[1]
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: Innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13(1): 23-34.
[2]
National Center for Health Statistics. National Vital Statisitcs System National Center for Health Statistics Fact Sheet 2019. February: 1-2.
[3]
Maiese K. The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): Oversight for neurodegenerative disorders. Biochem Soc Trans 2018; 46(2): 351-60.
[4]
Castro-Portuguez R, Sutphin GL. Kynurenine pathway, NAD(+) synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Exp Gerontol 2020; 2020 110841
[5]
Corti O, Blomgren K, Poletti A, Beart PM. Autophagy in neurodegeneration: New insights underpinning therapy for neurological diseases. J Neurochem 2020; 2020 e15002
[6]
Maiese K. New challenges and strategies for cardiac disease: Autophagy, mTOR, and AMP-activated protein kinase. Curr Neurovasc Res 2020. [Epub ahead of print].
[7]
Quesada I, de Paola M, Torres-Palazzolo C, et al. Effect of Garlic’s active constituents in inflammation, obesity and cardiovascular disease. Curr Hypertens Rep 2020; 22(1): 6.
[8]
Song DY, Wang XW, Wang S, et al. Jidong cognitive impairment cohort study: objectives, design, and baseline screening. Neural Regen Res 2020; 15(6): 1111-9.
[9]
Maiese K. Sirtuins: Developing innovative treatments for aged-related memory loss and Alzheimer’s disease. Curr Neurovasc Res 2018; 15(4)
[10]
Barchetta I, Cimini FA, Ciccarelli G, Baroni MG, Cavallo MG. Sick fat: The good and the bad of old and new circulating markers of adipose tissue inflammation. J Endocrinol Invest 2019; 42(11): 1257-72.
[12]
Feng J, Wang H, Jing Z, et al. Role of magnesium in type 2 diabetes mellitus. Biol Trace Elem Res 2019; 6(10): 1152-7.
[13]
Hsieh CF, Liu CK, Lee CT, Yu LE, Wang JY. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation. Sci Rep 2019; 9(1): 840.
[14]
Maiese K. New insights for oxidative stress and diabetes mellitus. Oxid Med Cell Longev 2015; 2015 875961
[15]
Centers for Disease Control and Prevention. National Diabetes Statistics Report 2020. 2020; CS 314227-A: 1-30.
[16]
Maiese K. SIRT1 and stem cells: In the forefront with cardiovascular disease, neurodegeneration and cancer. World J Stem Cells 2015; 7(2): 235-42.
[17]
Othman MAM, Rajab E, AlMubarak A, AlNaisar M, Bahzad N, Kamal A. Erythropoietin protects against cognitive impairment and hippocampal neurodegeneration in diabetic mice. Behav Sci (Basel, Switzerland) 2018; 9(1): 4.
[18]
Maiese K. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regen Res 2016; 11(3): 372-85.
[19]
Ong WY, Wu YJ, Farooqui T, Farooqui AA. Qi Fu Yin-a Ming dynasty prescription for the treatment of dementia. Mol Neurobiol 2018; 55(9): 7389-400.
[20]
Su M, Naderi K, Samson N, et al. Mechanisms associated with type 2 diabetes as a risk factor for alzheimer-related pathology. Mol Neurobiol 2019; 56(8): 5815-34.
[21]
Chong ZZ, Maiese K. Mammalian target of rapamycin signaling in diabetic cardiovascular disease. Cardiovasc Diabetol 2012; 11(1): 45.
[22]
Yao T, Fujimura T, Murayama K, Okumura K, Seko Y. Oxidative Stress-Responsive Apoptosis Inducing Protein (ORAIP) plays a critical role in high glucose-induced apoptosis in rat cardiac myocytes and murine pancreatic beta-cells. Cells 2017; 6(4): 35.
[23]
Ding S, Zhu Y, Liang Y, Huang H, Xu Y, Zhong C. Circular RNAs in vascular functions and diseases. Adv Exp Med Biol 2018; 1087: 287-97.
[24]
Maiese K. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease. Neural Regen Res 2015; 10(4): 518-28.
[25]
Ponnalagu M, Subramani M, Jayadev C, Shetty R, Das D. Retinal pigment epithelium-secretome: A diabetic retinopathy perspective. Cytokine 2017; 95: 126-35.
[26]
Yang X, Huo F, Liu B, et al. Crocin inhibits oxidative stress and pro-inflammatory response of microglial cells associated with diabetic retinopathy through the activation of PI3K/Akt signaling pathway. J Mol Neurosci 2017; 61(4): 581-9.
[27]
Maiese K, Chong ZZ, Shang YC, Hou J. Novel avenues of drug discovery and biomarkers for diabetes mellitus. J Clin Pharmacol 2011; 51(2): 128-52.
[28]
Kanazawa A, Tsukada S, Sekine A, et al. Association of the gene encoding wingless-type mammary tumor virus integration-site family member 5B (WNT5B) with type 2 diabetes. Am J Hum Genet 2004; 75(5): 832-43.
[29]
Maiese K, Chong ZZ, Shang YC, Wang S. Novel directions for diabetes mellitus drug discovery. Expert Opin Drug Discov 2013; 8(1): 35-48.
[30]
Murahovschi V, Pivovarova O, Ilkavets I, et al. WISP1 is a novel adipokine linked to inflammation in obesity. Diabetes 2015; 64(3): 856-66.
[31]
Zhou T, Zhou KK, Lee K, et al. The role of lipid peroxidation products and oxidative stress in activation of the canonical wingless-type MMTV integration site (WNT) pathway in a rat model of diabetic retinopathy. Diabetologia 2011; 54(2): 459-68.
[32]
Maiese K. WISP1: Clinical Insights for a Proliferative and Restorative Member of the CCN Family. Curr Neurovasc Res 2014; 11(4): 378-89.
[33]
Olsen JJ, Pohl SO, Deshmukh A, et al. The role of Wnt signalling in angiogenesis. Clin Biochem Rev 2017; 38(3): 131-42.
[34]
Maiese K. Regeneration in the nervous system with erythropoietin. Front Biosci (Landmark edition) 2016; 21: 561-96.
[35]
Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 2016; 82(5): 1245-66.
[36]
Wallace J, Lutgen V, Avasarala S, St Croix B, Winn RA, Al-Harthi L. Wnt7a induces a unique phenotype of monocyte-derived macrophages with lower phagocytic capacity and differential expression of pro-and anti-inflammatory cytokines. Immunology 2017; 153(2): 203-13.
[37]
Maiese K, Li F, Chong ZZ, Shang YC. The Wnt signaling pathway: Aging gracefully as a protectionist? Pharmacol Ther 2008; 118(1): 58-81.
[38]
Yang CM, Ji S, Li Y, Fu LY, Jiang T, Meng FD. beta-Catenin promotes cell proliferation, migration, and invasion but induces apoptosis in renal cell carcinoma. OncoTargets Ther 2017; 10: 711-24.
[39]
Zhang L, Cen L, Qu S, et al. Enhancing Beta-Catenin Activity via GSK3beta Inhibition Protects PC12 Cells against Rotenone Toxicity through Nurr1 Induction. PLoS One 2016; 11(4) e0152931
[40]
Zheng H, Jia L, Liu CC, et al. TREM2 promotes microglial survival by activating Wnt/beta-catenin pathway. J Neurosci 2017; 37(7): 1771-84.
[41]
Chen YZ, Sun DQ, Zheng Y, et al. WISP1 silencing confers protection against epithelial-mesenchymal transition of renal tubular epithelial cells in rats via inactivation of the wnt/beta-catenin signaling pathway in uremia. J Cell Physiol 2019; 234(6): 9673-86.
[42]
Guo T, Cao G, Li Y, Zhang Z, Nor JE, Clarkson BH, et al. Signals in Stem Cell Differentiation on Fluorapatite-Modified Scaffolds. J Dent Res 2018; 2018 22034518788037
[43]
Li P, Wu C, Guo X, et al. Integrative analysis of genome-wide association studies and DNA methylation profile identified genetic control genes of DNA methylation for Kashin-Beck disease. Cartilage 2019; 2019 1947603519858748
[44]
Maiese K. Picking a bone with WISP1 (CCN4): new strategies against degenerative joint disease. J Transl Sci 2016; 1(3): 83-5.
[45]
Wang Y, Yang SH, Hsu PW, et al. Impact of WNT1-inducible signaling pathway protein-1 (WISP-1) genetic polymorphisms and clinical aspects of breast cancer. Medicine 2019; 98(44) e17854
[46]
Barchetta I, Cimini FA, Capoccia D, et al. WISP1 is a marker of systemic and adipose tissue inflammation in dysmetabolic subjects with or without type 2 Diabetes. J Endocr Soc 2017; 1(6): 660-70.
[47]
Maiese K. Forkhead transcription factors: New considerations for alzheimer’s disease and dementia. J Transl Sci 2016; 2(4): 241-7.
[48]
Maiese K, Chong ZZ, Shang YC, Wang S. Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin Ther Targets 2012; 16(12): 1203-14.