-29026-0 ] [PMID: 30006564]
[304]
Oran PE, Sherma ND, Borges CR, Jarvis JW, Nelson RW. Intrapersonal and populational heterogeneity of the chemokine RANTES. Clin Chem 2010; 56(9): 1432-41.
[http://dx.doi.org/10.1373/clinchem.2010.147884 ] [PMID: 20802101]
[305]
Tietje A, Yang X, Yu X, Wei Y. MICA/IL-12: A novel bifunctional protein for killer cell activation. Oncol Rep 2017; 37(3): 1889-95.
[http://dx.doi.org/10.3892/or.2017.5375 ] [PMID: 28098874]
[306]
Miyaki E, Hiraga N, Imamura M, et al. Interferon alpha treatment stimulates interferon gamma expression in type I NKT cells and enhances their antiviral effect against hepatitis C virus. PLoS One 2017; 12(3): e0172412
[http://dx.doi.org/10.1371/journal.pone.0172412 ] [PMID: 28253324]
[307]
Rio J, Rovira A, Tintore M, et al. Disability progression markers over 6-12 years in interferon-beta-treated multiple sclerosis patients. Mult Scler 2018; 24(3): 322-30.
[PMID: 28287331]
[308]
Zhang J, Alcaide P, Liu L, et al. Regulation of endothelial cell adhesion molecule expression by mast cells, macrophages, and neutrophils. PLoS One 2011; 6(1): e14525
[http://dx.doi.org/10.1371/journal.pone.0014525 ] [PMID: 21264293]
[309]
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 2018; 233(9): 6425-40.
[http://dx.doi.org/10.1002/jcp.26429 ] [PMID: 29319160]
[310]
Voloshyna I, Littlefield MJ, Reiss AB. Atherosclerosis and interferon-γ: new insights and therapeutic targets. Trends Cardiovasc Med 2014; 24(1): 45-51.
[http://dx.doi.org/10.1016/j.tcm.2013.06.003 ] [PMID: 23916809]
[311]
Engelbertsen D, Lichtman AH. Innate lymphoid cells in atherosclerosis. Eur J Pharmacol 2017; 816: 32-6.
[http://dx.doi.org/10.1016/j.ejphar.2017.04.030 ] [PMID: 28449862]
[312]
Marino F, Guasti L, Tozzi M, et al. Gene expression of adhesion molecules in endothelial cells from patients with peripheral arterial disease is reduced after surgical revascularization and pharmacological treatment. Int J Vasc Med 2013; 2013: 412761
[http://dx.doi.org/10.1155/2013/412761 ] [PMID: 23533763]
[313]
Javanmard SH, Dana N. The effect of interferon γ on endothelial cell nitric oxide production and apoptosis. Adv Biomed Res 2012; 1: 69.
[PMID: 23326799]
[314]
Huang C, Yu XH, Zheng XL, Ou X, Tang CK. Interferon-stimulated gene 15 promotes cholesterol efflux by activating autophagy via the miR-17-5p/Beclin-1 pathway in THP-1 macrophage-derived foam cells. Eur J Pharmacol 2018; 827: 13-21.
[http://dx.doi.org/10.1016/j.ejphar.2018.02.042 ] [PMID: 29518394]
[315]
Moss JW, Ramji DP. Interferon-γ: Promising therapeutic target in atherosclerosis. World J Exp Med 2015; 5(3): 154-9.
[http://dx.doi.org/10.5493/wjem.v5.i3.154 ] [PMID: 26309816]
[316]
Yan W, Wen S, Wang L, Duan Q, Ding L. Comparison of cytokine expressions in acute myocardial infarction and stable angina stages of coronary artery disease. Int J Clin Exp Med 2015; 8(10): 18082-9.
[PMID: 26770404]
[317]
Patel KD, Duggan SP, Currid CA, et al. High sensitivity cytokine detection in acute coronary syndrome reveals up-regulation of interferon gamma and interleukin-10 post myocardial infarction. Clin Immunol 2009; 133(2): 251-6.
[http://dx.doi.org/10.1016/j.clim.2009.07.007 ] [PMID: 19665935]
[318]
Gurumurthy P, Borra SK, Yeruva RK, Babu S, Thomas J, Cherian KM. Estimation of serum neopterin in patients with acute coronary syndrome. Asian Cardiovasc Thorac Ann 2013; 21(4): 426-31.
[http://dx.doi.org/10.1177/0218492312458511 ] [PMID: 24570524]
[319]
Newby AC. Metalloproteinase production from macrophages - a perfect storm leading to atherosclerotic plaque rupture and myocardial infarction. Exp Physiol 2016; 101(11): 1327-37.
[http://dx.doi.org/10.1113/EP085567 ] [PMID: 26969796]
[320]
Springall R, Amezcua-Guerra LM, Gonzalez-Pacheco H, et al. Interferon-gamma increases the ratio of matrix metalloproteinase-9/tissue inhibitor of metalloproteinase-1 in peripheral monocytes from patients with coronary artery disease. PLoS One 2013; 8(8): e72291
[http://dx.doi.org/10.1371/journal.pone.0072291 ] [PMID: 23951304]
[321]
Yao H, He XH, Bruce IC, Xia Q. Nitric oxide participates in the negative inotropic effect of interferon-alpha in rat cardiac muscle. Conf Proc IEEE Eng Med Biol Soc 2005; 2005: 5723-6.
[PMID: 17281557]
[322]
Kadayifci A, Aytemir K, Arslan M, Aksoyek S, Sivri B, Kabakci G. Interferon-alpha does not cause significant cardiac dysfunction in patients with chronic active hepatitis. Liver 1997; 17(2): 99-102.
[http://dx.doi.org/10.1111/j.1600-0676.1997.tb00788.x ] [PMID: 9138280]
[323]
Hoyer FF, Nahrendorf M. Interferon-γ regulates cardiac myeloid cells in myocardial infarction. Cardiovasc Res 2019; 115(13): 1815-6.
[http://dx.doi.org/10.1093/cvr/cvz143 ] [PMID: 31161218]
[324]
Ma Y, Yabluchanskiy A, Iyer RP, et al. Temporal neutrophil polarization following myocardial infarction. Cardiovasc Res 2016; 110(1): 51-61.
[http://dx.doi.org/10.1093/cvr/cvw024 ] [PMID: 26825554]
[325]
Savvatis K, Pappritz K, Becher PM, et al. Interleukin-23 deficiency leads to impaired wound healing and adverse prognosis after myocardial infarction. Circ Heart Fail 2014; 7(1): 161-71.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.113.000604 ] [PMID: 24300243]
[326]
Lee JS, Jeong SJ, Kim S, et al. Conventional dendritic cells impair recovery after myocardial infarction. J Immunol 2018; 201(6): 1784-98.
[http://dx.doi.org/10.4049/jimmunol.1800322 ] [PMID: 30097529]
[327]
Yan X, Zhang H, Fan Q, et al. Dectin-2 deficiency modulates Th1 differentiation and improves wound healing after myocardial infarction. Circ Res 2017; 120(7): 1116-29.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.310260 ] [PMID: 28193608]
[328]
Lee JW, Oh JE, Rhee KJ, et al. Co-treatment with interferon-γ and 1-methyl tryptophan ameliorates cardiac fibrosis through cardiac myofibroblasts apoptosis. Mol Cell Biochem 2019; 458(1-2): 197-205.
[http://dx.doi.org/10.1007/s11010-019-03542-7 ] [PMID: 31006829]
[329]
Jeong HY, Kang WS, Hong MH, et al. 5-Azacytidine modulates interferon regulatory factor 1 in macrophages to exert a cardioprotective effect. Sci Rep 2015; 5: 15768.
[http://dx.doi.org/10.1038/srep15768 ] [PMID: 26510961]
[330]
Guo M, Yan R, Wang C, et al. IFN Regulatory Factor-1 modulates the function of dendritic cells in patients with acute coronary syndrome. Cell Physiol Biochem 2015; 36(2): 599-610.
[http://dx.doi.org/10.1159/000430123 ] [PMID: 25997853]
[331]
Knorr M, Münzel T, Wenzel P. Interplay of NK cells and monocytes in vascular inflammation and myocardial infarction. Front Physiol 2014; 5: 295.
[http://dx.doi.org/10.3389/fphys.2014.00295 ] [PMID: 25177297]
[332]
Ji QW, Guo M, Zheng JS, et al. Downregulation of T helper cell type 3 in patients with acute coronary syndrome. Arch Med Res 2009; 40(4): 285-93.
[http://dx.doi.org/10.1016/j.arcmed.2009.04.002 ] [PMID: 19608018]
[333]
Szkodzinski J, Hudzik B, Osuch M, et al. Serum concentrations of interleukin-4 and interferon-gamma in relation to severe left ventricular dysfunction in patients with acute myocardial infarction undergoing percutaneous coronary intervention. Heart Vessels 2011; 26(4): 399-407.
[http://dx.doi.org/10.1007/s00380-010-0076-2 ] [PMID: 21127885]
[334]
Cheng X, Liao YH, Ge H, et al. TH1/TH2 functional imbalance after acute myocardial infarction: coronary arterial inflammation or myocardial inflammation. J Clin Immunol 2005; 25(3): 246-53.
[http://dx.doi.org/10.1007/s10875-005-4088-0 ] [PMID: 15981090]
[335]
Li C, Zong W, Zhang M, et al. Increased ratio of circulating T-Helper 1 to T-Helper 2 cells and severity of coronary artery disease in patients with acute myocardial infarction: a prospective observational study. Med Sci Monit 2019; 25: 6034-42.
[http://dx.doi.org/10.12659/MSM.913891 ] [PMID: 31407674]
[336]
Zhao SL, Mo ZH, He HH, Zhao LL, Xie YH. Imbalance of T-helper 1/T-helper 2 cytokines and impaired glucose tolerance among patient with acute coronary syndrome. J Cancer Res Ther 2018; 14(Suppl.): S480-5.
[http://dx.doi.org/10.4103/0973-1482.194346 ] [PMID: 29970710]
[337]
Yan X, Hegab AE, Endo J, et al. Lung natural killer cells play a major counter-regulatory role in pulmonary vascular hyperpermeability after myocardial infarction. Circ Res 2014; 114(4): 637-49.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302625 ] [PMID: 24366170]
[338]
Guan X, Yang W, Sun X, et al. Association of influenza virus infection and inflammatory cytokines with acute myocardial infarction. Inflamm Res 2012; 61(6): 591-8.
[http://dx.doi.org/10.1007/s00011-012-0449-3 ] [PMID: 22373653]
[339]
Nogami Y, Kinoshita M, Takase B, et al. 2010.
[340]
Hao J, Du H, Li WW, et al. Effects of atorvastatin combined with trimetazidine on myocardial injury and inflammatory mediator in unstable angina patients during perioperative of percutaneous coronary intervention. Eur Rev Med Pharmacol Sci 2015; 19(23): 4642-6.
[PMID: 26698263]
[341]
Zhao XJ, Liu XL, He GX, Xu HP. Effects of single-dose atorvastatin on interleukin-6, interferon gamma, and myocardial no-reflow in a rabbit model of acute myocardial infarction and reperfusion. Braz J Med Biol Res 2014; 47(3): 245-51.
[http://dx.doi.org/10.1590/1414-431X20132999 ] [PMID: 24554037]
[342]
Sardella G, De Luca L, Francavilla V, et al. Effect of coronary percutaneous revascularization on interferon-gamma and interleukin-10 producing CD4+ T cells during acute myocardial infarction. Int J Immunopathol Pharmacol 2007; 20(4): 791-9.
[http://dx.doi.org/10.1177/039463200702000415 ] [PMID: 18179752]
[343]
Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 2015; 372(25): 2387-97.
[http://dx.doi.org/10.1056/NEJMoa1410489 ] [PMID: 26039521]
[344]
Tardif JC, Kouz S, Waters DD, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med 2019; 381(26): 2497-505.
[http://dx.doi.org/10.1056/NEJMoa1912388 ] [PMID: 31733140]
[345]
Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol 2013; 61(4): 404-10.
[http://dx.doi.org/10.1016/j.jacc.2012.10.027 ] [PMID: 23265346]
[346]
Ridker PM, Everett BM, Pradhan A, et al. Low-dose methotrexate for the prevention of atherosclerotic events. N Engl J Med 2019; 380(8): 752-62.
[http://dx.doi.org/10.1056/NEJMoa1809798 ] [PMID: 30415610]
[347]
Vamanu E. Complementary functional strategy for modulation of human gut microbiota. Curr Pharm Des 2018; 24(35): 4144-9.
[http://dx.doi.org/10.2174/1381612824666181001154242 ] [PMID: 30277147]
[348]
Li XS, Obeid S, Klingenberg R, et al. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J 2017; 38(11): 814-24.
[http://dx.doi.org/10.1093/eurheartj/ehw582 ] [PMID: 28077467]
[349]
Vamanu E, Gatea F. Correlations between microbiota bioactivity and bioavailability of functional compounds: A mini-review. Biomedicines 2020; 8(2): 8.
[http://dx.doi.org/10.3390/biomedicines8020039 ] [PMID: 32093399]
[350]
Telle-Hansen VH, Holven KB, Ulven SM. Impact of a healthy dietary pattern on gut microbiota and systemic inflammation in humans. Nutrients 2018; 10(11): 10.
[http://dx.doi.org/10.3390/nu10111783 ] [PMID: 30453534]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy