Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

NiFe2O4@SiO2 @amino Glucose Magnetic Nanoparticle under Solvent-free Condition: A New, mild, Simple and Effective Avenue for the Synthesis of Quinazolinone, Imidazo[1,2-a]Pyrimidinone and Novel Derivatives of Amides

Author(s): Leila Z. Fekri*

Volume 17, Issue 4, 2020

Page: [304 - 312] Pages: 9

DOI: 10.2174/1570179417666200409151330

Price: $65

Abstract

Background: Imidazo[1,2-a]pyrimidinone, quinazolinone and amide derivatives have attracted a lot of interest because of their broad scope of biological and pharmacological activities. There are a lot of methods reported in the literature for their synthesis. Therefore, we became interested in developing a convenient synthetic method for the preparation of imidazoquinazolinone and amide derivatives.

Objective: NiFe2O4@SiO2 @glucose amine were synthesized, characterized and have been used for the green, effective and mild multicomponent synthesis of quinazolinones, benzoimidazo[1,2-a]pyrimidinones and amides under solvent-free conditions in short reaction times and excellent yields. To expand of the scope of this avenue, multicomponent synthesis of mono and bis novel amides was tested for the first time. All of the products were characterized by mp, FT-IR, NMR and elemental analysis.

Methods: Aldehyde (1mmol), 2-amino benzimidazole (1 mmol), dimedone (1mmol) or indane-1,3-dione (1 mmol) for the synthesis of quinazoline or imidazopyrimidinones and arene (1mmol), anhydride (1mmol), 2- aminobenzimidazole (1mmol) for the synthesis of amides in the nanocatalyst NiFe2O4@SiO2@glucose amine (0.15mol%: 0.05g) were stirred by a magnet for the required reaction time. After completion of the reaction, as indicated by TLC, the products were collected and recrystallized from ethanol if necessary.

Results: We present a novel avenue for the synthesis of benzimidazo[1,2-a] pyrimidinones, quinazolinones and amides in the presence of NiFe2O4@SiO2@glucose amine under solvent-free conditions.

Conclusion: In conclusion, we developed NiFe2O4@SiO2 @glucose amine-catalysed multicomponent synthesis of quinazolinones and imidazo[1,2-a]pyrimidinones using the reaction of benzaldehyde, dimedone or indane-dione and 2-aminobenzimidazole and multicomponent synthesis of amides using arenes, cyclic anhydrides and 2-aminobenzimidazole by a solvent-free technique. This method proves to be a robust and innovative approach for the synthesis of a biologically important structure. The operational simplicity, the excellent yields of products, ease of separation and recyclability of the magnetic catalyst, waste reduction and high selectivity are the main advantages of this method. Furthermore, this new avenue is cheap and environmentally benign.

Keywords: Multi-component reaction, amides, imidazo[1 2-a]pyrimidinones, NiFe2O4@SiO2@glucose amine, quinazolinones, magnetic nanoparticle.

Graphical Abstract

[1]
Nikpassand, M.; Zare Fekri, L.; Karimian, L. Rassa. M. Curr. Org. Syn., 2015, 12, 358-362.
[http://dx.doi.org/10.2174/1570179411666141101001949]
[2]
Humphrey, J.M.; Chamberlin, A.R. Chemical synthesis of natural product peptides: coupling methods for the incorporation of noncoded amino acids into peptides. Chem. Rev., 1997, 97(6), 2243-2266.
[http://dx.doi.org/10.1021/cr950005s] [PMID: 11848900]
[3]
Lundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Catalytic amide formation from non-activated carboxylic acids and amines. Chem. Soc. Rev., 2014, 43(8), 2714-2742.
[http://dx.doi.org/10.1039/C3CS60345H] [PMID: 24430887]
[4]
Graul, A.; Castaner, J. Atorvastatin calcium. Drugs Future, 1997, 22, 956-968.
[http://dx.doi.org/10.1358/dof.1997.022.09.423212]
[5]
Patchett, A.A. Excursions in drug discovery. J. Med. Chem., 1993, 36(15), 2051-2058.
[http://dx.doi.org/10.1021/jm00067a001] [PMID: 8340909]
[6]
de Gasparo, M.; Whitebread, S. Binding of valsartan to mammalian angiotensin AT1 receptors. Regul. Pept., 1995, 59(3), 303-311.
[http://dx.doi.org/10.1016/0167-0115(95)00085-P] [PMID: 8577935]
[7]
Ananthanarayanan, V.S.; Tetreault, S.; Saint-Jean, A. Interaction of calcium channel antagonists with calcium: spectroscopic and modeling studies on diltiazem and its Ca2+ complex. J. Med. Chem., 1993, 36(10), 1324-1332.
[http://dx.doi.org/10.1021/jm00062a004] [PMID: 8496901]
[8]
Hegab, M.I.; Abdel-Fattah, A-S.M.; Yousef, N.M.; Nour, H.F.; Mostafa, A.M.; Ellithey, M. Synthesis, X-ray structure, and pharmacological activity of some 6,6-disubstituted chromeno[4,3-b]- and chromeno- [3,4-c]-quinolines. Arch. Pharm. (Weinheim), 2007, 340(8), 396-403.
[http://dx.doi.org/10.1002/ardp.200700089] [PMID: 17647217]
[9]
Siddiqui, N.; Alam, M.S.; Ahsan, W. Synthesis, anticonvulsant and toxicity evaluation of 2-(1H-indol-3-yl)acetyl-N-(substituted phenyl)hydrazine carbothioamides and their related heterocyclic derivatives. Acta Pharm., 2008, 58(4), 445-454.
[http://dx.doi.org/10.2478/v10007-008-0025-0] [PMID: 19103578]
[10]
Galewicz-Walesa, K.; Pachuta-Stec, A. he synthesis and properties of N-substituted amides of 1-(5-methylthio-1, 2, 4-triazol-3-yl)-cyclohexane-2-carboxylic acid. Medical Academy in Lublin, 2003, 9, 118-125.
[11]
Graybill, T.L.; Ross, M.J.; Gauvin, B.R.; Gregory, J.S.; Harris, A.L.; Ator, M.A.; Rinker, J.M.; Dolle, R.E. Synthesis and evaluation of azapeptide-derived inhibitors of serine and cysteine proteases. Bioorg. Med. Chem. Lett., 1992, 1375-1380.
[http://dx.doi.org/10.1016/S0960-894X(00)80516-8]
[12]
Li, Y-W.; Li, Sh-T. Facile synthesis and antifungal activity of dithiocarbamate derivatives bearing an amide moiety. J. Serb. Chem. Soc., 2015, 80, 1367-1374.
[http://dx.doi.org/10.2298/JSC150114047L]
[13]
Warnecke, A.; Fichtner, I.; Sass, G.; Kratz, F. Synthesis, cleavage profile, and antitumor efficacy of an albumin-binding prodrug of methotrexate that is cleaved by plasmin and cathepsin B. Arch. Pharm. (Weinheim), 2007, 340(8), 389-395.
[http://dx.doi.org/10.1002/ardp.200700025] [PMID: 17628030]
[14]
Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68.
[http://dx.doi.org/10.1021/cc9800071] [PMID: 10746014]
[15]
Hour, M.J.; Huang, L.J.; Kuo, S.C.; Xia, Y.; Bastow, K.; Nakanishi, Y.; Hamel, E.; Lee, K.H. 6-Alkylamino- and 2,3-dihydro-3′-methoxy-2-phenyl-4-quinazolinones and related compounds: their synthesis, cytotoxicity, and inhibition of tubulin polymerization. J. Med. Chem., 2000, 43(23), 4479-4487.
[http://dx.doi.org/10.1021/jm000151c] [PMID: 11087572]
[16]
Alagarsamy, V.; Solomon, V.R.; Murugan, M. Synthesis and pharmacological investigation of novel 4-benzyl-1-substituted-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-ones as new class of H1-antihistaminic agents. Bioorg. Med. Chem., 2007, 15(12), 4009-4015.
[http://dx.doi.org/10.1016/j.bmc.2007.04.001] [PMID: 17452107]
[17]
Alagarsamy, V.; Revathi, R.; Meena, K.V.; Ramaseshu, S.S. Rajasekaran.; Declercq, E. AntiHIV, antibacterial and antifungal activities of some 2, 3-disubstituted quinazolin-4 (3H)-ones. Indian J. Pharm. Sci., 2004, 66, 459-462.
[18]
Alagarsamy, V.; Pathak, U.S. Synthesis and antihypertensive activity of novel 3-benzyl-2-substituted-3H-[1,2,4]triazolo[5,1-b]quinazolin-9-ones. Bioorg. Med. Chem., 2007, 15(10), 3457-3462.
[http://dx.doi.org/10.1016/j.bmc.2007.03.007] [PMID: 17391966]
[19]
Alagarsamy, V. Synthesis and pharmacological investigation of some novel 2-methyl-3-(substituted methylamino)-(3H)-quinazolin-4-ones as histamine H1-receptor blockers. Pharmazie, 2004, 59(10), 753-755.
[PMID: 15544052]
[20]
Alagarsamy, V.; Murugananthan, G.; Venkateshperumal, R. Synthesis, analgesic, anti-inflammatory and antibacterial activities of some novel 2-methyl-3-substituted quinazolin-4-(3H)-ones. Biol. Pharm. Bull., 2003, 26(12), 1711-1714.
[http://dx.doi.org/10.1248/bpb.26.1711] [PMID: 14646176]
[21]
Selvam, T.P.; Kumar, P.V. Quinazoline marketed drugs – A Review. Res. Pharm., 2011, 1, 1-21.
[22]
Shaabani, A.; Farhangi, E.; Rahmati, A. Synthesis of tetrahydrobenzimidazo[1,2-b]quinazolin-1(2H)-one and tetrahydro-1,2,4-triazolo[5,1-b]quinazolin-8(4H)-one ring systems under solvent-free conditions. Comb. Chem. High Throughput Screen., 2006, 9(10), 771-776.
[http://dx.doi.org/10.2174/138620706779026060] [PMID: 17168682]
[23]
Mourad, A.F.; Aly, A.A.; Farag, H.H.; Beshr, E.A. Microwave assisted synthesis of triazoloquinazolinones and benzimidazoquinazolinones. Beilstein J. Org. Chem., 2007, 3, 11-16.
[http://dx.doi.org/10.1186/1860-5397-3-11] [PMID: 17338816]
[24]
Heravi, M.M.; Ranjbar, L.; Derikvand, F.; Alimadadi, B.; Oskooie, H.A.; Bamoharram, F.F. A three component one-pot procedure for the synthesis of [1,2,4]triazolo/benzimidazolo-quinazolinone derivatives in the presence of H6P2W18O(62).18H2O as a green and reusable catalyst. Mol. Divers., 2008, 12(3-4), 181-185.
[http://dx.doi.org/10.1007/s11030-008-9086-8] [PMID: 18780153]
[25]
Heravi, M.M.; Derikvand, F.; Ranjbar, L. Sulfamic acid–catalyzed, three-component, one-pot synthesis of [1,2,4]triazolo/benzimidazolo quinazolinone derivatives. Synth. Commun., 2010, 40, 677-685.
[http://dx.doi.org/10.1080/00397910903009489]
[26]
Ziarani, G.M.; Badiei, A.; Aslani, Z.; Lashgari, N. Application of sulfonic acid functionalized nanoporous silica (SBA-Pr-SO 3 H) in the green one-pot synthesis of triazoloquinazolinones and benzimidazo quinazolinones. Arab. J. Chem., 2015, 8, 54-61.
[http://dx.doi.org/10.1016/j.arabjc.2011.06.020]
[27]
Puligoundla, R.G.; Karnakanti, S.; Bantu, R.; Kommu, N.; Kondra, S.B.; Nagarapu, L. A simple, convenient one-pot synthesis of [1, 2, 4]triazolo/ benzimidazolo quinazolinone derivatives by using molecular iodine. Tetrahedron Lett., 2013, 54, 2480-2483.
[http://dx.doi.org/10.1016/j.tetlet.2013.02.099]
[28]
Krishnamurthy, G.; Jagannath, K.V. Microwave-assisted silica-promoted solvent-free synthesisof triazoloquinazolinone and benzimidazoquina-zolinones. J. Chem. Sci., 2013, 125, 807-811.
[http://dx.doi.org/10.1007/s12039-013-0398-6]
[29]
Mousavi, M.R.; Maghsoodlou, M.T. atalytic systems containing p-toluenesulfonic acid monohydrate catalyzed the synthesis of triazoloquinazolinone and benzimidazoquinazolinone derivatives. Monatsh. Chem., 2014, 145, 1967-1973.
[http://dx.doi.org/10.1007/s00706-014-1273-y]
[30]
Gore, R.P.; Rajput, A.P. A review on recent progress in multi component reactions of pyrimidine synthesis. Drug Invent. Today, 2013, 5, 148-152.
[http://dx.doi.org/10.1016/j.dit.2013.05.010]
[31]
Zare, L.; Mahmoodi, N.O.; Yahyazadeh, A.; Mamaghani, M.; Tabatabaeian, K. An efficient chemo-and regioselective three-component synthesis of pyridazinones and phthalazinones using activated KSF. Chin. Chem. Lett., 2010, 21, 538-541.
[http://dx.doi.org/10.1016/j.cclet.2009.11.032]
[32]
Nikpassand, M.; Fekri, L.Z.; Sanagou, S. Green synthesis of 2-hydrazonyl-4-phenylthiazoles using KIT-6 mesoporous silica coated magnetite nanoparticles. Dyes Pigments, 2017, 136, 140-144.
[http://dx.doi.org/10.1016/j.dyepig.2016.08.044]
[33]
Nikpassand, M.; Fekri, L.Z.; Gharib, M.; Marvi, O. Fe+ 3-montmorillonite K-10 as a green and reusable catalyst for the synthesis of new generation of dihydropyrimidinones. Lett. Org. Chem., 2012, 9, 745-748.
[http://dx.doi.org/10.2174/157017812803901917]
[34]
Zare, L.; Mahmoodi, N.; Yahyazadeh, A.; Mamaghani, M.; Tabatabaeian, K. An efficient one‐pot synthesis of pyridazinones and phthalazinones using HY‐zeolite. J. Heterocycl. Chem., 2011, 48, 864-867.
[http://dx.doi.org/10.1002/jhet.649]
[35]
Fekri, L.Z.; Nikpassand, M.; Shariati, S.; Aghazadeh, B.; Zarkeshvari, R.; Norouz Pour, N. Synthesis and characterization of amino glucose-functionalized silica-coated NiFe2O4 nanoparticles: A heterogeneous, new and magnetically separable catalyst for the solvent-free synthesis of 2,4,5–trisubstituted imidazoles, benzo[d]imidazoles, benzo[d] oxazoles and azo-linked benzo[d]oxazoles. J. Org. Chem., 2018, 871, 60-73.
[http://dx.doi.org/10.1016/j.jorganchem.2018.07.008]
[36]
Fekri, L.Z.; Maleki, M. KIT‐6 Mesoporous silica‐coated magnetite nanoparticles: A highly efficient and easily reusable catalyst for the synthesis of benzo[d]imidazole derivatives. J. Heterocycl. Chem., 2017, 54, 1167-1171.
[http://dx.doi.org/10.1002/jhet.2686]
[37]
Fekri, L.Z.; Nikpassand, M.; Pourmirzajani, S.; Aghazadeh, B. Synthesis and characterization of amino glucose-functionalized silica-coated NiFe2O4 nanoparticles: A heterogeneous, new and magnetically separable catalyst for the solvent-free synthesis of pyrano[3,2-c]chromen-5(4H)-ones. RSC Advances, 2018, 8, 22313-22320.
[http://dx.doi.org/10.1039/C8RA02572J]
[38]
Fekri, L.Z.; Nikpassand, M.; Fard, H.S.; Marvi, O. Fe+ 3-montmorillonite k10 as an efficient reusable heterogeneous catalyst for the grind mediated synthesis of 14-aryl-14H-dibenzo [a, j] xanthenes. Lett. Org. Chem., 2016, 13, 135-142.
[http://dx.doi.org/10.2174/157017861302160209165802]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy