Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Nanoparticles for Sustainable Agriculture and their Effect on Plants

Author(s): Amrisha Srivastava and Rachana Singh*

Volume 17, Issue 1, 2021

Published on: 03 April, 2020

Page: [58 - 69] Pages: 12

DOI: 10.2174/1573413716999200403152439

Price: $65

Abstract

Nano-biotechnology is gaing attention in the field of agriculture because of its different applications such as release of nutrients, pesticides, nanosensors, veterinary care, detection of nutrient deficiencies and many more. Nanoparticles, measured in nano size, is used in variety of forms to improve the efficiency of nutrient utilization and reduces the costs of environmental protection. Nano fertilizer, one of the important aspect of nanoparticles. It facilitates incorporation of measured amount of nutrition to the crops which reduces the chance of nutrition loss, thus helps to improve crop fertility. Toxic waste from soil and water can also be reduced by the use of different agrichemicals. Nanotechnology has the potential to detect the disease at an early stage and also improves the ability of plants to uptake nutrients, thus improving agriculture and food industry. This review covers the use of different nanoparticles in agriculture as plant growth promoters and their use in controlling plant diseases.

Keywords: Nanobiotechnology, nanoparticles, sustainable agriculture, crop productivity, plant growth promoting rhizobacteria, nutrition loss.

Graphical Abstract

[1]
Sharon, M.; Choudhary, A.K.; Kumar, R. Nanotechnology in agricultural diseases and food safety. J. Phytol., 2010, 2, 83-92.
[2]
Prasad, R.; Bhattacharyya, A.; Nguyen, Q.D. Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front. Microbiol., 2017, 8, 1014-1035.
[http://dx.doi.org/10.3389/fmicb.2017.01014] [PMID: 28676790]
[3]
Shaimaa, H.A.E.; Mostafa, M.A.M. Applications of nanotechnology in agriculture: An overview. Egypt. J. Soil Sci., 2015, 55(2), 1-14.
[4]
Santos, C.S.C.; Gabriel, B.; Blanchy, M.; Menes, O.; García, D.; Blanco, M.; Arconada, N.; Neto, V. Industrial applications of nanoparticles-a prospective overview. Mater. Today Proc, 2015, 2, 456-465.
[http://dx.doi.org/10.1016/j.matpr.2015.04.056]
[5]
Usman, F.; Dennis, O.J.; Seong, K.C.; Ahmed, A.Y.; Meriaudeau, F.; Ayodele, O.B.; Tobi, A.R.; Rabih, A.A.S.; Yar, A. Synthesis and characterization of a ternary composite of polyaniline, reduced graphene-oxide and chitosan with reduced optical band gap and stable aqueous dispersibility. Results Phys, 2019, 15102690
[http://dx.doi.org/10.1016/j.rinp.2019.102690]
[6]
Mandal, D.; Bolander, M.E.; Mukhopadhyay, D.; Sarkar, G.; Mukherjee, P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol., 2006, 69(5), 485-492.
[http://dx.doi.org/10.1007/s00253-005-0179-3] [PMID: 16317546]
[7]
Singh, R.; Verma, V. Silver nanoparticle: sources of production and synthesis methods. Int. J. Curr. Res., 2017, 9(7), 53781-53784.
[8]
Singh, R.; Verma, V. Intracellular and extracellular biosynthesis of silver nanoparticles by extremophilic bacteria. World J. Pharm. Res, 2016, 5(12), 516-521.
[9]
Sharma, P.; Bhatt, D.; Zaidi, M.G.; Saradhi, P.P.; Khanna, P.K.; Arora, S. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl. Biochem. Biotechnol., 2012, 167(8), 2225-2233.
[http://dx.doi.org/10.1007/s12010-012-9759-8] [PMID: 22692847]
[10]
Kaveh, R.; Li, Y.S.; Ranjbar, S.; Tehrani, R.; Brueck, C.L.; Van Aken, B. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ. Sci. Technol., 2013, 47(18), 10637-10644.
[http://dx.doi.org/10.1021/es402209w] [PMID: 23962165]
[11]
Golestannejad, Z.; Gavanji, S.; Doostmohammadi, M. In silico analysis of interaction of silver nitrate with Braun lipoproteinin bacterial cell wall. J. Chem. Pharm. Res., 2014, 6(12), 366-369.
[12]
Thuesombat, P.; Hannongbua, S.; Akasit, S.; Chadchawan, S. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol. Environ. Saf., 2014, 104, 302-309.
[http://dx.doi.org/10.1016/j.ecoenv.2014.03.022] [PMID: 24726943]
[13]
Farhat, Y.; Razzaq, A.; Iqbal, M.N.; Hafiz, M.Z. Effect of silver, copper and iron nanoparticles on wheat germination. Int. J. Biosci., 2015, 6(4), 112-117.
[http://dx.doi.org/10.12692/ijb/6.4.112-117]
[14]
Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci., 2004, 275(2), 496-502.
[http://dx.doi.org/10.1016/j.jcis.2004.03.003] [PMID: 15178278]
[15]
Nair, B.; Pradeep, T. Coalescence of nano-clusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst. Growth Des., 2002, 2, 293-298.
[http://dx.doi.org/10.1021/cg0255164]
[16]
Karthikeyan, S.; Beveridge, T.J. Pseudomonas aeruginosa biofilms react with and precipitate toxic soluble gold. Environ. Microbiol., 2002, 4(11), 667-675.
[http://dx.doi.org/10.1046/j.1462-2920.2002.00353.x] [PMID: 12460274]
[17]
Southam, G.; Beveridge, T.J. The in vitro formation of placer gold by bacteria. Geochim. Cosmochim. Acta, 1994, 58, 4227-4230.
[http://dx.doi.org/10.1016/0016-7037(94)90355-7]
[18]
Lengke, M.F.; Southam, G. The effect of thiosulfate- oxidizing bacteria on the stability of the gold- thiosulfate complex. Geochim. Cosmochim. Acta, 2005, 69, 3759-3772.
[http://dx.doi.org/10.1016/j.gca.2005.03.012]
[19]
Khodakovskaya, M.; Dervishi, E.; Mahmood, M.; Xu, Y.; Li, Z.; Watanabe, F.; Biris, A.S. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 2009, 3(10), 3221-3227.
[http://dx.doi.org/10.1021/nn900887m] [PMID: 19772305]
[20]
Xu, Z.; Li, Z.; Wu, Q.; Zhang, Y.; Zhu, S.; Sun, S. Potential role of carbon nanoparticles in guiding central neck dissection and protecting parathyroid glands in patients with papillary thyroid cancer. Curr. Nanosci., 2019, 15(3), 254-259.
[http://dx.doi.org/10.2174/1573413714666180820125745]
[21]
Batool, S.; Hussain, Z. Diospyros lotus mediated synthesis of iron oxide nanoparticles and their application as catalyst in Fenton reaction. Curr. Nanosci., 2020, 16(1), 346-350.
[http://dx.doi.org/10.2174/1573413715666191023103729]
[22]
El-Temsah, Y.S.; Joner, E.J. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ. Toxicol., 2012, 27(1), 42-49.
[http://dx.doi.org/10.1002/tox.20610] [PMID: 20549639]
[23]
Mornet, S.; Vasseur, S.; Grasset, F.; Duguet, E. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem., 2004, 14, 2161-2175.
[http://dx.doi.org/10.1039/b402025a]
[24]
Jurgons, R.; Seliger, C.; Hilpert, A.; Trahms, L.; Odenbach, S.; Alexiou, C. Drug loaded magnetic nanoparticles for cancer therapy. J. Phys. Condens. Matter, 2006, 18, S2893-S2902.
[http://dx.doi.org/10.1088/0953-8984/18/38/S24]
[25]
Wu, H.G. Wu.; Y, Ren.; L, Yang.; L, Wang.; and X, Li.; J, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3(29), 7677-7690.
[http://dx.doi.org/10.1039/C5TC01716E]
[26]
Aldieri, E.; Fenoglio, I.; Cesano, F.; Gazzano, E.; Gulino, G.; Scarano, D.; Attanasio, A.; Mazzucco, G.; Ghigo, D.; Fubini, B. The role of iron impurities in the toxic effects exerted by short multiwalled carbon nanotubes (MWCNT) in murine alveolar macrophages. J. Toxicol. Environ. Health A, 2013, 76(18), 1056-1071.
[http://dx.doi.org/10.1080/15287394.2013.834855] [PMID: 24188191]
[27]
Ma, J.F.; Yamaji, N. Silicon uptake and accumulation in higher plants. Trends Plant Sci., 2006, 11(8), 392-397.
[http://dx.doi.org/10.1016/j.tplants.2006.06.007] [PMID: 16839801]
[28]
Currie, H.A.; Perry, C.C. Silica in plants: biological, biochemical and chemical studies. Ann. Bot., 2007, 100(7), 1383-1389.
[http://dx.doi.org/10.1093/aob/mcm247] [PMID: 17921489]
[29]
Parven, N.; Ashraf, M. Role of silicon in mitigating the adverse effects of salt stress on growth and photosynthetic attributes of two maize (Zea mays L.) cultivars grown hydroponically. Pak. J. Bot., 2010, 42(3), 1675-1684.
[30]
Ma, J.F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nutr., 2004, 50(1), 11-18.
[http://dx.doi.org/10.1080/00380768.2004.10408447]
[31]
Pilon-Smits, E.A.; Quinn, C.F.; Tapken, W.; Malagoli, M.; Schiavon, M. Physiological functions of beneficial elements. Curr. Opin. Plant Biol., 2009, 12(3), 267-274.
[http://dx.doi.org/10.1016/j.pbi.2009.04.009] [PMID: 19477676]
[32]
Saqib, M.; Zörb, C.; Schubert, S. Silicon mediated improvement in the salt resistance of wheat (Triticum aestivum) results from increased sodium exclusion and resistance to oxidative stress. Funct. Plant Biol., 2008, 35(7), 633-639.
[http://dx.doi.org/10.1071/FP08100]
[33]
Pei, J.F.; Ming, D.F.; Liu, D.; Wan, G.L.; Geng, X.X.; Gong, H.J.; Zhou, W.J. Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J. Plant Growth Regul., 2010, 29(1), 106-115.
[http://dx.doi.org/10.1007/s00344-009-9120-9]
[34]
Bao-shan, L.; Shao-qi, D.; Chun-hui, L.; Li-jun, F.; Shu-chun, Q.; Min, Y. Effect of TMS (nano structured silicon dioxide) on growth of Changbai larch seedlings. J. For. Res., 2004, 15(2), 138-140.
[http://dx.doi.org/10.1007/BF02856749]
[35]
Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Rajendran, V.; Kannan, N. Silica nanoparticles for increased silica availability in maize (Zea mays. L) seeds under hydroponic conditions. Curr. Nanosci., 2012, 8(6), 902-908.
[http://dx.doi.org/10.2174/157341312803989033]
[36]
Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Prabu, P.; Rajendran, V.; Kannan, N. Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J. Nanopart. Res., 2012, 14(12), 1294.
[http://dx.doi.org/10.1007/s11051-012-1294-6]
[37]
Siddiqui, M.H.; Al-Whaibi, M.H. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J. Biol. Sci., 2014, 21(1), 13-17.
[http://dx.doi.org/10.1016/j.sjbs.2013.04.005] [PMID: 24596495]
[38]
Janmohammadi, M.; Sabaghnia, N.; Ahadnezhad, A. Impact of silicon dioxide nanoparticles on seedling early growth of lentil (Lens culinaris medik.) genotypes with various origins. Poljopr. Sumar., 2015, 61(3), 19-33.
[http://dx.doi.org/10.17707/AgricultForest.61.3.02]
[39]
Lin, D.; Xing, B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollut., 2007, 150(2), 243-250.
[http://dx.doi.org/10.1016/j.envpol.2007.01.016] [PMID: 17374428]
[40]
Lu, C.M.; Zhang, C.Y.; Wen, J.Q.; Wu, G.R.; Tao, M.X. Research of the effect of nanometer materials on germination and growth enhancement of Glycinemax and its mechanism. Dadou Kexue, 2002, 21(4), 168-172.
[41]
Manizheh, K.; Zarrin, T.A.; Shahram, A.; Maryam, M.A.; Alireza, F.A. Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J. Chem. Health Risks, 2014, 4(3), 49-55.
[42]
Liu, R.; Zhang, H.; Lal, R. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: Nanotoxicants or nano-nutrients. Water Air Soil Pollut., 2016, 227, 42.
[http://dx.doi.org/10.1007/s11270-015-2738-2]
[43]
Liu, J.; Liang, H.; Zhang, Y.; Wu, G.; Wu, H. Facile synthesis of ellipsoid-like MgCo2O4/Co3O4 composites for strong wideband microwave absorption application. Compos. B Eng, 2019, 176107240
[44]
Sang, L.; Zhao, Y.; Burda, C. TiO2 nanoparticles as functional building blocks. Chem. Rev., 2014, 114(19), 9283-9318.
[http://dx.doi.org/10.1021/cr400629p] [PMID: 25294395]
[45]
Owolade, O.; Ogunleti, D.; Adenekan, M. Titanium dioxide affects disease development and yield of edible cowpea. EJEAF Chem, 2008, 7(50), 2942-2947.
[46]
Khodakovskaya, M.V.; Lahiani, M.H. Nanoparticles and plants: From toxicity to activation of growth. Handbook of Nanotoxicology, Nanomedicine and Stem Cell Use in Toxicology; Sahu, S.C.; Casciano, D.A., Eds.; John Wiley & Sons, Ltd. , 2014; pp. 121-130.
[47]
Chen, H.; Seiber, J.N.; Hotze, M. ACS Select on nanotechnology in food and agriculture: a perspective on implications and applications. J. Agric. Food Chem., 2014, 62(6), 1209-1212.
[http://dx.doi.org/10.1021/jf5002588] [PMID: 24479582]
[48]
Mahmoodzadeh, H.; Nabavi, M.; Kashefi, H. Effect of nanoscale titanium dioxide particles onthe germination and growth of canola (Brassicanapus). J. Ornamental Hortic Plants, 2013, 3(1), 25-32.
[49]
Jaberzadeh, A.; Moaveni, P.; Moghadam, H.R.T.; Zahedi, H. Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not. Bot. Horti Agrobot. Cluj-Napoca, 2013, 41(1), 201-207.
[http://dx.doi.org/10.15835/nbha4119093]
[50]
Yang, F.; Hong, F.; You, W.; Liu, C.; Gao, F.; Wu, C.; Yang, P. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol. Trace Elem. Res., 2006, 110(2), 179-190.
[http://dx.doi.org/10.1385/BTER:110:2:179] [PMID: 16757845]
[51]
Mishra, V.; Mishra, R.K.; Dikshit, A.; Pandey, A.C. Interactions of nanoparticles with plants: An emerging prospective in the agriculture industry. Emerging technologies and management of crop stress tolerance; Ahmad, P.; Rasool, S. Eds Biological Techniques., Elsevier B.V; , 2014, Vol. 1, pp. 159-180.
[http://dx.doi.org/10.1016/B978-0-12-800876-8.00008-4]
[52]
Prapatsorn, B.; Boonthida, K.; Prabhat, K.; Sunandan, B.; Joydee, D. Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. Int. J. Biosci. Biochem. Bioinform., 2011, 1(4), 282-285.
[53]
Ding, H.; Duan, L.; Wu, H.; Yang, R.; Ling, H.; Li, W.X.; Zhang, F. Regulation of AhFRO1, an Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize. Physiol. Plant., 2009, 136(3), 274-283.
[http://dx.doi.org/10.1111/j.1399-3054.2009.01219.x] [PMID: 19453500]
[54]
Wulandari, C.; Muraki, S.; Hisamura, A.; Ono, H.; Honda, K.; Kashima, T. Effect of iron deficiency on root ferric chelate reductase, proton extursion, biomass production and mineral absorption of cirtus root stock orange jasmine (Murraya exotica L.). J. Plant Nutr., 2014, 37(1), 50-64.
[http://dx.doi.org/10.1080/01904167.2013.837178]
[55]
Fageria, N.K.; Baligar, V.C.; Wright, R.J. Iron nutrition of plants: An overview on the chemistry and physiology of its deficiency and toxicity. Pesqui. Agropecu. Bras., 1990, 25, 553-570.
[56]
Ylivainio, K.; Jaakkola, A.; Aksela, R. Effect of Fe compounds on nutrient uptake by plants grown in sand media with different pH. J. Plant Nutr. Soil Sci., 2004, 167(5), 602-608.
[http://dx.doi.org/10.1002/jpln.200420412]
[57]
Li, X.; Yang, Y.; Gao, B.; Zhang, M. Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations. PLoS One, 2015, 10(4)e0122884
[http://dx.doi.org/10.1371/journal.pone.0122884] [PMID: 25901959]
[58]
Camp, A.F.; Fudge, B.R. Zinc as a nutrient inplant growth. Soil Sci., 1945, 60(2), 157-164.
[http://dx.doi.org/10.1097/00010694-194508000-00009]
[59]
Chapman, H.D. Zinc. Diagnostic Criteria for Plants and Soils; Chapman, H.D., Ed.; University of California, Div. Agricultural Science: In: Riverside, CA; , 1966; pp. 484-499.
[60]
Anderson, W.B. Zinc in soils and plant nutrition. Adv. Agron., 1972, 24, 147-186.
[http://dx.doi.org/10.1016/S0065-2113(08)60635-5]
[61]
Mengel, L. Kirkby, E.A. Principles of Plant Nutrition; International Potash Institute: Worblaufen-Bern, Switzerland, 1978.
[62]
Marschner, H. Zinc uptake from soil.Zinc in Soils and Plants, Springer Nature: Switzerland AG; Robson, A.D., Ed.; , 1993, pp. 59-79.
[http://dx.doi.org/10.1007/978-94-011-0878-2_5]
[63]
Brown, P.H.; Cakmak, I.; Zhang, Q. Forms and function of zinc in plants.Zinc in Soils and Plants, Springer Nature: Switzerland AG; Robson, A.D., Ed.; , 1993, pp. 90-106.
[http://dx.doi.org/10.1007/978-94-011-0878-2_7]
[64]
Prasad, T.N.V.K.V.; Sudhakar, P.; Sreenivasulu, Y.; Latha, P.; Munaswamy, V.; Reddy, K.R.; Sreeprasad, T.S.; Sajanlal, P.R.; Pradeep, T. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr., 2012, 35(6), 905-927.
[http://dx.doi.org/10.1080/01904167.2012.663443]
[65]
Qin, M.; Lan, D.; Liu, J.; Liang, H.; Zhang, L.; Xing, H.; Xu, T.; Wu, H. Synthesis of single-component metal oxides with controllable multi-shelled structure and their morphology-related applications. Chem. Rec., 2020, 20(2), 102-119.
[http://dx.doi.org/10.1002/tcr.201900017] [PMID: 31250979]
[66]
Sedghi, M.; Hadi, M.; Toluie, S.G. Effect of nano zinc oxide on the germination of soybean seeds under drought stress. Ann. West Univ. Timişoaraser Ser. Biol, 2013, 16(2), 73-78.
[67]
Ramesh, M.; Palanisamy, K.; Babu, K.; Sharma, N.K. Effects of bulk &nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticumaestivum Linn. J. Global Biosci, 2014, 3, 415-422.
[68]
Raskar, S.V.; Laware, S.L. Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3(2), 467-473.
[69]
Mahajan, P.; Dhoke, S.K.; Khanna, A.S. Effects of zinc oxide particle suspension on growth of Mung (Vigna radiata) and Gram (Cicer arietinum) seedlings using plant agar method. J. Nanotechnol., 2011, 2011696535
[http://dx.doi.org/10.1155/2011/696535]
[70]
Rosa, G.; López-Moreno, M.L.; Haro, D.; Botez, C.E.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: rootdevelopment and X-ray absorption spectroscopy studies. Pure Appl. Chem., 2013, 85(12), 2161-2174.
[http://dx.doi.org/10.1351/pac-con-12-09-05]
[71]
Choudhary, D.K.; Sharma, K.P.; Gaur, R.K. Biotechnological perspectives of microbes in agro-ecosystems. Biotechnol. Lett., 2011, 33(10), 1905-1910.
[http://dx.doi.org/10.1007/s10529-011-0662-0] [PMID: 21660571]
[72]
García-Fraile, P.; Menéndez, E.; Rivas, R. Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng., 2015, 2, 183-205.
[http://dx.doi.org/10.3934/bioeng.2015.3.183]
[73]
Dey, R.; Pal, K.K.; Bhatt, D.M.; Chauhan, S.M. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol. Res., 2004, 159(4), 371-394.
[http://dx.doi.org/10.1016/j.micres.2004.08.004] [PMID: 15646384]
[74]
Vessey, J.K. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, 2003, 255, 571-586.
[http://dx.doi.org/10.1023/A:1026037216893]
[75]
Waddington, S.R. Organic matter management: From science to practice. Soils Fert., 1998, 62, 24-25.
[76]
Jensen, W.B. Holleman-Wiberg’s, Inorganic Chemistry (edited by Wiberg, Nils). In: J. Chem. Educ; ; , 2002; 79, p. (8)944.
[77]
Gupta, G.; Parihar, S.S.; Ahirwar, N.K.; Snehi, S.K.; Singh, V. Plant growth promoting Rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture. J. Microbiol. Biochem, 2015, 7, 96-102.
[78]
Subramanian, K.S.; Tarafdar, J.C. Prospects of nanotechnology in Indian farming. Indian J. Agric. Sci., 2011, 81, 887-893.
[79]
Dixshit, A.; Shukla, S.K.; Mishra, R.K. Exploring Nanomaterials with PGPR in Current Agriculture Scenario PGPR with Special Reference to Nanomaterials; Lab Lambert Acedamic Publication: Germany, 2013, p. 51.
[80]
Qian, H.; Peng, X.; Han, X.; Ren, J.; Sun, L.; Fu, Z. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J. Environ. Sci. (China),, 2013, 25(9), 1947-1955.
[http://dx.doi.org/10.1016/S1001-0742(12)60301-5] [PMID: 24520739]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy