Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

The Antihypertensive, Antimicrobial and Anticancer Peptides from Arthrospira with Therapeutic Potential: A Mini Review

Author(s): Grecia E. Barriga Montalvo, Luciana Porto de Souza Vandenberghe , Vanete Thomaz Soccol, Júlio Cesar de Carvalho and Carlos Ricardo Soccol*

Volume 20, Issue 8, 2020

Page: [593 - 606] Pages: 14

DOI: 10.2174/1566524020666200319113006

Price: $65

Abstract

The interest in biological peptides from Arthrospira sp. (syn Spirulina) is increasing due to its Generally Recognised as Safe “GRAS” status, the high concentration of proteins and the history of its use as a supplement and nutraceutical agent. Arthrospira peptides can be generated by the controlled hydrolysis of proteins, using proteases, followed by fractionation. The peptides obtained have a range of therapeutic effects. Amongst these bioactive peptides, three classes are of major importance: the antihypertensive (AHP), antimicrobial (AMP) and anticancer (ACP) peptides. AHPs have the ability to work as inhibitors of angiotensin-converting enzyme (ACE), and help to control several diseases such as hypertension, obesity, and cardiovascular issues, AMPs play a crucial role in the immune response, inhibiting the development of pathogens such as bacteria, fungi, viruses and others, while ACPs can aid in tumour control by the induction of apoptosis or necrosis, or the inhibition of angiogenesis. Thus, bioactive peptides are of great significance to the pharmaceutical industry. However, they can show secondary effects. This paper reviews the inhibition mechanism of antimicrobial, hypertensive and anticancer peptides from Arthrospira sp., and the possible structures of the peptides according to the type of activity and its intensity. In addition, this paper describes the purification methods of absorption mechanisms, and reviews databases for designing peptides.

Keywords: Spirulina, bioactive peptides, antihypertensive, antimicrobial, anticancer, enzymatic hydrolysis.

[1]
Ovando CA, de Carvalho JC, Vinícius de Melo Pereira G, et al. Functional properties and health benefits of bioactive peptides derived from Spirulina: A review. Food Rev Int 2018; 34: 34-51.
[http://dx.doi.org/10.1080/87559129.2016.1210632]
[2]
Kadam SU, Tiwari BK, Álvarez C, et al. Ultrasound applications for the extraction, identification and delivery of food proteins and bioactive peptides. Trends Food Sci Technol 2015; 46: 60-7.
[http://dx.doi.org/10.1016/j.tifs.2015.07.012]
[3]
Harnedy PA, FitzGerald RJ. Bioactive peptides from marine processing waste and shellfish: A review. J Funct Foods 2012; 4: 6-24.
[http://dx.doi.org/10.1016/j.jff.2011.09.001]
[4]
Kim SK, Wijesekara I. Development and biological activities of marine-derived bioactive peptides: A review. J Funct Foods 2010; 2: 1-9.
[http://dx.doi.org/10.1016/j.jff.2010.01.003]
[5]
Clare DA, Swaisgood HE. Bioactive milk peptides: a prospectus. J Dairy Sci 2000; 83(6): 1187-95.
[http://dx.doi.org/10.3168/jds.S0022-0302 (00)74983-6] [PMID: 10877382]
[6]
Singh S, Chaudhary K, Dhanda SK, et al. SATPdb: a database of structurally annotated therapeutic peptides. Nucleic Acids Res 2016; 44(D1): D1119-26.
[http://dx.doi.org/10.1093/nar/gkv1114] [PMID: 26527728]
[7]
Yu J, Hu Y, Xue M, et al. Purification and Identification of Antioxidant Peptides from Enzymatic Hydrolysate of Spirulina platensis. J Microbiol Biotechnol 2016; 26(7): 1216-23.
[http://dx.doi.org/10.4014/jmb.1601.01033] [PMID: 27090190]
[8]
US Food and Drug Administration. No Title
[9]
Wu Q, Liu L, Miron A, Klímová B, Wan D, Kuča K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch Toxicol 2016; 90(8): 1817-40.
[http://dx.doi.org/10.1007/s00204-016-1744-5] [PMID: 27259333]
[10]
Jang I-S, Park SJ. A Spirulina maxima-derived peptide inhibits HIV-1 infection in a human T cell line MT4. Fish Aquat Sci 2016; 19: 37.
[http://dx.doi.org/10.1186/s41240-016-0039-3]
[11]
He HL, Liu D, Ma CB. Review on the angiotensin-I-converting enzyme (ACE) inhibitor peptides from marine proteins. Appl Biochem Biotechnol 2013; 169(3): 738-49.
[http://dx.doi.org/10.1007/s12010-012-0024-y] [PMID: 23271625]
[13]
Puchalska P, Marina Alegre ML, García López MC. Isolation and characterization of peptides with antihypertensive activity in foodstuffs. Crit Rev Food Sci Nutr 2015; 55(4): 521-51.
[http://dx.doi.org/10.1080/10408398.2012.664829] [PMID: 24915368]
[14]
Samarakoon K, Jeon YJ. Bio-functionalities of proteins derived from marine algae - A review. Food Res Int 2012; 48: 948-60.
[http://dx.doi.org/10.1016/j.foodres.2012.03.013]
[15]
Fitzgerald C, Gallagher E, Tasdemir D, Hayes M. Heart health peptides from macroalgae and their potential use in functional foods. J Agric Food Chem 2011; 59(13): 6829-36.
[http://dx.doi.org/10.1021/jf201114d] [PMID: 21574559]
[16]
Wijesekara I, Qian ZJ, Ryu B, et al. Purification and identification of antihypertensive peptides from seaweed pipefish (Syngnathus schlegeli) muscle protein hydrolysate. Food Res Int 2011; 44: 703-7.
[http://dx.doi.org/10.1016/j.foodres.2010.12.022]
[17]
Jung WK, Mendis E, Je JY, et al. Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chem 2006; 94: 26-32.
[http://dx.doi.org/10.1016/j.foodchem.2004.09.048]
[18]
Ang YAY. Arczak EW a DM, Okoo MEY, et al Isolation and Antihypertensive Effect of Angiotensin I-Converting Enzyme (ACE). Inhibitory Peptides from Spinach Rubisco 2003; pp. 4897-902.
[19]
Hernández-Ledesma B, del Mar Contreras M, Recio I. Antihypertensive peptides: production, bioavailability and incorporation into foods. Adv Colloid Interface Sci 2011; 165(1): 23-35.
[http://dx.doi.org/10.1016/j.cis.2010.11.001] [PMID: 21185549]
[20]
Marques C, Amorim MM, Pereira JO, et al. Bioactive peptides: are there more antihypertensive mechanisms beyond ACE inhibition? Curr Pharm Des 2012; 18(30): 4706-13.
[http://dx.doi.org/10.2174/138161212802651670] [PMID: 22725850]
[21]
Erdmann K, Cheung BWY, Schröder H. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J Nutr Biochem 2008; 19(10): 643-54.
[http://dx.doi.org/10.1016/j.jnutbio.2007.11.010] [PMID: 18495464]
[22]
Singh BP, Vij S, Hati S. Functional significance of bioactive peptides derived from soybean. Peptides 2014; 54: 171-9.
[http://dx.doi.org/10.1016/j.peptides.2014.01.022] [PMID: 24508378]
[23]
Natesh R, Schwager SLU, Sturrock ED, Acharya KR. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature 2003; 421(6922): 551-4.
[http://dx.doi.org/10.1038/nature01370] [PMID: 12540854]
[24]
Udenigwe CC, Mohan A. Mechanisms of food protein-derived antihypertensive peptides other than ACE inhibition. J Funct Foods 2014; 8: 45-52.
[http://dx.doi.org/10.1016/j.jff.2014.03.002]
[25]
Fujita H, Yokoyama K, Yoshikawa M. Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. J Food Sci 2000; 65: 564-9.
[http://dx.doi.org/10.1111/j.1365-2621.2000.tb16049.x]
[26]
García MC, Puchalska P, Esteve C, Marina ML. Vegetable foods: a cheap source of proteins and peptides with antihypertensive, antioxidant, and other less occurrence bioactivities. Talanta 2013; 106: 328-49.
[http://dx.doi.org/10.1016/j.talanta.2012.12.041] [PMID: 23598136]
[27]
Iwaniak A, Minkiewicz P, Darewicz M. Food-originating ACE inhibitors, includinIWANIAK, A.; MINKIEWICZ, P.; DAREWICZ, M. Food-originating ACE inhibitors, including antihypertensive peptides, as preventive food components in blood pressure reduction. Comprehensive Reviews in Food Science and F. Compr Rev Food Sci Food Saf 2014; 13: 114-34.
[http://dx.doi.org/10.1111/1541-4337.12051]
[28]
Mulero J, Zafrilla P, Martínez-Cachá A, et al. Peptidos bioactivos. Clin Investig Arterioscler 2011; 23: 219-27.
[http://dx.doi.org/10.1016/j.arteri.2011.04.004]
[29]
Ruiz JAG, Ramos M, Recio I. Angiotensin converting enzyme-inhibitory activity of peptides isolated from Manchego cheese. Stability under simulated gastrointestinal digestion. Int Dairy J 2004; 14: 1075-80.
[http://dx.doi.org/10.1016/j.idairyj.2004.04.007]
[30]
Wijesekara I, Kim SK. Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: prospects in the pharmaceutical industry. Mar Drugs 2010; 8(4): 1080-93.
[http://dx.doi.org/10.3390/md8041080] [PMID: 20479968]
[31]
Cushman DW, Cheung HS. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol 1971; 20(7): 1637-48.
[http://dx.doi.org/10.1016/0006-2952 (71)90292-9] [PMID: 4355305]
[32]
Martínez-Maqueda D, Miralles B, Recio I, Hernández-Ledesma B. Antihypertensive peptides from food proteins: a review. Food Funct 2012; 3(4): 350-61.
[http://dx.doi.org/10.1039/c2fo10192k] [PMID: 22249830]
[33]
Zeng M, Zhao Y, Liu Z, et al. ACE-inhibitory Activities of Marine Proteins and PeptidesMarine Proteins and Peptides. Chichester, UK: John Wiley & Sons, Ltd 2013; pp. 431-40.
[http://dx.doi.org/10.1002/9781118375082.ch20]
[34]
Agyei D, Ongkudon CM, Wei CY, et al. Bioprocess challenges to the isolation and purification of bioactive peptides. Food Bioprod Process 2016; 98: 244-56.
[http://dx.doi.org/10.1016/j.fbp.2016.02.003]
[35]
Vermeirssen V, van der Bent A, Van Camp J, van Amerongen A, Verstraete W. A quantitative in silico analysis calculates the angiotensin I converting enzyme (ACE) inhibitory activity in pea and whey protein digests. Biochimie 2004; 86(3): 231-9.
[http://dx.doi.org/10.1016/j.biochi.2004.01.003] [PMID: 15134838]
[36]
Suetsuna K, Chen JR. Identification of antihypertensive peptides from peptic digest of two microalgae, Chlorella vulgaris and Spirulina platensis. Mar Biotechnol (NY) 2001; 3(4): 305-9.
[http://dx.doi.org/10.1007/s10126-001-0012-7] [PMID: 14961345]
[37]
Lu J, Yang Y, Chen L, et al. In vivo Antihypertensive Effect of Val-Glu-Pro in Spontaneously Hypertensive Rats. Prog Biochem Biophys 2011; 38: 353-60.
[http://dx.doi.org/10.3724/SP.J.1206.2010.00533]
[38]
Heo S-Y, Ko S-C, Phan TTV, et al. A novel peptide isolated from Spirulina sp. gastrointestinal hydrolysate inhibits angiotensin i-converting enzyme and angiotensin II stimulated vascular dysfunction factors in human endothelial cells. World Aquac 2015; 2015: 1.
[39]
Lu J, Ren DF, Xue YL, Sawano Y, Miyakawa T, Tanokura M. Isolation of an antihypertensive peptide from alcalase digest of Spirulina platensis. J Agric Food Chem 2010; 58(12): 7166-71.
[http://dx.doi.org/10.1021/jf100193f] [PMID: 20509691]
[40]
Pan H, She X, Wu H, Ma J, Ren D, Lu J. Long-Term Regulation of the Local Renin-Angiotensin System in the Myocardium of Spontaneously Hypertensive Rats by Feeding Bioactive Peptides Derived from Spirulina platensis. J Agric Food Chem 2015; 63(35): 7765-74.
[http://dx.doi.org/10.1021/acs.jafc.5b02801] [PMID: 26245714]
[41]
Mahdieh G, Fazilati M, Izadi M. Asian Journal of Green Chemistry Orginal Research Article Extraction and isolation of anti-hypertensive peptide by alkalase from spirulina platensis 2019.
[42]
Sannasimuthu A, Kumaresan V, Anilkumar S, et al. AC SC. Free Radic Biol Med
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.03.006] [PMID: 30862544]
[43]
He Y, Li T, Chen J, et al. Transport of ACE Inhibitory Peptides Ile-Gln-Pro and Val-Glu-Pro Derived from Spirulina platensis Across Caco-2 Monolayers 2018.
[http://dx.doi.org/10.1111/1750-3841.14350]
[44]
Wang Z, Zhang X. Characterization and antitumor activity of protein hydrolysates from Arthrospira platensis (Spirulina platensis) using two-step hydrolysis. J Appl Phycol
[http://dx.doi.org/10.1007/s10811-016-0881-9]
[45]
Wang Z, Zhang X. Isolation and identification of anti-proliferative peptides from Spirulina platensis using three-step hydrolysis. J Sci Food Agric 2017; 97(3): 918-22.
[http://dx.doi.org/10.1002/jsfa.7815] [PMID: 27218227]
[46]
Wang Z, Zhang X. Inhibitory effects of small molecular peptides from Spirulina (Arthrospira) platensis on cancer cell growth. Food Funct 2016; 7(2): 781-8.
[http://dx.doi.org/10.1039/C5FO01186H] [PMID: 26584028]
[47]
Zhang B, Zhang X. Separation and nanoencapsulation of antitumor polypeptide from Spirulina platensis. Biotechnol Prog 2013; 29(5): 1230-8.
[http://dx.doi.org/10.1002/btpr.1769] [PMID: 23836728]
[48]
Sun Y, Chang R, Li Q, et al. Isolation and characterization of an antibacterial peptide from protein hydrolysates of Spirulina platensis. Eur Food Res Technol 2016; 242: 685-92.
[http://dx.doi.org/10.1007/s00217-015-2576-x]
[49]
Montalvo GEB, Thomaz-Soccol V, Vandenberghe LPS, et al. Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production. Bioresour Technol 2019; 273: 103-13.
[http://dx.doi.org/10.1016/j.biortech.2018.10.081] [PMID: 30419445]
[50]
Jao C-L, Huang S-L, Hsu K-C. Angiotensin I-converting enzyme inhibitory peptides: Inhibition mode, bioavailability, and antihypertensive effects. Biomedicine (Taipei) 2012; 2: 130-6.
[http://dx.doi.org/10.1016/j.biomed.2012.06.005]
[51]
Qian ZJ, Je JY, Kim SK. Antihypertensive effect of angiotensin i converting enzyme-inhibitory peptide from hydrolysates of Bigeye tuna dark muscle, Thunnus obesus. J Agric Food Chem 2007; 55(21): 8398-403.
[http://dx.doi.org/10.1021/jf0710635] [PMID: 17894458]
[52]
Sharma R. Enzyme Inhibition: Mechanisms and Scope. In: In: Enzyme Inhibition and Bioapplications InTech. 2012. Epub ahead of print May 2012
[53]
Rawlings N, Salvesern G. Peptidyl-Dipeptidase A/Angiotensin I-converting Enzyme. In: In: Handbook of Proteolytic Enzymes. London: Elseiver LTd 2012; pp. 480-92.
[54]
Sayari N, Sila A, Haddar A, Balti R, Ellouz-Chaabouni S, Bougatef A. Valorisation of smooth hound (Mustelus mustelus) waste biomass through recovery of functional, antioxidative and antihypertensive bioactive peptides. Environ Sci Pollut Res Int 2016; 23(1): 366-76.
[http://dx.doi.org/10.1007/s11356-015-5244-6] [PMID: 26308921]
[55]
Li Y, Zhou J, Zeng X, Yu J. A Novel ACE Inhibitory Peptide Ala-His-Leu-Leu Lowering Blood Pressure in Spontaneously Hypertensive Rats. J Med Food 2016; 19(2): 181-6.
[http://dx.doi.org/10.1089/jmf.2015.3483] [PMID: 26295690]
[56]
Shabestarian H, Asoodeh A, Homayouni-Tabrizi M, et al. Antioxidant and Angiotensin I Converting Enzyme (ACE) Inhibitory Properties of GL-9 Peptide. J Food Process Preserv
[http://dx.doi.org/10.1111/jfpp.12838]
[57]
Lu J, Sawano Y, Miyakawa T, et al. One-week antihypertensive effect of Ile-Gln-Pro in spontaneously hypertensive rats. J Agric Food Chem 2011; 59(2): 559-63.
[http://dx.doi.org/10.1021/jf104126a] [PMID: 21182294]
[58]
Sila A, Nedjar-Arroume N, Hedhili K, et al. Antibacterial peptides from barbel muscle protein hydrolysates: Activity against some pathogenic bacteria. Lebensm Wiss Technol 2014; 55: 183-8.
[http://dx.doi.org/10.1016/j.lwt.2013.07.021]
[59]
Maddaly R. The beneficial effects of spirulina focusing on its immunomodulatory and antioxidant properties. Nutr Diet Suppl 2010; 73.
[http://dx.doi.org/10.2147/NDS.S9838]
[60]
Diamond G, Beckloff N, Weinberg A, Kisich KO. The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 2009; 15(21): 2377-92.
[http://dx.doi.org/10.2174/138161209788682325] [PMID: 19601838]
[61]
Phoenix DA, Dennison SR, Harris F. Antimicrobial Peptides 2012.
[62]
Cudic M, Otvos L. Intracellular Targets of Antibacterial Peptides 2002.
[http://dx.doi.org/10.2174/1389450024605445]
[63]
Mohanty D, Jena R, Choudhury PK, et al. Milk Derived Antimicrobial Bioactive Peptides: A Review. Int J Food Prop 2016; 19: 837-46.
[http://dx.doi.org/10.1080/10942912.2015.1048356]
[64]
Schuerholz T, Brandenburg K, Marx G. Antimicrobial peptides and their potential application in inflammation and sepsis. Crit Care 2012; 16(2): 207.
[http://dx.doi.org/10.1186/cc11220] [PMID: 22429567]
[65]
Pfalzgraff A, Heinbockel L, Su Q, Gutsmann T, Brandenburg K, Weindl G. Synthetic antimicrobial and LPS-neutralising peptides suppress inflammatory and immune responses in skin cells and promote keratinocyte migration. Sci Rep 2016; 6: 31577.
[http://dx.doi.org/10.1038/srep31577] [PMID: 27509895]
[66]
Pini A, Falciani C, Mantengoli E, et al. A novel tetrabranched antimicrobial peptide that neutralizes bacterial lipopolysaccharide and prevents septic shock in vivo. FASEB J 2010; 24(4): 1015-22.
[http://dx.doi.org/10.1096/fj.09-145474] [PMID: 19917670]
[67]
Rahnamaeian M. Antimicrobial peptides: modes of mechanism, modulation of defense responses. Plant Signal Behav 2011; 6(9): 1325-32.
[http://dx.doi.org/10.4161/psb.6.9.16319] [PMID: 21847025]
[68]
Reddy KVR, Yedery RD, Aranha C. Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 2004; 24(6): 536-47.
[http://dx.doi.org/10.1016/j.ijantimicag.2004.09.005] [PMID: 15555874]
[69]
Haney EF, Hancock RE. Peptide design for antimicrobial and immunomodulatory applications. Biopolymers 2013; 100(6): 572-83.
[http://dx.doi.org/10.1002/bip.22250] [PMID: 23553602]
[70]
Barbosa Pelegrini P, Del Sarto RP, Silva ON, Franco OL, Grossi-de-Sa MF. Antibacterial peptides from plants: what they are and how they probably work. Biochem Res Int 2011.2011250349
[http://dx.doi.org/10.1155/2011/250349] [PMID: 21403856]
[71]
Bulet P, Stöcklin R, Menin L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 2004; 198: 169-84.
[http://dx.doi.org/10.1111/j.0105-2896.2004.0124.x] [PMID: 15199962]
[72]
Smith VJ, Desbois AP, Dyrynda EA. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar Drugs 2010; 8(4): 1213-62.
[http://dx.doi.org/10.3390/md8041213] [PMID: 20479976]
[73]
Ganz T. The role of antimicrobial peptides in innate immunity. Integr Comp Biol 2003; 43(2): 300-4.
[http://dx.doi.org/10.1093/icb/43.2.300] [PMID: 21680437]
[74]
Markossian KA, Zamyatnin AA, Kurganov BI. Antibacterial proline-rich oligopeptides and their target proteins. Biochemistry (Mosc) 2004; 69(10): 1082-91.
[http://dx.doi.org/10.1023/B:BIRY.0000046881.29486.51] [PMID: 15527407]
[75]
Gagnon MG, Roy RN, Lomakin IB, Florin T, Mankin AS, Steitz TA. Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition. Nucleic Acids Res 2016; 44(5): 2439-50.
[http://dx.doi.org/10.1093/nar/gkw018] [PMID: 26809677]
[76]
Jindal HM, Le CF, Mohd Yusof MY, et al. Antimicrobial Activity of Novel Synthetic Peptides Derived from Indolicidin and Ranalexin against Streptococcus pneumoniae. PLoS One 2015; 10(6)e0128532
[http://dx.doi.org/10.1371/journal.pone.0128532] [PMID: 26046345]
[77]
Li W-F, Ma G-X, Zhou X-X. Apidaecin-type peptides: biodiversity, structure-function relationships and mode of action. Peptides 2006; 27(9): 2350-9.
[http://dx.doi.org/10.1016/j.peptides.2006.03.016] [PMID: 16675061]
[78]
Zeng M, Liu Z, Zhao Y, et al. Antimicrobial Activities of Marine Protein and PeptidesMarine Proteins and Peptides. Chichester, UK: John Wiley & Sons, Ltd 2013; pp. 369-83.
[http://dx.doi.org/10.1002/9781118375082.ch17]
[79]
Andersson DI, Hughes D, Kubicek-Sutherland JZ. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat 2016; 26: 43-57.
[http://dx.doi.org/10.1016/j.drup.2016.04.002] [PMID: 27180309]
[80]
Bechinger B. Structure and function of membrane-lytic peptides. CRC Crit Rev Plant Sci 2004; 23: 271-92.
[http://dx.doi.org/10.1080/07352680490452825]
[81]
Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Goździcka-Józefiak A. Plant antimicrobial peptides. Folia Microbiol (Praha) 2014; 59(3): 181-96.
[http://dx.doi.org/10.1007/s12223-013-0280-4] [PMID: 24092498]
[82]
Nicolas P. Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. FEBS J 2009; 276(22): 6483-96.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07359.x] [PMID: 19817856]
[83]
Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1999; 1462(1-2): 55-70.
[http://dx.doi.org/10.1016/S0005-2736 (99)00200-X] [PMID: 10590302]
[84]
Malmsten M. Antimicrobial peptides. Ups J Med Sci 2014; 119(2): 199-204.
[http://dx.doi.org/10.3109/03009734.2014.899278] [PMID: 24758244]
[85]
Powers JPS, Hancock REW. The relationship between peptide structure and antibacterial activity. Peptides 2003; 24(11): 1681-91.
[http://dx.doi.org/10.1016/j.peptides.2003.08.023] [PMID: 15019199]
[86]
Hetru C. Antimicrobial peptides. Parasitol Today 1995; 11: 398.
[http://dx.doi.org/10.1016/0169-4758 (95)80014-X]
[87]
Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 2016; 6(2): 71-9.
[http://dx.doi.org/10.1016/j.jpha.2015.11.005] [PMID: 29403965]
[88]
Wu X, Wang Z, Li X, et al. In vitro and in vivo activities of antimicrobial peptides developed using an amino acid-based activity prediction method. Antimicrob Agents Chemother 2014; 58(9): 5342-9.
[http://dx.doi.org/10.1128/AAC.02823-14] [PMID: 24982064]
[89]
Jorgensen JH, Turnidge JD. Susceptibility Test Methods: Dilution and Disk Diffusion Methods*. Microbiology, 11th Edition. In: Manual of Clinical American Society of Microbiology. 2015; pp. 1253-73.
[90]
Zhao J, Guo L, Zeng H, et al. Purification and characterization of a novel antimicrobial peptide from Brevibacillus laterosporus strain A60. Peptides 2012; 33(2): 206-11.
[http://dx.doi.org/10.1016/j.peptides.2012.01.001] [PMID: 22244810]
[91]
Harrison PL, Abdel-Rahman MA, Strong PN, Tawfik MM, Miller K. Characterisation of three alpha-helical antimicrobial peptides from the venom of Scorpio maurus palmatus. Toxicon 2016; 117: 30-6.
[http://dx.doi.org/10.1016/j.toxicon.2016.03.014] [PMID: 27019370]
[92]
Ranjani R. Anticancer properties of blue green algae Spirulina platensis – Review. Int J Med Pharm Sci 2013; 3: 159-68.
[93]
Borghouts C, Kunz C, Groner B. Current strategies for the development of peptide-based anti-cancer therapeutics. J Pept Sci 2005; 11(11): 713-26.
[http://dx.doi.org/10.1002/psc.717] [PMID: 16138387]
[94]
Shahidi F, Li Q, Shahidi F Li Q. from Foods
[95]
Pangestuti R, Kim SK. Bioactive peptide of marine origin for the prevention and treatment of non-communicable diseases. Mar Drugs 2017; 15(3): 1-23.
[http://dx.doi.org/10.3390/md15030067] [PMID: 28282929]
[97]
Gali-Muhtasib H, Hmadi R, Kareh M, Tohme R, Darwiche N. Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis. Apoptosis 2015; 20(12): 1531-62.
[http://dx.doi.org/10.1007/s10495-015-1169-2] [PMID: 26362468]
[98]
Hernández-Ledesma B, Hsieh CC. Chemopreventive role of food-derived proteins and peptides: A review. Crit Rev Food Sci Nutr 2017; 57(11): 2358-76.
[http://dx.doi.org/10.1080/10408398.2015.1057632] [PMID: 26565142]
[99]
Cicero AFG, Fogacci F, Colletti A. Potential role of bioactive peptides in prevention and treatment of chronic diseases: a narrative review. Br J Pharmacol 2017; 174(11): 1378-94.
[http://dx.doi.org/10.1111/bph.13608] [PMID: 27572703]
[100]
Li B, Zhang X, Gao M, Chu X. Effects of CD59 on antitumoral activities of phycocyanin from Spirulina platensis. Biomed Pharmacother 2005; 59(10): 551-60.
[http://dx.doi.org/10.1016/j.biopha.2005.06.012] [PMID: 16271846]
[101]
Li B, Gao M-H, Zhang X-C, Chu XM. Molecular immune mechanism of C-phycocyanin from Spirulina platensis induces apoptosis in HeLa cells in vitro. Biotechnol Appl Biochem 2006; 43(Pt 3): 155-64.
[http://dx.doi.org/10.1042/BA20050142] [PMID: 16316316]
[102]
Czerwonka A, Kaławaj K, Sławińska-Brych A, et al. Anticancer effect of the water extract of a commercial Spirulina (Arthrospira platensis) product on the human lung cancer A549 cell line. Biomed Pharmacother 2018; 106: 292-302.
[http://dx.doi.org/10.1016/j.biopha.2018.06.116] [PMID: 29966973]
[103]
Lee Y, Phat C, Hong S-C. Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications. Peptides 2017; 95: 94-105.
[http://dx.doi.org/10.1016/j.peptides.2017.06.002] [PMID: 28610952]
[104]
Raucher D, Ryu JS. Cell-penetrating peptides: strategies for anticancer treatment. Trends Mol Med 2015; 21(9): 560-70.
[http://dx.doi.org/10.1016/j.molmed.2015.06.005] [PMID: 26186888]
[105]
Oelkrug C, Hartke M, Schubert A. Mode of action of anticancer peptides (ACPs) from amphibian origin. Anticancer Res 2015; 35(2): 635-43.
[PMID: 25667440]
[106]
Chalamaiah M, Yu W, Wu J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem 2018; 245: 205-22.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.087] [PMID: 29287362]
[107]
Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene 2008; 27(50): 6398-406.
[http://dx.doi.org/10.1038/onc.2008.307] [PMID: 18955968]
[108]
Lessene G, Czabotar PE, Colman PM. BCL-2 family antagonists for cancer therapy. Nat Rev Drug Discov 2008; 7(12): 989-1000.
[http://dx.doi.org/10.1038/nrd2658] [PMID: 19043450]
[109]
Perlman H, Zhang X, Chen MW, Walsh K, Buttyan R. An elevated bax/bcl-2 ratio corresponds with the onset of prostate epithelial cell apoptosis. Cell Death Differ 1999; 6(1): 48-54.
[http://dx.doi.org/10.1038/sj.cdd.4400453] [PMID: 10200547]
[110]
Zheng L, Lin X, Wu N, et al. Targeting cellular apoptotic pathway with peptides from marine organisms. Biochim Biophys Acta 2013; 1836(1): 42-8.
[PMID: 23470652]
[111]
Creagh EM. Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends Immunol 2014; 35(12): 631-40.
[http://dx.doi.org/10.1016/j.it.2014.10.004] [PMID: 25457353]
[112]
Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 1999; 68: 383-424.
[http://dx.doi.org/10.1146/annurev.biochem.68.1.383] [PMID: 10872455]
[113]
Wagner EF, Nebreda ÁR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 2009; 9(8): 537-49.
[http://dx.doi.org/10.1038/nrc2694] [PMID: 19629069]
[114]
Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene 2008; 27(48): 6245-51.
[http://dx.doi.org/10.1038/onc.2008.301] [PMID: 18931691]
[115]
Sang T, Kim Y, Hung D, et al. International Journal of Biological Macromolecules Spirulina maxima peptides suppress mast cell degranulation via inactivating Akt and MAPKs phosphorylation in RBL-2H3 cells. Int J Biol Macromol 2018; 3-8.
[116]
Xia Y, Shen S, Verma IMNF-B. NF-κB, an active player in human cancers. Cancer Immunol Res 2014; 2(9): 823-30.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0112] [PMID: 25187272]
[117]
Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007; 35(4): 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[118]
Suleria HAR, Gobe G, Masci P, et al. Marine bioactive compounds and health promoting perspectives; innovation pathways for drug discovery. Trends Food Sci Technol 2016; 50: 44-55.
[http://dx.doi.org/10.1016/j.tifs.2016.01.019]
[119]
Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY) 2016; 8(4): 603-19.
[http://dx.doi.org/10.18632/aging.100934] [PMID: 27019364]
[120]
Jin Z, El-Deiry WS. Overview of cell death signaling pathways. Cancer Biol Ther 2005; 4(2): 139-63.
[http://dx.doi.org/10.4161/cbt.4.2.1508] [PMID: 15725726]
[121]
Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 2013; 1833(12): 3448-59.
[http://dx.doi.org/10.1016/j.bbamcr.2013.06.001] [PMID: 23770045]
[122]
Navam H, Sato K, Marshall M, et al. Bioactive Food 2012.
[123]
Proskuryakov SY, Gabai VL. Mechanisms of tumor cell necrosis. Curr Pharm Des 2010; 16(1): 56-68.
[http://dx.doi.org/10.2174/138161210789941793] [PMID: 20214618]
[124]
Wu D, Gao Y, Qi Y, Chen L, Ma Y, Li Y. Peptide-based cancer therapy: opportunity and challenge. Cancer Lett 2014; 351(1): 13-22.
[http://dx.doi.org/10.1016/j.canlet.2014.05.002] [PMID: 24836189]
[125]
Zheng LH, Wang YJ, Sheng J, et al. Antitumor peptides from marine organisms. Mar Drugs 2011; 9(10): 1840-59.
[http://dx.doi.org/10.3390/md9101840] [PMID: 22072999]
[126]
Yadav L. Tumour Angiogenesis and Angiogenic Inhibitors: AReview. J Clin DIAGNOSTIC Res Epub ahead of print 2015
[127]
Harrison R. Conventional chromatography 1993.
[128]
Shahidi F, Zhong Y. Bioactive peptides. J AOAC Int 2008; 91(4): 914-31.
[http://dx.doi.org/10.1093/jaoac/91.4.914] [PMID: 18727554]
[129]
Lemes AC, Sala L, Ores JDC, et al. A review of the latest advances in encrypted bioactive peptides from protein-richwaste
[130]
Mant CT, Chen Y, Yan Z, et al. HPLC analysis and purification of peptides. Methods Mol Biol 2007; 386: 3-55.
[http://dx.doi.org/10.1007/978-1-59745-430-8_1] [PMID: 18604941]
[131]
Lam H. Purification of ProteinPrinciples and Reactions of Protein Extraction, Purification, and Characterization Hafiz Ahmed. Florida: CRC Press LLC 2004; pp. 133-90.
[132]
Aguilar MTM. HPLC of Peptides 2004.
[133]
Andrew Hughes. Amino Acids, Peptides and Proteins in Organic Chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA2010. Epub ahead of print December 2010
[134]
Hara T, Huang Y, Ito A, Kawakami T, Hojo H, Murata M. Trifluoroethanol-containing RP-HPLC mobile phases for the separation of transmembrane peptides human glycophorin-A, integrin alpha-1, and p24: analysis and prevention of potential side reactions due to formic acid. J Pept Sci 2015; 21(2): 61-70.
[http://dx.doi.org/10.1002/psc.2717] [PMID: 25504594]
[135]
Roe S. Protein Purification Applications: A Practical Approach 2001.
[136]
Mori S, Barth HG. Size exclusion chromatography 1999.
[http://dx.doi.org/10.1007/978-3-662-03910-6]
[137]
Williams A, Frasca V. Ion-Exchange ChromatographyCurrent Protocols in Protein Science. Hoboken, NJ, USA: John Wiley & Sons, Inc. 1999; pp. 10-8.
[138]
Perez Espitia PJ, de Fátima Ferreira Soares N, dos Reis Coimbra JS, et al. Bioactive Peptides: Synthesis, Properties, and Applications in the Packaging and Preservation of Food. Compr Rev Food Sci Food Saf 2012; 11: 187-204.
[http://dx.doi.org/10.1111/j.1541-4337.2011.00179.x]
[139]
Saxena A, Tripathi BP, Kumar M, Shahi VK. Membrane-based techniques for the separation and purification of proteins: an overview. Adv Colloid Interface Sci 2009; 145(1-2): 1-22.
[http://dx.doi.org/10.1016/j.cis.2008.07.004] [PMID: 18774120]
[140]
Sperstad SV, Haug T, Blencke HM, Styrvold OB, Li C, Stensvåg K. Antimicrobial peptides from marine invertebrates: challenges and perspectives in marine antimicrobial peptide discovery. Biotechnol Adv 2011; 29(5): 519-30.
[http://dx.doi.org/10.1016/j.biotechadv.2011.05.021] [PMID: 21683779]
[141]
Ali I, Al-Othman ZA, Al-Warthan A, Asnin L, Chudinov A. Advances in chiral separations of small peptides by capillary electrophoresis and chromatography. J Sep Sci 2014; 37(18): 2447-66.
[http://dx.doi.org/10.1002/jssc.201400587] [PMID: 25044566]
[142]
Hühner J, Lämmerhofer M, Neusüß C. Capillary isoelectric focusing-mass spectrometry: Coupling strategies and applications. Electrophoresis 2015; 36(21-22): 2670-86.
[http://dx.doi.org/10.1002/elps.201500185] [PMID: 26299384]
[143]
Burgi D, Smith AJ. Capillary electrophoresis of proteins and peptides. In: Curr Protoc Protein Sci 2001. 9.
[PMID: 18429100]
[144]
Knight M, Fagarasan MO, Takahashi K, Geblaoui AZ, Ma Y, Ito Y. Separation and purification of peptides by high-speed counter-current chromatography. J Chromatogr A 1995; 702(1-2): 207-14.
[http://dx.doi.org/10.1016/0021-9673 (94)01158-B] [PMID: 7599740]
[145]
Wang X, Dong H, Liu Y, Yang B, Wang X, Huang L. Application of high-speed counter-current chromatography for preparative separation of cyclic peptides from Vaccaria segetalis. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879(11-12): 811-4.
[http://dx.doi.org/10.1016/j.jchromb.2011.02.001] [PMID: 21396894]
[146]
Arhewoh IM, Ahonkhai EI, Okhamafe AO. Optimising oral systems for the delivery of therapeutic proteins and peptides. Afr J Biotechnol 2005; 4: 1591-7.
[147]
Sarmadi BH, Ismail A. Antioxidative peptides from food proteins: a review. Peptides 2010; 31(10): 1949-56.
[http://dx.doi.org/10.1016/j.peptides.2010.06.020] [PMID: 20600423]
[148]
Gilbert ER, Wong EA, Webb KE Jr. Board-invited review: Peptide absorption and utilization: Implications for animal nutrition and health. J Anim Sci 2008; 86(9): 2135-55.
[http://dx.doi.org/10.2527/jas.2007-0826] [PMID: 18441086]
[149]
Yang CY, Dantzig AH, Pidgeon C. Intestinal peptide transport systems and oral drug availability. Pharm Res 1999; 16(9): 1331-43.
[http://dx.doi.org/10.1023/A:1018982505021] [PMID: 10496647]
[150]
Segura Campos M, Chel Guerrero L, Betancur Ancona D, et al. Bioavailability of bioactive peptides. Food Rev Int 2011; 27: 213-26.
[http://dx.doi.org/10.1080/87559129.2011.563395]
[151]
Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 1998; 273(45): 29745-53.
[http://dx.doi.org/10.1074/jbc.273.45.29745] [PMID: 9792688]
[152]
Vermeirssen V, Van Camp J, Verstraete W. Bioavailability of angiotensin I converting enzyme inhibitory peptides. Br J Nutr 2004; 92(3): 357-66.
[http://dx.doi.org/10.1079/BJN20041189] [PMID: 15469639]
[153]
Maestri E, Marmiroli M, Marmiroli N. Bioactive peptides in plant-derived foodstuffs. J Proteomics 2016; 147: 140-55.
[http://dx.doi.org/10.1016/j.jprot.2016.03.048] [PMID: 27079980]
[154]
Tavelin S. New Approaches to Studies of Paracellular Drug Transport in Intestinal Epithelial Cell Monolayers. Uppsala 2003.
[155]
Renukuntla J, Vadlapudi AD, Patel A, Boddu SH, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 2013; 447(1-2): 75-93.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.030] [PMID: 23428883]
[156]
Bock JE, Gavenonis J, Kritzer JA. Getting in shape: controlling peptide bioactivity and bioavailability using conformational constraints. ACS Chem Biol 2013; 8(3): 488-99.
[http://dx.doi.org/10.1021/cb300515u] [PMID: 23170954]
[157]
Le Ferrec E, Chesne C, Artusson P, et al. In vitro models of the intestinal barrier
[158]
Manikkam V, Vasiljevic T, Donkor ON, et al. A Review of Potential Marine-Derived Hypotensive and Anti-Obesity Peptides. Crit Rev Food Sci Nutr 2015; 37-41.
[PMID: 25569557]
[159]
Shimizu M, Son DO. Food-derived peptides and intestinal functions. Curr Pharm Des 2007; 13(9): 885-95.
[http://dx.doi.org/10.2174/138161207780414287] [PMID: 17430188]
[160]
Shimizu M. Food-derived peptides and intestinal functions. Biofactors 2004; 21(1-4): 43-7.
[http://dx.doi.org/10.1002/biof.552210109] [PMID: 15630168]
[161]
Ganapathy V, Brandsch M, Leibach FH. Intestinal transport of amino acids and peptides 1994.
[162]
Liu M, Wang Y, Liu Y, Ruan R. Bioactive peptides derived from traditional Chinese medicine and traditional Chinese food: A review. Food Res Int 2016; 89(Pt 1): 63-73.
[http://dx.doi.org/10.1016/j.foodres.2016.08.009] [PMID: 28460959]
[163]
Aito-Inoue M, Lackeyram D, Fan MZ, Sato K, Mine Y. Transport of a tripeptide, Gly-Pro-Hyp, across the porcine intestinal brush-border membrane. J Pept Sci 2007; 13(7): 468-74.
[http://dx.doi.org/10.1002/psc.870] [PMID: 17554807]
[164]
Sánchez-Rivera L, Martínez-Maqueda D, Cruz-Huerta E, et al. Peptidomics for discovery, bioavailability and monitoring of dairy bioactive peptides. Food Res Int 2014; 63: 170-81.
[http://dx.doi.org/10.1016/j.foodres.2014.01.069]
[165]
Dziuba J, Minkiewicz P, Nałȩcz D, et al. Database of biologically active peptide sequences 1999.
[http://dx.doi.org/10.1002/ (SICI)1521-3803(19990601)43:3<190::AID-FOOD190>3.0.CO;2-A]
[166]
Palmieri G, Balestrieri M, Proroga YTR, et al. New antimicrobial peptides against foodborne pathogens: From in silico design to experimental evidence. Food Chem 2016; 211: 546-54.
[http://dx.doi.org/10.1016/j.foodchem.2016.05.100] [PMID: 27283665]
[167]
Iwaniak A, Minkiewicz P, Darewicz M, Sieniawski K, Starowicz P. BIOPEP database of sensory peptides and amino acids. Food Res Int 2016; 85: 155-61.
[http://dx.doi.org/10.1016/j.foodres.2016.04.031] [PMID: 29544830]
[168]
Dziuba M, Dziuba B. In silico Analysis of Bioactive PeptidesBioactive Proteins and Peptides as Functional Foods and Nutraceuticals. Oxford, UK: Wiley-Blackwell 2010; pp. 325-40.
[http://dx.doi.org/10.1002/9780813811048.ch22]
[169]
Gangopadhyay N, Wynne K, O’Connor P, et al. In silico and in vitro analyses of the angiotensin-I converting enzyme inhibitory activity of hydrolysates generated from crude barley (Hordeum vulgare) protein concentrates. Food Chem 2016; 203: 367-74.
[http://dx.doi.org/10.1016/j.foodchem.2016.02.097] [PMID: 26948626]
[170]
Shtatland T, Guettler D, Kossodo M, Pivovarov M, Weissleder R. PepBank--a database of peptides based on sequence text mining and public peptide data sources. BMC Bioinformatics 2007; 8: 280.
[http://dx.doi.org/10.1186/1471-2105-8-280] [PMID: 17678535]
[171]
Shi L, Zhang Q, Rui W, et al. BioPD: a web-based information center for bioactive peptides. Regul Pept 2004; 120(1-3): 1-3.
[http://dx.doi.org/10.1016/j.regpep.2004.03.002] [PMID: 15177914]
[172]
UniProt: a hub for protein information. Nucleic Acids Res 2015; 43(Database issue): D204-12.
[PMID: 25348405]
[173]
Wang Z, Wang G. APD: the Antimicrobial Peptide Database. Nucleic Acids Res 2004; 32(Database issue): D590-2.
[http://dx.doi.org/10.1093/nar/gkh025] [PMID: 14681488]
[174]
Fälth M, Sköld K, Norrman M, Svensson M, Fenyö D, Andren PE. SwePep, a database designed for endogenous peptides and mass spectrometry. Mol Cell Proteomics 2006; 5(6): 998-1005.
[http://dx.doi.org/10.1074/mcp.M500401-MCP200] [PMID: 16501280]
[175]
Xu H, Freitas MA. MassMatrix: a database search program for rapid characterization of proteins and peptides from tandem mass spectrometry data. Proteomics 2009; 9(6): 1548-55.
[http://dx.doi.org/10.1002/pmic.200700322] [PMID: 19235167]
[176]
Piotto SP, Sessa L, Concilio S, Iannelli P. YADAMP: yet another database of antimicrobial peptides. Int J Antimicrob Agents 2012; 39(4): 346-51.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.12.003] [PMID: 22325123]
[177]
Kumar R, Chaudhary K, Sharma M, et al. AHTPDB : a comprehensive platform for analysis and presentation of antihypertensive peptides 2015.
[http://dx.doi.org/10.1093/nar/gku1141]
[178]
Pirtskhalava M, Gabrielian A, Cruz P, et al. DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res 2016; 44(D1): D1104-12.
[http://dx.doi.org/10.1093/nar/gkv1174] [PMID: 26578581]
[179]
Sharma A, Gupta P, Kumar R, Bhardwaj A. dPABBs: A novel in silico approach for predicting and designing anti-biofilm peptides. Sci Rep 2016; 6: 21839.
[http://dx.doi.org/10.1038/srep21839] [PMID: 26912180]
[180]
Usmani SS, Bedi G, Samuel JS, et al. THPdb: Database of FDA-approved peptide and protein therapeutics. 2017; 1-12.
[181]
Manavalan B, Basith S, Shin TH, et al. MLACP : machine-learning-based peptides prediction of anticancer 2017.
[http://dx.doi.org/10.18632/oncotarget.20365]
[182]
Anekthanakul K, Hongsthong A, Senachak J, et al. SpirPep : an in silico digestion-based platform to assist bioactive peptides discovery from a genome-wide database 2018.
[http://dx.doi.org/10.1186/s12859-018-2143-0]
[183]
Bhadra P, Yan J, Li J, Fong S, Siu SWI. AmPEP: Sequencebased prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest Sci Rep 2018; 8(1): 1697.
[http://dx.doi.org/10.1038/s41598-018-19752-w] [PMID: 29374199]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy