Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Magnolia officinalis Reduces Inflammation and Damage Induced by Recurrent Status Epilepticus in Immature Rats

Author(s): Angélica Vega-García , Luisa Rocha, Rosalinda Guevara-Guzmán , Christian Guerra-Araiza , Iris Feria-Romero, Juan M. Gallardo, Teresa Neri-Gomez, José E. Suárez-Santiago and Sandra Orozco-Suarez*

Volume 26, Issue 12, 2020

Page: [1388 - 1401] Pages: 14

DOI: 10.2174/1381612826666200320121813

Price: $65

conference banner
Abstract

Background: Neuroinflammation induced in response to damage caused by status epilepticus (SE) activates the interleukin (IL)1-β pathway and proinflammatory proteins that increase vulnerability to the development of spontaneous seizure activity and/or epilepsy.

Objectives: The study aimed to assess the short-term anti-inflammatory and neuroprotective effects of Magnolia officinalis (MO) on recurrent SE in immature rats.

Methods: Sprague-Dawley rats at PN day 10 were used; n = 60 rats were divided into two control groups, SHAM and KA, and two experimental groups, MO (KA-MO) and Celecoxib (KA-Clbx). The anti-inflammatory effect of a single dose of MO was evaluated at 6 and 24 hr by Western blotting and on day 30 PN via a subchronic administration of MO to assess neuronal preservation and hippocampal gliosis by immunohistochemistry for NeunN and GFAP, respectively.

Results: KA-MO caused a decrease in the expression of IL1-β and Cox-2 at 6 and 24 h post-treatment, a reduction in iNOS synthase at 6 and 24 hr post-treatment and reduced neuronal loss and gliosis at postnatal day 30, similar to Clbx.

Conclusion: The results indicating that Magnolia officinalis is an alternative preventive treatment for early stages of epileptogenesis are encouraging.

Keywords: Magnolia officinalis, Kainic acid, Status epilepticus, neuroinflammation, neuroprotection, epileptogenesis

« Previous
[1]
Lowenstein DH. Status epilepticus: an overview of the clinical problem. Epilepsia 1999; 40(40)(Suppl. 1): S3-8.
[http://dx.doi.org/10.1111/j.1528-1157.1999.tb00872.x] [PMID: 10421556]
[2]
Neligan A, Shorvon SD. Prognostic factors, morbidity and mortality in tonic-clonic status epilepticus: a review. Epilepsy Res 2011; 93(1): 1-10.
[http://dx.doi.org/10.1016/j.eplepsyres.2010.09.003] [PMID: 20947300]
[3]
Trinka E, Cock H, Hesdorffer D, et al. A definition and classification of status epilepticus--Report of the ILAE task force on classification of status epilepticus. Epilepsia 2015; 56(10): 1515-23.
[http://dx.doi.org/10.1111/epi.13121] [PMID: 26336950]
[4]
Rizzi M, Perego C, Aliprandi M, et al. Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development. Neurobiol Dis 2003; 14(3): 494-503.
[5]
Auvin S, Shin D, Mazarati A, Nakagawa J, Miyamoto J, Sankar R. Inflammation exacerbates seizure-induced injury in the immature brain. Epilepsia 2007; 48(Suppl. 5): 27-34.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01286.x] [PMID: 17910578]
[6]
Pitkänen A, Lukasiuk K, Dudek FE, Staley KJ. Epileptogenesis.Cold Spring Harb Perspect Med 2015; 5(10): a022822.
[http://dx.doi.org/10.1101/cshperspect. a022822.]
[7]
Löscher W, Brandt C. Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev 2010; 62(4): 668-700.
[http://dx.doi.org/10.1124/pr.110.003046] [PMID: 21079040]
[8]
Dudek FE, Staley KJ, Noebels JL, et al. The time course and circuit mechanisms of acquired epileptogenesis SourceJasper’s Basic mechanisms of the epilepsies. 4th ed. Bethesda, MD: National Center for Biotechnology Information (US) 2012.
[9]
Goldberg EM, Coulter DA. Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nat Rev Neurosci 2013; 14(5): 337-49.
[http://dx.doi.org/10.1038/nrn3482] [PMID: 23595016]
[10]
Ravizza T, Rizzi M, Perego C, et al. Inflammatory response and glia activation in developing rat hippocampus after status epilepticusEpilepsia (46 Suppl) 2005; 5:: 113-7.
[11]
Ravizza T, Gagliardi B, Noé F, Boer K, Aronica E, Vezzani A. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 2008; 29(1): 142-60.
[http://dx.doi.org/10.1016/j.nbd.2007.08.012] [PMID: 17931873]
[12]
Iori V, Iyer AM, Ravizza T, et al. Blockade of the IL-1R1/TLR4 pathway mediates disease-modification therapeutic effects in a model of acquired epilepsy. Neurobiol Dis 2017; 99: 12-23.
[http://dx.doi.org/10.1016/j.nbd.2016.12.007] [PMID: 27939857]
[13]
Terrone G, Pauletti A, Pascente R, Vezzani A. Preventing epileptogenesis: A realistic goal? Pharmacol Res 2016; 110: 96-100.
[http://dx.doi.org/10.1016/j.phrs.2016.05.009] [PMID: 27173399]
[14]
Penkowa M, Molinero A, Carrasco J, Hidalgo J. Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures. Neuroscience 2001; 102: 805-18.
[http://dx.doi.org/10.1016/S0306-4522(00)00515-7]
[15]
McElroy WT1. Interleukin-1 receptor-associated kinase 4 (IRAK4) inhibitors: an updated patent review . Expert Opin Ther Pat 2019; 29(4): 243-59.
[http://dx.doi.org/10.1080/13543776.2019.1597850]
[16]
Katzung BG. Nonsteroidal Anti-Inflammatory Drugs, Disease-Modifying Antirheumatic Drugs, Nonopioid Analgesics, & Drugs Used in Gout Basic & Clinical Pharmacology 9 edición. McGraw-Hill 2007.
[17]
Lee YJ, Lee YM, Lee CK, Jung JK, Han SB, Hong JT. Therapeutic applications of compounds in the Magnolia family. Pharmacol Ther 2011; 130(2): 157-76.
[http://dx.doi.org/10.1016/j.pharmthera.2011.01.010] [PMID: 21277893]
[18]
Lee YJ, Choi DY, Yun YP, et al. Ethanol extract of Magnolia officinalis prevents lipopolysaccharide-induced memory deficiency via its antineuroinflammatory and antiamyloidogenic effects. Phytother Res 2013; 27(3): 438-47.
[http://dx.doi.org/10.1002/ptr.4740] [PMID: 22628265]
[19]
Shen CC, Ni CL, Shen YC, et al. Phenolic constituents from the stem bark of Magnolia officinalis. J Nat Prod 2009; 72(1): 168-71.
[http://dx.doi.org/10.1021/np800494e] [PMID: 19086868]
[20]
Chang-Mu C, Jen-Kun L, Shing-Hwa L, Shoei-Yn LS. Characterization of neurotoxic effects of NMDA and the novel neuroprotection by phytopolyphenols in mice. Behav Neurosci 2010; 124(4): 541-53.
[http://dx.doi.org/10.1037/a0020050] [PMID: 20695653]
[21]
Lin YR, Chen HH, Ko CH, Chan MH. Neuroprotective activity of honokiol and magnolol in cerebellar granule cell damage. Eur J Pharmacol 2006; 537(1-3): 64-9.
[http://dx.doi.org/10.1016/j.ejphar.2006.03.035] [PMID: 16631734]
[22]
Hoi CP, Ho YP, Baum L, Chow AH. Neuroprotective effect of honokiol and magnolol, compounds from Magnolia officinalis, on beta-amyloid-induced toxicity in PC12 cells. Phytother Res 2010; 24(10): 1538-42.
[http://dx.doi.org/10.1002/ptr.3178] [PMID: 20878707]
[23]
Vega-García A, Santana-Gómez CE, Rocha L, et al. Magnolia officinalis reduces the long-term effects of the status epilepticus induced by kainic acid in immature rats. Brain Res Bull 2019; 149: 156-67.
[http://dx.doi.org/10.1016/j.brainresbull.2019.04.003] [PMID: 30978383]
[24]
Chang CP, Hsu YC, Lin MT. Magnolol protects against cerebral ischaemic injury of rat heatstroke. Clin Exp Pharmacol Physiol 2003; 30(5-6): 387-92.
[http://dx.doi.org/10.1046/j.1440-1681.2003.03847.x] [PMID: 12859431]
[25]
Dikalov S, Losik T, Arbiser JL. Honokiol is a potent scavenger of superoxide and peroxyl radicals. Biochem Pharmacol 2008; 76(5): 589-96.
[http://dx.doi.org/10.1016/j.bcp.2008.06.012] [PMID: 18640101]
[26]
Lee DH, Szczepanski MJ, Lee YJ. Magnolol induces apoptosis via inhibiting the EGFR/PI3K/Akt signaling pathway in human prostate cancer cells. J Cell Biochem 2009; 106(6): 1113-22.
[http://dx.doi.org/10.1002/jcb.22098] [PMID: 19229860]
[27]
Matsuda H, Kageura T, Oda M, Morikawa T.Effects of constituents from the bark of Magnolia obovata on nitric oxide production in lipopolysaccharide-activated macrophages. Chem Pharm Bull (Tokyo) 2001; 49: 716-20.
[28]
Son HJ, Lee HJ, Yun-Choi HS, Ryu JH. Inhibitors of nitric oxide synthesis and TNF-alpha expression from Magnolia obovata in activated macrophages. Planta Med 2000; 66(5): 469-71.
[http://dx.doi.org/10.1055/s-2000-8592] [PMID: 10909270]
[29]
Zhang P, Liu X, Zhu Y, Chen S, Zhou D, Wang Y. Honokiol inhibits the inflammatory reaction during cerebral ischemia reperfusion by suppressing NF-κB activation and cytokine production of glial cells. Neurosci Lett 2013; 534: 123-7.
[http://dx.doi.org/10.1016/j.neulet.2012.11.052] [PMID: 23262090]
[30]
Hellier JL, Dudek FE. Chemoconvulsant model of chronic spontaneous seizures Current Protocols in Neuroscience: Models of Chronic Spontaneous Seizures. Hoboken: Wiley & Sons 2005.
[31]
Kubova H, Lukasiuk K, Pitkänen A. New insight on the mechanisms of epileptogenesis in the developing brain. Adv Tech Stand Neurosurg 2012; 39: 3-44.
[http://dx.doi.org/10.1007/978-3-7091-1360-8_1] [PMID: 23250835]
[32]
NOM-062-ZOO-1999. Technical specifications for the production, care and use of laboratory animals
[33]
Ben-Ari Y, Tremblay E, Ottersen OP. Injections of kainic acid into the amygdaloid complex of the rat: an electrographic, clinical and histological study in relation to the pathology of epilepsy. Neuroscience 1980; 5(3): 515-28.
[http://dx.doi.org/10.1016/0306-4522(80)90049-4] [PMID: 6892841]
[34]
Ben-Ari Y, Tremblay E, Berger M, Nitecka L. Kainic acid seizure syndrome and binding sites in developing rats. Dev Brain Res 1984; 14:: 284-8.
[http://dx.doi.org/10.1016/0165-3806(84)90314-6]
[35]
Albala BJ, Moshé SL, Okada R. Kainic-acid-induced seizures: a developmental study. Brain Res 1984; 315(1): 139-48.
[http://dx.doi.org/10.1016/0165-3806(84)90085-3] [PMID: 6722574]
[36]
Raol YH, Lapides DA, Keating JG, Brooks-Kayal AR, Cooper EC. A KCNQ channel opener for experimental neonatal seizures and status epilepticus. Ann Neurol 2009; 65(3): 326-36.
[http://dx.doi.org/10.1002/ana.21593] [PMID: 19334075]
[37]
Stafstrom CE, Chronopoulos A, Thurber S, Thompson JL, Holmes GL. Age-dependent cognitive and behavioral deficits after kainic acid seizures. Epilepsia 1993; 34(3): 420-32.
[http://dx.doi.org/10.1111/j.1528-1157.1993.tb02582.x]
[38]
Doczi J, Bernásková K, Kubová H, et al. Long-term changes of activity of cortical neurons after status epilepticus induced at early developmental stages in rats. Neurosci Lett 2003; 352(2): 125-8.
[http://dx.doi.org/10.1016/j.neulet.2003.08.043] [PMID: 14625039]
[39]
Zhang K, Tolstykh GP, Sanchez RM, Cavazos JE. Chronic cellular hyperexcitability in elderly epileptic rats with spontaneous seizures induced by kainic acid status epilepticus while young adults. Aging Dis 2011; 2(4): 332-8.
[PMID: 22396885]
[40]
Zayachkivsky MJ, Lehmkuhle JH, Fisher JJ. Recording EEG in immature rats with a novel miniature telemetry system. J Neurophysiol 2013; 109: 900-11.
[41]
Kubová H, Mareš P. Are morphologic and functional consequences of status epilepticus in infant rats progressive? Neuroscience 2013; 235(3): 232-49.
[http://dx.doi.org/10.1016/j.neuroscience.2012.12.055] [PMID: 23305765]
[42]
Polascheck N, Bankstahl M, Löscher W. The COX-2 inhibitor parecoxib is neuroprotective but not antiepileptogenic in the pilocarpine model of temporal lobe epilepsy. Exp Neurol 2010; 224(1): 219-33.
[http://dx.doi.org/10.1016/j.expneurol.2010.03.014] [PMID: 20353773]
[43]
Sarkisian MR, Tandon P, Liu Z, et al. Multiple kainic acid seizures in the immature and adult brain: ictal manifestations and long-term effects on learning and memory. Epilepsia 1997; 38(11): 1157-66.
[http://dx.doi.org/10.1111/j.1528-1157.1997.tb01211.x] [PMID: 9579915]
[44]
Ben-Ari Y. Epilepsy: changes in local glucose consumption and brain pathology produced by kainic acid. Adv Biochem Psychopharmacol 1981; 27: 385-94.
[PMID: 7446279]
[45]
Thompson KW, Suchomelova L, Wasterlain CG. Treatment of early life status epilepticus: What can we learn from animal models? Epilepsia Open 2018; 3(Suppl Suppl 2:): 169-79.
[46]
Tremblay E, Nitecka L, Berger ML, Ben-Ari Y. Maturation of kainic acid seizure-brain damage syndrome in the rat. I. Clinical, electrographic and metabolic observations. Neuroscience 1984; 13(4): 1051-72.
[http://dx.doi.org/10.1016/0306-4522(84)90288-4]
[47]
Hellier JL, Patrylo PR, Dou P, Nett M, Rose GM, Dudek FE. Assessment of inhibition and epileptiform activity in the septal dentate gyrus of freely behaving rats during the first week after kainate treatment. J Neurosci 1999; 19(22): 10053-64.
[http://dx.doi.org/10.1523/JNEUROSCI.19-22-10053.1999] [PMID: 10559413]
[48]
Velísek L, Velísková J, Moshé SL. Developmental seizure models. Ital J Neurol Sci 1995; 16(1-2): 127-33.
[http://dx.doi.org/10.1007/BF02229085] [PMID: 7642346]
[49]
Dzhala VI, Talos DM, Sdrulla DA, et al. NKCC1 transporter facilitates seizures in the developing brain. Nat Med 2005; 11(11): 1205-13.
[http://dx.doi.org/10.1038/nm1301] [PMID: 16227993]
[50]
Moreira JD, de Siqueira LV, Lague VM, Porciúncula LO, Vinadé L, Souza DO. Short-term alterations in hippocampal glutamate transport system caused by one-single neonatal seizure episode: implications on behavioral performance in adulthood. Neurochem Int 2011; 59(2): 217-23.
[http://dx.doi.org/10.1016/j.neuint.2011.05.008] [PMID: 21693144]
[51]
Zayachkivsky A, Lehmkuhle MJ, Fisher JH, Ekstrand JJ, Dudek FE. Recording EEG in immature rats with a novel miniature telemetry system. J Neurophysiol 2013; 109(3): 900-11.
[http://dx.doi.org/10.1152/jn.00593.2012] [PMID: 23114207]
[52]
S, Gonzales Ramírez, M, Castillo Medina S, Effect of neonatal seizures on brain development in: Neuroscience Research. Guadalajara, México: Bios-Medica. Publishing Inc. 2007.
[53]
Martínez AL, Domínguez F, Orozco S, et al. Neuropharmacological effects of an ethanol extract of the Magnolia dealbata Zucc. leaves in mice. J Ethnopharmacol 2006; 106(2): 250-5.
[http://dx.doi.org/10.1016/j.jep.2006.01.003] [PMID: 16442760]
[54]
West MJ. New stereological methods for counting neurons. Neurobiolof Aging 1993; 275-85.
[http://dx.doi.org/10.1016/0197-4580(93)90112-O]
[55]
Vezzani A, Friedman A, Dingledine RJ. The role of inflammation in epileptogenesis. Neuropharmacology 2013; 69: 16-24.
[http://dx.doi.org/10.1016/j.neuropharm.2012.04.004] [PMID: 22521336]
[56]
David Y, Cacheaux LP, Ivens S, et al. Astrocytic dysfunction in epileptogenesis: Consequence of altered potassium and glutamate homeostasis? Neurosci 2009; 29(34): 10588-99.
[http://dx.doi.org/10.1523/JNEUROSCI.2323-09.2009]
[57]
Hutchinson PJ, O’Connell MT, Rothwell NJ, et al. Inflammation in human brain injury: intracerebral concentrations of IL-1alpha, IL-1beta, and their endogenous inhibitor IL-1ra. J Neurotrauma 2007; 24(10): 1545-57.
[http://dx.doi.org/10.1089/neu.2007.0295] [PMID: 17970618]
[58]
Akin D, Ravizza T, Maroso M, et al. IL-1β is induced in reactive astrocytes in the somatosensory cortex of rats with genetic absence epilepsy at the onset of spike-and-wave discharges, and contributes to their occurrence. Neurobiol Dis 2011; 44(3): 259-69.
[http://dx.doi.org/10.1016/j.nbd.2011.05.015] [PMID: 21645619]
[59]
Pernot F, Heinrich C, Barbier L, et al. Inflammatory changes during epileptogenesis and spontaneous seizures in a mouse model of mesiotemporal lobe epilepsy. Epilepsia 2011; 52(12): 2315-25.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03273.x] [PMID: 21955106]
[60]
Riazi K, Galic MA, Pittman QJ. Contributions of peripheral inflammation to seizure susceptibility: cytokines and brain excitability. Epilepsy Res 2010; 89(1): 34-42.
[http://dx.doi.org/10.1016/j.eplepsyres.2009.09.004] [PMID: 19804959]
[61]
Bezzi P, Volterra A. A neuron-glia signalling network in the active brain. Curr Opin Neurobiol 2001; 11(3): 387-94.
[http://dx.doi.org/10.1016/S0959-4388(00)00223-3] [PMID: 11399439]
[62]
Ryan K, Liang LP, Rivard C, Patel M. Temporal and spatial increase of reactive nitrogen species in the kainate model of temporal lobe epilepsy. Neurobiol Dis 2014; 64: 8-15.
[http://dx.doi.org/10.1016/j.nbd.2013.12.006] [PMID: 24361554]
[63]
Kubová H, Mareš P. Hypoxia-induced changes of seizure susceptibility in immature rats are modified by vigabatrin. Epileptic Disord 2007; 9(1)(Suppl. 1): S36-43.
[http://dx.doi.org/10.1684/epd.2007.0150] [PMID: 18319199]
[64]
Russo E, Citraro R, Constanti A, De Sarro G. The mTOR signaling pathway in the brain: focus on epilepsy and epileptogenesis. Mol Neurobiol 2012; 46(3): 662-81.
[http://dx.doi.org/10.1007/s12035-012-8314-5] [PMID: 22825882]
[65]
Kai-Wing Tse A, Chi-Keung W, Gou Yuan Z, Xiao Ling S. Hon Yeung Ch., Mengsu Yang, Wang Fun-Fong. Magnolol suppresses NF-κB activation and NF-κB regulated gene expression through inhibition of IkappaB kinase activation. Mol Immunol 2007; 2647-58.
[66]
Kai-Wing Tse A, Chi-Keung W, Gou Yuan Z, et al.Honokiol inhibits TNF-α stimulated NFκβ activation and NFκβ-regulated gene expression through suppression of IKK activation. Biochem Pharmacol 2005; 1443-57.
[67]
Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev 2004; 18(18): 2195-224.
[http://dx.doi.org/10.1101/gad.1228704] [PMID: 15371334]
[68]
Li CY, Chao LK, Wang SC, et al. Honokiol inhibits LPS-induced maturation and inflammatory response of human monocyte-derived dendritic cells. J Cell Physiol 2011; 226(9): 2338-49.
[http://dx.doi.org/10.1002/jcp.22576] [PMID: 21660957]
[69]
Yu Y, Li M, Su N, et al. Honokiol protects against renal ischemia/reperfusion injury via the suppression of oxidative stress, iNOS, inflammation and STAT3 in rats. Mol Med Rep 2016; 13(2): 1353-60.
[http://dx.doi.org/10.3892/mmr.2015.4660] [PMID: 26647858]
[70]
Chiang J, Shen Y-C, Wang Y-H, et al. Honokiol protects rats against eccentric exercise-induced skeletal muscle damage by inhibiting NF-kappaB induced oxidative stress and inflammation. Eur J Pharmacol 2009; 610(1-3): 119-27.
[http://dx.doi.org/10.1016/j.ejphar.2009.03.035] [PMID: 19303869]
[71]
Talarek S, Listos J, Barreca D, et al. Neuroprotective effects of honokiol: from chemistry to medicine. Biofactors 2017; 43(6): 760-9.
[http://dx.doi.org/10.1002/biof.1385] [PMID: 28817221]
[72]
Kuo DH, Lai YS, Lo CY, Cheng AC, Wu H, Pan MH. Inhibitory effect of magnolol on TPA-induced skin inflammation and tumor promotion in mice. J Agric Food Chem 2010; 58(9): 5777-83.
[http://dx.doi.org/10.1021/jf100601r] [PMID: 20218615]
[73]
Chuang DY, Chan MH, Zong Y, et al. Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells. J Neuroinflammation 2013; 10: 15.
[http://dx.doi.org/10.1186/1742-2094-10-15] [PMID: 23356518]
[74]
Zhou HY, Shin EM, Guo LY, et al. Anti-inflammatory activity of 4-methoxyhonokiol is a function of the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via NF-kappaB, JNK and p38 MAPK inactivation. Eur J Pharmacol 2008; 586(1-3): 340-9.
[http://dx.doi.org/10.1016/j.ejphar.2008.02.044] [PMID: 18378223]
[75]
Chao LK, Liao P-C, Ho C-L, et al. Anti-inflammatory bioactivities of honokiol through inhibition of protein kinase C, mitogen-activated protein kinase, and the NF-kappaB pathway to reduce LPS-induced TNFalpha and NO expression. J Agric Food Chem 2010; 58(6): 3472-8.
[http://dx.doi.org/10.1021/jf904207m] [PMID: 20192217]
[76]
Liou KT, Shen YC, Chen CF, Tsao CM, Tsai SK. The anti-inflammatory effect of honokiol on neutrophils: mechanisms in the inhibition of reactive oxygen species production. Eur J Pharmacol 2003; 475(1-3): 19-27.
[http://dx.doi.org/10.1016/S0014-2999(03)02121-6]
[77]
Yu SX, Yan RY, Liang RX, Wang W, Yang B. Bioactive polar compounds from stem bark of Magnolia officinalis. Bioorg Med Chem Lett 2012; 22(3): 1439-44.
[http://dx.doi.org/10.1016/j.fitote.2011.11.020]
[78]
Tse AK, Wan CK, Shen XL, Yang M, Fong WF. Honokiol inhibits TNF-alpha-stimulated NF-kappaB activation and NF-kappaB-regulated gene expression through suppression of IKK activation. Biochem Pharmacol 2005; 70(10): 1443-57.
[http://dx.doi.org/10.1016/j.bcp.2005.08.011] [PMID: 16181613]
[79]
Lee J, Jung E, Park J, et al. Anti-inflammatory effects of magnolol and honokiol are mediated through inhibition of the downstream pathway of MEKK-1 in NF-kappaB activation signaling. Planta Med 2005; 71(4): 338-43.
[http://dx.doi.org/10.1055/s-2005-864100] [PMID: 15856410]
[80]
Ching-Shu L, You-Syuan L, Daih-Huang K. Magnolol potently suppressed lipopolysaccharide-induced iNOS and Cox-2 expression via dowregulation MAPK and NF-kβ signaling pathaways. Journal of fuctional foods 2011; 198-206.
[81]
Alexeev M, Grosenbaugh DK, Mott DD, Fisher JL. The natural products magnolol and honokiol are positive allosteric modulators of both synaptic and extra-synaptic GABA(A) receptors. Neuropharmacology 2012; 62(8): 2507-14.
[http://dx.doi.org/10.1016/j.neuropharm.2012.03.002] [PMID: 22445602]
[82]
Chuang DY, Chan MH, Zong Y, et al. Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells. J Neuroinflammation 2013; 29: 10-5.
[http://dx.doi.org/10.1186/1742-2094-10-15]
[83]
Lin YR, Chen HH, Ko CH, Chan MH. Differential inhibitory effects of honokiol and magnolol on excitatory amino acid-evoked cation signals and NMDA-induced seizures. Neuropharmacology 2005; 49(4): 542-50.
[http://dx.doi.org/10.1016/j.neuropharm.2005.04.009] [PMID: 15921707]
[84]
Liou KT, Shen YC, Chen CF, Tsao CM, Tsai SK. Honokiol protects rat brain from focal cerebral ischemiareperfusion injury by inhibiting neutrophil infiltration and reactive oxygen species production. Brain Res 2003; 992(2:): 159-66.
[http://dx.doi.org/10. 1016/j.brainres.2003.08.026]
[85]
Shimada T, Takemiya T, Sugiura H, Yamagata K. Role of inflammatory mediators in the pathogenesis of epilepsy. Mediators Inflamm 2014; 2014:901902
[http://dx.doi.org/10.1155/2014/901902] [PMID: 25197169]
[86]
Borham LE, Mahfoz AM, Ibrahim IAA, Shahzad N. The effect of some immunomodulatory and anti-inflammatory drugs on Li-pilocarpine-induced epileptic disorders in Wistar rats. Brain Res 2016; 1648(Pt A): 418-24.
[http://dx.doi.org/10.1016/j.brainres.2016.07.046.]
[87]
Wetherington J1, Serrano G, Dingledine R. Astrocytes in the epileptic brain. Neuron 2008; 58(2): 168-78.
[http://dx.doi.org/10.1016/j.neuron.2008.04.002]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy