Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Design of Lamivudine Loaded Nanoparticles for Oral Application by Nano Spray Drying Method: A New Approach to use an Antiretroviral Drug for Lung Cancer Treatment

Author(s): Ahmet Alper Öztürk*, İrem Namlı, Kadri Güleç and Şennur Görgülü

Volume 23, Issue 10, 2020

Page: [1064 - 1079] Pages: 16

DOI: 10.2174/1386207323666200325155020

Price: $65

Abstract

Aims: To prepare lamivudine (LAM)-loaded-nanoparticles (NPs) that can be used in lung cancer treatment. To change the antiviral indication of LAM to anticancer.

Background: The development of anticancer drugs is a difficult process. One approach to accelerate the availability of drugs is to reclassify drugs approved for other conditions as anticancer. The most common route of administration of anticancer drugs is intravenous injection. Oral administration of anticancer drugs may considerably change current treatment modalities of chemotherapy and improve the life quality of cancer patients. There is also a potentially significant economic advantage.

Objective: To characterize the LAM-loaded-NPs and examine the anticancer activity.

Methods: LAM-loaded-NPs were prepared using Nano Spray-Dryer. Properties of NPs were elucidated by particle size (PS), polydispersity index (PDI), zeta potential (ZP), SEM, encapsulation efficiency (EE%), dissolution, release kinetics, DSC and FT-IR. Then, the anticancer activity of all NPs was examined.

Results: The PS values of the LAM-loaded-NPs were between 373 and 486 nm. All NPs prepared have spherical structure and positive ZP. EE% was in a range of 61-79%. NPs showed prolonged release and the release kinetics fitted to the Weibull model. NPs structures were clarified by DSC and FT-IR analysis. The results showed that the properties of NPs were directly related to the drug:polymer ratio of feed solution. NPs have potential anticancer properties against A549 cell line at low concentrations and non-toxic to CCD 19-Lu cell line.

Conclusion: NPs have potential anticancer properties against human lung adenocarcinoma cells and may induce cell death effectively and be a potent modality to treat this type of cancer. These experiments also indicate that our formulations are non-toxic to normal cells. It is clear that this study would bring a new perspective to cancer therapy.

Keywords: Lamivudine, nanoparticle, nano spray dryer, anticancer, lung cancer, cytotoxicity, apoptosis.

[1]
Santos, A.C.; Pereira, I.; Pereira-Silva, M.; Ferreira, L.; Caldas, M.; Collado-González, M.; Magalhães, M.; Figueiras, A.; Ribeiro, A.J.; Veiga, F. Nanotechnology-based formulations for resveratrol delivery: Effects on resveratrol in vivo bioavailability and bioactivity. Colloids Surf. B Biointerfaces, 2019, 180, 127-140.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.030] [PMID: 31035056]
[2]
Öztürk-Atar, K.; Eroğlu, H.; Çalış, S. Novel advances in targeted drug delivery. J. Drug Target., 2018, 26(8), 633-642.
[http://dx.doi.org/10.1080/1061186X.2017.1401076] [PMID: 29096554]
[3]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosto-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol, 2018, 16(71), 1-33.
[4]
Öztürk, A.A.; Gündüz, A.B.; Ozisik, O. Supervised machine learning algorithms for evaluation of solid lipid nanoparticles and particle size. Comb. Chem. High Throughput Screen., 2018, 21(9), 693-699.
[http://dx.doi.org/10.2174/1386207322666181218160704] [PMID: 30569864]
[5]
Öztürk, A.A.; Yenilmez, E.; Arslan, R.; Şenel, B.; Yazan, Y. Dexketoprofen trometamol-loaded Kollidon® SR and Eudragit® RS 100 polymeric nanoparticles: formulation and in vitro-in vivo evaluation. Lat. Am. J. Pharm., 2017, 36(11), 2153-2165.
[6]
Rana, V.; Sharma, R. Chapter 5 - Recent Advances in Development of Nano Drug Delivery.In Applications of Targeted Nano Drugs and Delivery Systems- Nanoscience and Nanotechnology in Drug Delivery, 1st ed; Elsevier: Amsterdam, Netherlands, 2019, pp. 93-131.
[7]
Nikolic, V.; Ilic-Stojanovic, S.; Petrovic, S.; Tacic, A.; Nilolic, L. Chapter 21 - Administration routes for nano drugs and characterization of nano drug loading.InCharacterization and Biology of Nanomaterials for Drug Delivery-Nanoscience and Nanotechnology in Drug Delivery, 1st ed; Elsevier: Amsterdam, Netherlands, 2019, pp. 587-625.
[8]
Date, A.A.; Hanes, J.; Ensign, L.M. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J. Control. Release, 2016, 240, 504-526.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.016] [PMID: 27292178]
[9]
Öztürk, A.A.; Yenilmez, E.; Özarda, M.G. Clarithromycin-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles for oral administration: effect of polymer molecular weight and surface modification with chitosan on formulation, nanoparticle characterization and antibacterial effects. Polymers (Basel), 2019, 11(10), 1632.
[http://dx.doi.org/10.3390/polym11101632] [PMID: 31600969]
[10]
Kumar, N.; Kumar, R. Chapter 2 - Nano-based Drug Delivery and Diagnostic Systems. In: Nanotechnology and Nanomaterials in the Treatment of Life-threatening Diseases, 1st ed.; Kumar, N.; Kumar, R., Eds.; Elsevier: Waltham, USA, , 2014; pp. 53-107.
[11]
Yenilmez, E. Desloratadine-Eudragit® Rs100 nanoparticles: formulation and characterization. Turk. J. Pharm. Sci., 2017, 14(2), 148-156.
[http://dx.doi.org/10.4274/tjps.52523]
[12]
Öztürk, A.A.; Çinar, N.İ.; Yenilmez, E. Development of nano-sized ketoprofen lysine incorporated Eudragit® S100 nanomedicine by double emulsion solvent evaporation and in vitro characterization. J. Pharm. Pharmacogn. Res., 2019, 7(1), 47-58.
[13]
Elmaskaya, A.; Öztürk, A.A.; Büyükköroğlu, G.; Yenilmez, E. Spray-dried ketoprofen lysine incorporated PLGA nanoparticles: formulation, characterization, evaluation and cytotoxic profile. Indian J. Pharm. Sci., 2019, 81(4), 640-650.
[14]
Öztürk, A.A.; Yenilmez, E.; Yazan, Y. Dexketoprofen trometamol-loaded Eudragit® RL 100 nanoparticle formulation, characterization and release kinetics. ACTA Pharm. Sci., 2019, 57(1), 69-84.
[15]
Li, X.; Anton, N.; Arpagaus, C.; Belleteix, F.; Vandamme, T.F. Nanoparticles by spray drying using innovative new technology: the Büchi nano spray dryer B-90. J. Control. Release, 2010, 147(2), 304-310.
[http://dx.doi.org/10.1016/j.jconrel.2010.07.113] [PMID: 20659510]
[16]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med., 2016, 1(1), 10-29.
[http://dx.doi.org/10.1002/btm2.10003] [PMID: 29313004]
[17]
Navya, P.N.; Kaphle, A.; Srinivas, S.P.; Bhargava, A.M.; Rotello, V.M.; Daima, H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. J. Res. Pharm., 2019, 23(5), 897-913.
[http://dx.doi.org/10.1186/s40580-019-0193-2]
[18]
Zhou, X.; Ling, K.; Liu, M.; Zhang, X.; Ding, J.; Dong, Y.; Liang, Z.; Li, J.; Zhang, J. Targeted delivery of cisplatin-derived nanoprecursors via a biomimetic yeast microcapsule for tumor therapy by the oral route. Theranostics, 2019, 9(22), 6568-6586.
[http://dx.doi.org/10.7150/thno.35353] [PMID: 31588236]
[19]
Öztürk, A.A.; Kırımlıoğlu, G.Y. Preparation and in vitro characterization of lamivudine loaded nanoparticles prepared by acid and/or ester terminated PLGA for effective oral anti-retroviral therapy. J. Res. Pharm., 2019, 23(5), 897-913.
[20]
Ramadan, E.; Borg, T.H.; Abdelghani, G.M.; Saleh, N.M. Design and in vivo pharmacokinetic study of a newly developed lamivudine transdermal patch. Future J. Pharm. Sci., 2018, 4, 166-174.
[21]
Tshweu, L.; Katata, L.; Kalombo, L.; Swai, H. Nanoencapsulation of water-soluble drug, lamivudine, using a double emulsion spray-drying technique for improving HIV treatment. J. Nanopart. Res., 2013, 15, 2040.
[http://dx.doi.org/10.1007/s11051-013-2040-4]
[22]
Gills, J.J.; Lopiccolo, J.; Dennis, P.A. Nelfinavir, a new anti-cancer drug with pleiotropic effects and many paths to autophagy. Autophagy, 2008, 4(1), 107-109.
[http://dx.doi.org/10.4161/auto.5224] [PMID: 18000394]
[23]
Shahabadi, N.; Maghsudi, M.; Mahdavi, M.; Pourfoulad, M. Interaction of calf thymus DNA with the antiviral drug Lamivudine. DNA Cell Biol., 2012, 31(1), 122-127.
[http://dx.doi.org/10.1089/dna.2011.1228] [PMID: 21721935]
[24]
Rao, V.K.; Reddy, S.S.; Krishna, B.S.; Reddy, C.S.; Reddy, N.P.; Reddy, T.C.M.; Raju, C.N.; Ghoch, S.K. Design, synthesis and anti colon cancer activity evaluation of phosphorylated derivatives of lamivudine (3TC). Lett. Drug Des. Discov., 2011, 8, 59-64.
[http://dx.doi.org/10.2174/157018011793663921]
[25]
Shahabadi, N.; Khorshidi, A.; Zhaleh, H.; Kashanian, S. Synthesis, characterization, cytotoxicity and DNA binding studies of Fe3O4@SiO2 nanoparticles coated by an antiviral drug lamivudine. J. Drug Deliv. Sci. Technol., 2018, 46, 55-65.
[http://dx.doi.org/10.1016/j.jddst.2018.04.016]
[26]
Öztürk, A.A.; Güven, U.M.; Yenilmez, E.; Şenel, B. Effects of different derivatives of eudragit polymer on entrapment efficiency, in vitro dissolution, release kinetics and cell viability results on extended release flurbiprofen loaded nanomedicines. Lat. Am. J. Pharm., 2018, 37(10), 1981-1992.
[27]
Pandey, G.; Mishra, B. A new analytical q-absorbance ratio method development and validation for simultaneous estimation of lamivudine and isoniazid. ISRN Spectroscopy, 2013, 2013, 1-5.
[http://dx.doi.org/10.1155/2013/912376]
[28]
Kırımlıoğlu, G.Y.; Öztürk, A.A. Levocetirizine dihydrochloride loaded chitosan nanoparticles: formulation and in vitro evaluation. Turk. J. Pharm. Sci., 2020, 17, 27-35.
[http://dx.doi.org/10.4274/tjps.galenos.2018.34392] [PMID: 32454757]
[29]
Öztürk, A.A.; Aygül, A.; Şenel, B. Influence of glyceryl behenate, tripalmitin and stearic acid on the properties of clarithromycin incorporated solid lipid nanoparticles (SLNs): Formulation, characterization, antibacterial activity and cytotoxicity. J. Drug Deliv. Sci. Technol., 2019, 54101240
[http://dx.doi.org/10.1016/j.jddst.2019.101240]
[30]
Öztürk, A.A.; Martin-Banderas, L.; Cayero-Otero, M.D.; Yenilmez, E.; Yazan, Y. New approach to hypertension treatment: carvediol-loaded PLGA nanoparticles, preparation, in vitro characterization and gastrointestinal stability. Lat. Am. J. Pharm., 2018, 37(9), 1730-1741.
[31]
Öztürk, A.A.; Güven, U.M.; Yenilmez, E. Flurbiprofen loaded gel based topical delivery system: formulation and in vitro characterization with new developed UPLC Method. ACTA Pharm. Sci., 2018, 56(4), 81-105.
[32]
Öztürk, A.A.; Güven, U.M. Cefaclor monohydrate loaded microemulsion formulation for topical application: characterization with new developed UPLC method and stability study. J. Res. Pharm., 2019, 23(3), 426-440.
[33]
Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J., 2010, 12(3), 263-271.
[http://dx.doi.org/10.1208/s12248-010-9185-1] [PMID: 20373062]
[34]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[35]
Sater, M.S.; Finan, R.R.; Mustafa, F.E.; Al-Khateeb, G.M.; Almawi, W.Y. Anti-annexin V IgM and IgG autoantibodies and the risk of idiopathic recurrent spontaneous miscarriage. J. Reprod. Immunol., 2011, 89(1), 78-83.
[http://dx.doi.org/10.1016/j.jri.2010.12.009] [PMID: 21466898]
[36]
Matsuda, R.; Kaneko, N.; Kikuchi, M.; Chiwaki, F.; Toda, M.; Ieiri, T.; Horikawa, Y.; Shimizu, M.; Shimamoto, K. Clinical significance of measurement of plasma annexin V concentration of patients in the emergency room. Resuscitation, 2003, 57(2), 171-177.
[http://dx.doi.org/10.1016/S0300-9572(03)00034-0] [PMID: 12745185]
[37]
Koopman, G.; Reutelingsperger, C.P.; Kuijten, G.A.; Keehnen, R.M.; Pals, S.T.; van Oers, M.H. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood, 1994, 84(5), 1415-1420.
[http://dx.doi.org/10.1182/blood.V84.5.1415.bloodjournal8451415] [PMID: 8068938]
[38]
Dillon, S.R.; Constantinescu, A.; Schlissel, M.S. Annexin V binds to positively selected B cells. J. Immunol., 2001, 166(1), 58-71.
[http://dx.doi.org/10.4049/jimmunol.166.1.58] [PMID: 11123277]
[39]
Schafroth, N.; Arpagaus, C.; Jadhav, U.Y.; Makne, S.; Douroumis, D. Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process. Colloids Surf. B Biointerfaces, 2012, 90, 8-15.
[http://dx.doi.org/10.1016/j.colsurfb.2011.09.038] [PMID: 22019455]
[40]
Haggag, Y.A.; Faheem, A.M. Evaluation of nano spray drying as a method for drying and formulation of therapeutic peptides and proteins. Front. Pharmacol., 2015, 6, 140.
[http://dx.doi.org/10.3389/fphar.2015.00140] [PMID: 26217227]
[41]
Schmid, K.; Arpagaus, C.; Friess, W. Evaluation of the Nano Spray Dryer B-90 for pharmaceutical applications. Pharm. Dev. Technol., 2011, 16(4), 287-294.
[http://dx.doi.org/10.3109/10837450.2010.485320] [PMID: 20491538]
[42]
Arpagaus, C.; Collenberg, A.; Rütti, D.; Assadpour, E.; Jafari, S.M. Nano spray drying for encapsulation of pharmaceuticals. Int. J. Pharm., 2018, 546(1-2), 194-214.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.037] [PMID: 29778825]
[43]
Caputo, F.; Clogston, J.; Calzolai, L.; Rösslein, M.; Prina-Mello, A. Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. J. Control. Release, 2019, 299, 31-43.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.030] [PMID: 30797868]
[44]
Elversson, J.; Millqvist-Fureby, A. Particle size and density in spray drying-effects of carbohydrate properties. J. Pharm. Sci., 2005, 94(9), 2049-2060.
[http://dx.doi.org/10.1002/jps.20418] [PMID: 16052553]
[45]
Başaran, E.; Şenel, B.; Kırımlıoğlu, G.Y.; Güven, U.M.; Yazan, Y. Ornidazole incorporated chitosan nanoparticles for ocular application. Lat. Am. J. Pharm., 2015, 34(6), 1180-1188.
[46]
Navya, P.N.; Kaphle, A.; Srinivas, S.P.; Bhargava, S.K.; Rotello, V.M.; Daima, H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg., 2019, 6(1), 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]
[47]
Şenel, B.; Öztürk, A.A. New approaches to tumor therapy with siRNA-decorated and chitosan-modified PLGA nanoparticles. Drug Dev. Ind. Pharm., 2019, 45(11), 1835-1848.
[http://dx.doi.org/10.1080/03639045.2019.1665061] [PMID: 31491363]
[48]
Deshmukh, R.; Mujumbar, A.; Naik, J. Production of aceclofenacloaded sustained release micro/nanoparticles using pressure homogenization and spray drying. Dry. Technol., 2018, 36(4), 459-467.
[http://dx.doi.org/10.1080/07373937.2017.1341418]
[49]
Sonia, T.A.; Sharma, C.P. Polymers in oral insulin delivery. In: Oral Delivery of Insulin, 1st ed , 2014; pp. 257-310. Sonia, T.A.; Sharma, C.P., Eds.; Elsevier: Cambridge: United Kingdom
[http://dx.doi.org/10.1533/9781908818683.257]
[50]
Yadav, S.K.; Mishra, S.; Mishra, B. Eudragit-based nanosuspension of poorly water-soluble drug: formulation and in vitro-in vivo evaluation. AAPS PharmSciTech, 2012, 13(4), 1031-1044.
[http://dx.doi.org/10.1208/s12249-012-9833-0] [PMID: 22893314]
[51]
Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems—a review (part 1). Trop. J. Pharm. Res., 2013, 12(2), 255-264.
[52]
Ran, S.; Downes, A.; Thorpe, P.E. Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res., 2002, 62(21), 6132-6140.
[PMID: 12414638]
[53]
Öztürk, A.A.; Kıyan, H.T. Treatment of oxidative stress-induced pain and inflammation with dexketoprofen trometamol loaded different molecular weight chitosan nanoparticles: Formulation, characterization and anti-inflammatory activity by using in vivo HET-CAM assay. Microvasc. Res., 2020.128103961
[http://dx.doi.org/10.1016/j.mvr.2019.103961] [PMID: 31758946]
[54]
Jafari, S.M.; He, Y.; Bhandari, B. Role of powder particle size on the encapsulation efficiency of oils during spray drying. Dry. Technol., 2007, 25, 1091-1099.
[http://dx.doi.org/10.1080/07373930701397343]
[55]
Öztürk, A.A.; Martin-Banderas, L.; Cayero-Otero, M.D.; Yenilmez, E.; Şenel, B.; Yazan, Y. Dexketoprofen trometamol-loaded poly-lactic-co-glycolic acid (PLGA) nanoparticles: preparation, in vitro characterization and cyctotoxity. Trop. J. Pharm. Res., 2019, 18(1), 1-11.
[http://dx.doi.org/10.4314/tjpr.v18i1.1]
[56]
Gülsün, T.; Akdağ, Y.; Izat, N.; Öner, L.; Şahin, S. Effect of particle size and surfactant on the solubility, permeability and dissolution characteristics of deferasirox. J. Res. Pharm., 2019, 23(5), 851-859.
[57]
Usta, Y.D.; Demirtaş, Ö.; Ökçelik, C.; Uslu, A.; Teksin, Z.Ş. Evaluation of in vitro dissolution characteristics of flurbiprofen, a BCS class IIa drug. FABAD J. Pharm. Sci., 2018, 43(2), 117-124.
[58]
Chen, Y.D.; Liang, Z.Y.; Cen, Y.Y.; Zhang, H.; Han, M.G.; Tian, Y.Q.; Zhang, J.; Li, S.J.; Yang, D.S. Development of oral dispersible tablets containing prednisolone nanoparticles for the management of pediatric asthma. Drug Des. Devel. Ther., 2015, 9, 5815-5825.
[59]
Nath, B.; Nath, L.K.; Kumar, P. Preparation and in vitro dissolution profile of zidovudine loaded microspheres made of Eudragit RS 100, RL 100 and their combinations. Acta Pol. Pharm., 2011, 68(3), 409-415.
[PMID: 21648196]
[60]
Azadi, S.; Ashrafi, H.; Azadi, A. Mathematical modeling of drug release from swellable polymeric nanoparticles. J. Appl. Pharm. Sci., 2017, 7(04), 125-133.
[61]
Sorasitthiyanukarn, F.N.; Muangnoi, C.; Ratnatilaka Na Bhuket, P.; Rojsitthisak, P.; Rojsitthisak, P. Chitosan/alginate nanoparticles as a promising approach for oral delivery of curcumin diglutaric acid for cancer treatment. Mater. Sci. Eng. C, 2018, 93, 178-190.
[http://dx.doi.org/10.1016/j.msec.2018.07.069] [PMID: 30274050]
[62]
Siepmann, J.; Peppas, N.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev., 2001, 48(2-3), 139-157.
[http://dx.doi.org/10.1016/S0169-409X(01)00112-0] [PMID: 11369079]
[63]
Saharan, P.; Bahmani, K.; Saharan, S.P. Preparation, optimization and in vitro evaluation of glipizide nanoparticles integrated with eudragit RS-100. Pharm. Nanotechnol., 2019, 7(1), 72-85.
[http://dx.doi.org/10.2174/2211738507666190319124513] [PMID: 30892168]
[64]
Ramteke, K.H.; Dighe, P.A.; Kharat, A.R.; Patil, S.V. Mathematical models of drug dissolution: A review. Sch. Acad. J. Pharm., 2014, 3(5), 388-396.
[65]
Ergin, A.D.; Sezgin Bayındır, Z.; Yüksel, N. Characterization and optimization of colon targeted S-adenosyl-L-methionine loaded chitosan nanoparticles. J. Res. Pharm., 2019, 23(5), 914-926.
[http://dx.doi.org/10.35333/jrp.2019.38]
[66]
Sun, S.B.; Liu, P.; Shao, F.M.; Miao, Q.L. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer. Int. J. Clin. Exp. Med., 2015, 8(10), 19670-19681.
[PMID: 26770631]
[67]
Singh, A.V.; Nath, L.K. Evaluation of compatibility of tablet excipients and novel synthesized polymer with lamivudine. J. Therm. Anal. Calorim., 2012, 108(1), 263-267.
[http://dx.doi.org/10.1007/s10973-011-1650-2]
[68]
Abdelghany, S.; Parumasivam, T.; Pang, A.; Roediger, B.; Tang, P.; Jahn, K.; Britton, W.J.; Chan, H.K. Alginate modified-PLGA nanoparticles entrapping amikacin and moxifloxacin as a novel host-directed therapy for multidrug-resistant tuberculosis. J. Drug Deliv. Sci. Technol., 2019, 52, 642-651.
[http://dx.doi.org/10.1016/j.jddst.2019.05.025]
[69]
Palei, N.N.; Mamidi, S.K.; Rajangam, J. Formulation and evaluation of lamivudine sustained release tablet using okra mucilage. J. Appl. Pharm. Sci., 2016, 6(09), 69-75.
[http://dx.doi.org/10.7324/JAPS.2016.60910]
[70]
Jain, V.; Singh, R. Development and characterization of eudragit RS 100 loaded microsponges and its colonic delivery using natural polysaccharides. Acta Pol. Pharm., 2010, 67(4), 407-415.
[PMID: 20635537]
[71]
Yenilmez, E.; Başaran, E.; Yazan, Y. Release characteristics of vitamin E incorporated chitosan microspheres and in vitro–in vivo evaluation for topical application. Carbohydr. Polym., 2011, 84(2), 807-811.
[http://dx.doi.org/10.1016/j.carbpol.2010.07.002]
[72]
Li, P.; Yang, Z.; Wang, Y.; Peng, Z.; Li, S.; Kong, L.; Wang, Q. Microencapsulation of coupled folate and chitosan nanoparticles for targeted delivery of combination drugs to colon. J. Microencapsul., 2015, 32(1), 40-45.
[http://dx.doi.org/10.3109/02652048.2014.944947] [PMID: 25198909]
[73]
Loveymi, B.D.; Jelvehgari, M.; Zakeri-Milani, P.; Valizadeh, H. Design of vancomycin RS-100 nanoparticles in order to increase the intestinal permeability. Adv. Pharm. Bull., 2012, 2(1), 43-56.
[PMID: 24312770]
[74]
Yurtdaş Kırımlıoğlu, G.; Menceloğlu, Y.; Erol, K.; Yazan, Y. In vitro/in vivo evaluation of gamma-aminobutyric acid-loadedN,N-dimethylacrylamide-based pegylated polymeric nanoparticles for brain delivery to treat epilepsy. J. Microencapsul., 2016, 33(7), 625-635.
[http://dx.doi.org/10.1080/02652048.2016.1234515] [PMID: 27606701]
[75]
Başaran, E.; Yenilmez, E.; Berkman, M.S.; Büyükköroğlu, G.; Yazan, Y. Chitosan nanoparticles for ocular delivery of cyclosporine A. J. Microencapsul., 2014, 31(1), 49-57.
[http://dx.doi.org/10.3109/02652048.2013.805839] [PMID: 23834316]
[76]
Vino, S.; Abinaya, A.; Diva, V.; Ghosh, A.R. Controlled release of phenytoin sodium from casein microparticles. Int. J. Pharma Bio Sci, 2014, 5(2), 233-241.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy