Review Article

结旋藻抗高血压、抗菌和抗癌肽的治疗潜力:一个小综述

卷 20, 期 8, 2020

页: [593 - 606] 页: 14

弟呕挨: 10.2174/1566524020666200319113006

价格: $65

摘要

摘要由于节旋藻(syn Spirulina)的生物肽被公认为安全的“GRAS”,其蛋白质含量高,以及作为补充剂和营养剂的历史悠久,人们对其的兴趣日益浓厚。节旋肽可以通过使用蛋白酶对蛋白质进行控制水解,然后进行分离而得到。所获得的多肽具有多种治疗作用。在这些生物活性肽中,有三类是最重要的:抗高血压(AHP)、抗菌(AMP)和抗癌(ACP)肽。ahp有能力工作作为血管紧张素转换酶(ACE)抑制剂,并帮助控制一些疾病如高血压、肥胖、和心血管问题,安培免疫反应中发挥着至关重要的作用,抑制病原体如细菌、真菌、病毒和其他人,虽然ACPs可以帮助肿瘤控制诱导的细胞凋亡或坏死,或血管生成的抑制作用。因此,生物活性肽对制药工业具有重要意义。然而,它们可以显示出副作用。本文综述了旋毛虫抗菌、高血压和抗癌肽的抑制机制,并根据其活性类型和强度对其可能的结构进行了研究。此外,本文还介绍了吸收机制的纯化方法,并对肽设计数据库进行了综述。

关键词: 螺旋藻,生物活性肽,抗高血压,抗菌,抗癌,酶解。

[1]
Ovando CA, de Carvalho JC, Vinícius de Melo Pereira G, et al. Functional properties and health benefits of bioactive peptides derived from Spirulina: A review. Food Rev Int 2018; 34: 34-51.
[http://dx.doi.org/10.1080/87559129.2016.1210632]
[2]
Kadam SU, Tiwari BK, Álvarez C, et al. Ultrasound applications for the extraction, identification and delivery of food proteins and bioactive peptides. Trends Food Sci Technol 2015; 46: 60-7.
[http://dx.doi.org/10.1016/j.tifs.2015.07.012]
[3]
Harnedy PA, FitzGerald RJ. Bioactive peptides from marine processing waste and shellfish: A review. J Funct Foods 2012; 4: 6-24.
[http://dx.doi.org/10.1016/j.jff.2011.09.001]
[4]
Kim SK, Wijesekara I. Development and biological activities of marine-derived bioactive peptides: A review. J Funct Foods 2010; 2: 1-9.
[http://dx.doi.org/10.1016/j.jff.2010.01.003]
[5]
Clare DA, Swaisgood HE. Bioactive milk peptides: a prospectus. J Dairy Sci 2000; 83(6): 1187-95.
[http://dx.doi.org/10.3168/jds.S0022-0302 (00)74983-6] [PMID: 10877382]
[6]
Singh S, Chaudhary K, Dhanda SK, et al. SATPdb: a database of structurally annotated therapeutic peptides. Nucleic Acids Res 2016; 44(D1): D1119-26.
[http://dx.doi.org/10.1093/nar/gkv1114] [PMID: 26527728]
[7]
Yu J, Hu Y, Xue M, et al. Purification and Identification of Antioxidant Peptides from Enzymatic Hydrolysate of Spirulina platensis. J Microbiol Biotechnol 2016; 26(7): 1216-23.
[http://dx.doi.org/10.4014/jmb.1601.01033] [PMID: 27090190]
[8]
US Food and Drug Administration. No Title
[9]
Wu Q, Liu L, Miron A, Klímová B, Wan D, Kuča K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch Toxicol 2016; 90(8): 1817-40.
[http://dx.doi.org/10.1007/s00204-016-1744-5] [PMID: 27259333]
[10]
Jang I-S, Park SJ. A Spirulina maxima-derived peptide inhibits HIV-1 infection in a human T cell line MT4. Fish Aquat Sci 2016; 19: 37.
[http://dx.doi.org/10.1186/s41240-016-0039-3]
[11]
He HL, Liu D, Ma CB. Review on the angiotensin-I-converting enzyme (ACE) inhibitor peptides from marine proteins. Appl Biochem Biotechnol 2013; 169(3): 738-49.
[http://dx.doi.org/10.1007/s12010-012-0024-y] [PMID: 23271625]
[13]
Puchalska P, Marina Alegre ML, García López MC. Isolation and characterization of peptides with antihypertensive activity in foodstuffs. Crit Rev Food Sci Nutr 2015; 55(4): 521-51.
[http://dx.doi.org/10.1080/10408398.2012.664829] [PMID: 24915368]
[14]
Samarakoon K, Jeon YJ. Bio-functionalities of proteins derived from marine algae - A review. Food Res Int 2012; 48: 948-60.
[http://dx.doi.org/10.1016/j.foodres.2012.03.013]
[15]
Fitzgerald C, Gallagher E, Tasdemir D, Hayes M. Heart health peptides from macroalgae and their potential use in functional foods. J Agric Food Chem 2011; 59(13): 6829-36.
[http://dx.doi.org/10.1021/jf201114d] [PMID: 21574559]
[16]
Wijesekara I, Qian ZJ, Ryu B, et al. Purification and identification of antihypertensive peptides from seaweed pipefish (Syngnathus schlegeli) muscle protein hydrolysate. Food Res Int 2011; 44: 703-7.
[http://dx.doi.org/10.1016/j.foodres.2010.12.022]
[17]
Jung WK, Mendis E, Je JY, et al. Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chem 2006; 94: 26-32.
[http://dx.doi.org/10.1016/j.foodchem.2004.09.048]
[18]
Ang YAY. Arczak EW a DM, Okoo MEY, et al Isolation and Antihypertensive Effect of Angiotensin I-Converting Enzyme (ACE). Inhibitory Peptides from Spinach Rubisco 2003; pp. 4897-902.
[19]
Hernández-Ledesma B, del Mar Contreras M, Recio I. Antihypertensive peptides: production, bioavailability and incorporation into foods. Adv Colloid Interface Sci 2011; 165(1): 23-35.
[http://dx.doi.org/10.1016/j.cis.2010.11.001] [PMID: 21185549]
[20]
Marques C, Amorim MM, Pereira JO, et al. Bioactive peptides: are there more antihypertensive mechanisms beyond ACE inhibition? Curr Pharm Des 2012; 18(30): 4706-13.
[http://dx.doi.org/10.2174/138161212802651670] [PMID: 22725850]
[21]
Erdmann K, Cheung BWY, Schröder H. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J Nutr Biochem 2008; 19(10): 643-54.
[http://dx.doi.org/10.1016/j.jnutbio.2007.11.010] [PMID: 18495464]
[22]
Singh BP, Vij S, Hati S. Functional significance of bioactive peptides derived from soybean. Peptides 2014; 54: 171-9.
[http://dx.doi.org/10.1016/j.peptides.2014.01.022] [PMID: 24508378]
[23]
Natesh R, Schwager SLU, Sturrock ED, Acharya KR. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature 2003; 421(6922): 551-4.
[http://dx.doi.org/10.1038/nature01370] [PMID: 12540854]
[24]
Udenigwe CC, Mohan A. Mechanisms of food protein-derived antihypertensive peptides other than ACE inhibition. J Funct Foods 2014; 8: 45-52.
[http://dx.doi.org/10.1016/j.jff.2014.03.002]
[25]
Fujita H, Yokoyama K, Yoshikawa M. Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. J Food Sci 2000; 65: 564-9.
[http://dx.doi.org/10.1111/j.1365-2621.2000.tb16049.x]
[26]
García MC, Puchalska P, Esteve C, Marina ML. Vegetable foods: a cheap source of proteins and peptides with antihypertensive, antioxidant, and other less occurrence bioactivities. Talanta 2013; 106: 328-49.
[http://dx.doi.org/10.1016/j.talanta.2012.12.041] [PMID: 23598136]
[27]
Iwaniak A, Minkiewicz P, Darewicz M. Food-originating ACE inhibitors, includinIWANIAK, A.; MINKIEWICZ, P.; DAREWICZ, M. Food-originating ACE inhibitors, including antihypertensive peptides, as preventive food components in blood pressure reduction. Comprehensive Reviews in Food Science and F. Compr Rev Food Sci Food Saf 2014; 13: 114-34.
[http://dx.doi.org/10.1111/1541-4337.12051]
[28]
Mulero J, Zafrilla P, Martínez-Cachá A, et al. Peptidos bioactivos. Clin Investig Arterioscler 2011; 23: 219-27.
[http://dx.doi.org/10.1016/j.arteri.2011.04.004]
[29]
Ruiz JAG, Ramos M, Recio I. Angiotensin converting enzyme-inhibitory activity of peptides isolated from Manchego cheese. Stability under simulated gastrointestinal digestion. Int Dairy J 2004; 14: 1075-80.
[http://dx.doi.org/10.1016/j.idairyj.2004.04.007]
[30]
Wijesekara I, Kim SK. Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: prospects in the pharmaceutical industry. Mar Drugs 2010; 8(4): 1080-93.
[http://dx.doi.org/10.3390/md8041080] [PMID: 20479968]
[31]
Cushman DW, Cheung HS. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol 1971; 20(7): 1637-48.
[http://dx.doi.org/10.1016/0006-2952 (71)90292-9] [PMID: 4355305]
[32]
Martínez-Maqueda D, Miralles B, Recio I, Hernández-Ledesma B. Antihypertensive peptides from food proteins: a review. Food Funct 2012; 3(4): 350-61.
[http://dx.doi.org/10.1039/c2fo10192k] [PMID: 22249830]
[33]
Zeng M, Zhao Y, Liu Z, et al. ACE-inhibitory Activities of Marine Proteins and PeptidesMarine Proteins and Peptides. Chichester, UK: John Wiley & Sons, Ltd 2013; pp. 431-40.
[http://dx.doi.org/10.1002/9781118375082.ch20]
[34]
Agyei D, Ongkudon CM, Wei CY, et al. Bioprocess challenges to the isolation and purification of bioactive peptides. Food Bioprod Process 2016; 98: 244-56.
[http://dx.doi.org/10.1016/j.fbp.2016.02.003]
[35]
Vermeirssen V, van der Bent A, Van Camp J, van Amerongen A, Verstraete W. A quantitative in silico analysis calculates the angiotensin I converting enzyme (ACE) inhibitory activity in pea and whey protein digests. Biochimie 2004; 86(3): 231-9.
[http://dx.doi.org/10.1016/j.biochi.2004.01.003] [PMID: 15134838]
[36]
Suetsuna K, Chen JR. Identification of antihypertensive peptides from peptic digest of two microalgae, Chlorella vulgaris and Spirulina platensis. Mar Biotechnol (NY) 2001; 3(4): 305-9.
[http://dx.doi.org/10.1007/s10126-001-0012-7] [PMID: 14961345]
[37]
Lu J, Yang Y, Chen L, et al. In vivo Antihypertensive Effect of Val-Glu-Pro in Spontaneously Hypertensive Rats. Prog Biochem Biophys 2011; 38: 353-60.
[http://dx.doi.org/10.3724/SP.J.1206.2010.00533]
[38]
Heo S-Y, Ko S-C, Phan TTV, et al. A novel peptide isolated from Spirulina sp. gastrointestinal hydrolysate inhibits angiotensin i-converting enzyme and angiotensin II stimulated vascular dysfunction factors in human endothelial cells. World Aquac 2015; 2015: 1.
[39]
Lu J, Ren DF, Xue YL, Sawano Y, Miyakawa T, Tanokura M. Isolation of an antihypertensive peptide from alcalase digest of Spirulina platensis. J Agric Food Chem 2010; 58(12): 7166-71.
[http://dx.doi.org/10.1021/jf100193f] [PMID: 20509691]
[40]
Pan H, She X, Wu H, Ma J, Ren D, Lu J. Long-Term Regulation of the Local Renin-Angiotensin System in the Myocardium of Spontaneously Hypertensive Rats by Feeding Bioactive Peptides Derived from Spirulina platensis. J Agric Food Chem 2015; 63(35): 7765-74.
[http://dx.doi.org/10.1021/acs.jafc.5b02801] [PMID: 26245714]
[41]
Mahdieh G, Fazilati M, Izadi M. Asian Journal of Green Chemistry Orginal Research Article Extraction and isolation of anti-hypertensive peptide by alkalase from spirulina platensis 2019.
[42]
Sannasimuthu A, Kumaresan V, Anilkumar S, et al. AC SC. Free Radic Biol Med
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.03.006] [PMID: 30862544]
[43]
He Y, Li T, Chen J, et al. Transport of ACE Inhibitory Peptides Ile-Gln-Pro and Val-Glu-Pro Derived from Spirulina platensis Across Caco-2 Monolayers 2018.
[http://dx.doi.org/10.1111/1750-3841.14350]
[44]
Wang Z, Zhang X. Characterization and antitumor activity of protein hydrolysates from Arthrospira platensis (Spirulina platensis) using two-step hydrolysis. J Appl Phycol
[http://dx.doi.org/10.1007/s10811-016-0881-9]
[45]
Wang Z, Zhang X. Isolation and identification of anti-proliferative peptides from Spirulina platensis using three-step hydrolysis. J Sci Food Agric 2017; 97(3): 918-22.
[http://dx.doi.org/10.1002/jsfa.7815] [PMID: 27218227]
[46]
Wang Z, Zhang X. Inhibitory effects of small molecular peptides from Spirulina (Arthrospira) platensis on cancer cell growth. Food Funct 2016; 7(2): 781-8.
[http://dx.doi.org/10.1039/C5FO01186H] [PMID: 26584028]
[47]
Zhang B, Zhang X. Separation and nanoencapsulation of antitumor polypeptide from Spirulina platensis. Biotechnol Prog 2013; 29(5): 1230-8.
[http://dx.doi.org/10.1002/btpr.1769] [PMID: 23836728]
[48]
Sun Y, Chang R, Li Q, et al. Isolation and characterization of an antibacterial peptide from protein hydrolysates of Spirulina platensis. Eur Food Res Technol 2016; 242: 685-92.
[http://dx.doi.org/10.1007/s00217-015-2576-x]
[49]
Montalvo GEB, Thomaz-Soccol V, Vandenberghe LPS, et al. Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production. Bioresour Technol 2019; 273: 103-13.
[http://dx.doi.org/10.1016/j.biortech.2018.10.081] [PMID: 30419445]
[50]
Jao C-L, Huang S-L, Hsu K-C. Angiotensin I-converting enzyme inhibitory peptides: Inhibition mode, bioavailability, and antihypertensive effects. Biomedicine (Taipei) 2012; 2: 130-6.
[http://dx.doi.org/10.1016/j.biomed.2012.06.005]
[51]
Qian ZJ, Je JY, Kim SK. Antihypertensive effect of angiotensin i converting enzyme-inhibitory peptide from hydrolysates of Bigeye tuna dark muscle, Thunnus obesus. J Agric Food Chem 2007; 55(21): 8398-403.
[http://dx.doi.org/10.1021/jf0710635] [PMID: 17894458]
[52]
Sharma R. Enzyme Inhibition: Mechanisms and Scope. In: In: Enzyme Inhibition and Bioapplications InTech. 2012. Epub ahead of print May 2012
[53]
Rawlings N, Salvesern G. Peptidyl-Dipeptidase A/Angiotensin I-converting Enzyme. In: In: Handbook of Proteolytic Enzymes. London: Elseiver LTd 2012; pp. 480-92.
[54]
Sayari N, Sila A, Haddar A, Balti R, Ellouz-Chaabouni S, Bougatef A. Valorisation of smooth hound (Mustelus mustelus) waste biomass through recovery of functional, antioxidative and antihypertensive bioactive peptides. Environ Sci Pollut Res Int 2016; 23(1): 366-76.
[http://dx.doi.org/10.1007/s11356-015-5244-6] [PMID: 26308921]
[55]
Li Y, Zhou J, Zeng X, Yu J. A Novel ACE Inhibitory Peptide Ala-His-Leu-Leu Lowering Blood Pressure in Spontaneously Hypertensive Rats. J Med Food 2016; 19(2): 181-6.
[http://dx.doi.org/10.1089/jmf.2015.3483] [PMID: 26295690]
[56]
Shabestarian H, Asoodeh A, Homayouni-Tabrizi M, et al. Antioxidant and Angiotensin I Converting Enzyme (ACE) Inhibitory Properties of GL-9 Peptide. J Food Process Preserv
[http://dx.doi.org/10.1111/jfpp.12838]
[57]
Lu J, Sawano Y, Miyakawa T, et al. One-week antihypertensive effect of Ile-Gln-Pro in spontaneously hypertensive rats. J Agric Food Chem 2011; 59(2): 559-63.
[http://dx.doi.org/10.1021/jf104126a] [PMID: 21182294]
[58]
Sila A, Nedjar-Arroume N, Hedhili K, et al. Antibacterial peptides from barbel muscle protein hydrolysates: Activity against some pathogenic bacteria. Lebensm Wiss Technol 2014; 55: 183-8.
[http://dx.doi.org/10.1016/j.lwt.2013.07.021]
[59]
Maddaly R. The beneficial effects of spirulina focusing on its immunomodulatory and antioxidant properties. Nutr Diet Suppl 2010; 73.
[http://dx.doi.org/10.2147/NDS.S9838]
[60]
Diamond G, Beckloff N, Weinberg A, Kisich KO. The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 2009; 15(21): 2377-92.
[http://dx.doi.org/10.2174/138161209788682325] [PMID: 19601838]
[61]
Phoenix DA, Dennison SR, Harris F. Antimicrobial Peptides 2012.
[62]
Cudic M, Otvos L. Intracellular Targets of Antibacterial Peptides 2002.
[http://dx.doi.org/10.2174/1389450024605445]
[63]
Mohanty D, Jena R, Choudhury PK, et al. Milk Derived Antimicrobial Bioactive Peptides: A Review. Int J Food Prop 2016; 19: 837-46.
[http://dx.doi.org/10.1080/10942912.2015.1048356]
[64]
Schuerholz T, Brandenburg K, Marx G. Antimicrobial peptides and their potential application in inflammation and sepsis. Crit Care 2012; 16(2): 207.
[http://dx.doi.org/10.1186/cc11220] [PMID: 22429567]
[65]
Pfalzgraff A, Heinbockel L, Su Q, Gutsmann T, Brandenburg K, Weindl G. Synthetic antimicrobial and LPS-neutralising peptides suppress inflammatory and immune responses in skin cells and promote keratinocyte migration. Sci Rep 2016; 6: 31577.
[http://dx.doi.org/10.1038/srep31577] [PMID: 27509895]
[66]
Pini A, Falciani C, Mantengoli E, et al. A novel tetrabranched antimicrobial peptide that neutralizes bacterial lipopolysaccharide and prevents septic shock in vivo. FASEB J 2010; 24(4): 1015-22.
[http://dx.doi.org/10.1096/fj.09-145474] [PMID: 19917670]
[67]
Rahnamaeian M. Antimicrobial peptides: modes of mechanism, modulation of defense responses. Plant Signal Behav 2011; 6(9): 1325-32.
[http://dx.doi.org/10.4161/psb.6.9.16319] [PMID: 21847025]
[68]
Reddy KVR, Yedery RD, Aranha C. Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 2004; 24(6): 536-47.
[http://dx.doi.org/10.1016/j.ijantimicag.2004.09.005] [PMID: 15555874]
[69]
Haney EF, Hancock RE. Peptide design for antimicrobial and immunomodulatory applications. Biopolymers 2013; 100(6): 572-83.
[http://dx.doi.org/10.1002/bip.22250] [PMID: 23553602]
[70]
Barbosa Pelegrini P, Del Sarto RP, Silva ON, Franco OL, Grossi-de-Sa MF. Antibacterial peptides from plants: what they are and how they probably work. Biochem Res Int 2011.2011250349
[http://dx.doi.org/10.1155/2011/250349] [PMID: 21403856]
[71]
Bulet P, Stöcklin R, Menin L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 2004; 198: 169-84.
[http://dx.doi.org/10.1111/j.0105-2896.2004.0124.x] [PMID: 15199962]
[72]
Smith VJ, Desbois AP, Dyrynda EA. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar Drugs 2010; 8(4): 1213-62.
[http://dx.doi.org/10.3390/md8041213] [PMID: 20479976]
[73]
Ganz T. The role of antimicrobial peptides in innate immunity. Integr Comp Biol 2003; 43(2): 300-4.
[http://dx.doi.org/10.1093/icb/43.2.300] [PMID: 21680437]
[74]
Markossian KA, Zamyatnin AA, Kurganov BI. Antibacterial proline-rich oligopeptides and their target proteins. Biochemistry (Mosc) 2004; 69(10): 1082-91.
[http://dx.doi.org/10.1023/B:BIRY.0000046881.29486.51] [PMID: 15527407]
[75]
Gagnon MG, Roy RN, Lomakin IB, Florin T, Mankin AS, Steitz TA. Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition. Nucleic Acids Res 2016; 44(5): 2439-50.
[http://dx.doi.org/10.1093/nar/gkw018] [PMID: 26809677]
[76]
Jindal HM, Le CF, Mohd Yusof MY, et al. Antimicrobial Activity of Novel Synthetic Peptides Derived from Indolicidin and Ranalexin against Streptococcus pneumoniae. PLoS One 2015; 10(6)e0128532
[http://dx.doi.org/10.1371/journal.pone.0128532] [PMID: 26046345]
[77]
Li W-F, Ma G-X, Zhou X-X. Apidaecin-type peptides: biodiversity, structure-function relationships and mode of action. Peptides 2006; 27(9): 2350-9.
[http://dx.doi.org/10.1016/j.peptides.2006.03.016] [PMID: 16675061]
[78]
Zeng M, Liu Z, Zhao Y, et al. Antimicrobial Activities of Marine Protein and PeptidesMarine Proteins and Peptides. Chichester, UK: John Wiley & Sons, Ltd 2013; pp. 369-83.
[http://dx.doi.org/10.1002/9781118375082.ch17]
[79]
Andersson DI, Hughes D, Kubicek-Sutherland JZ. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat 2016; 26: 43-57.
[http://dx.doi.org/10.1016/j.drup.2016.04.002] [PMID: 27180309]
[80]
Bechinger B. Structure and function of membrane-lytic peptides. CRC Crit Rev Plant Sci 2004; 23: 271-92.
[http://dx.doi.org/10.1080/07352680490452825]
[81]
Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Goździcka-Józefiak A. Plant antimicrobial peptides. Folia Microbiol (Praha) 2014; 59(3): 181-96.
[http://dx.doi.org/10.1007/s12223-013-0280-4] [PMID: 24092498]
[82]
Nicolas P. Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. FEBS J 2009; 276(22): 6483-96.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07359.x] [PMID: 19817856]
[83]
Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1999; 1462(1-2): 55-70.
[http://dx.doi.org/10.1016/S0005-2736 (99)00200-X] [PMID: 10590302]
[84]
Malmsten M. Antimicrobial peptides. Ups J Med Sci 2014; 119(2): 199-204.
[http://dx.doi.org/10.3109/03009734.2014.899278] [PMID: 24758244]
[85]
Powers JPS, Hancock REW. The relationship between peptide structure and antibacterial activity. Peptides 2003; 24(11): 1681-91.
[http://dx.doi.org/10.1016/j.peptides.2003.08.023] [PMID: 15019199]
[86]
Hetru C. Antimicrobial peptides. Parasitol Today 1995; 11: 398.
[http://dx.doi.org/10.1016/0169-4758 (95)80014-X]
[87]
Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 2016; 6(2): 71-9.
[http://dx.doi.org/10.1016/j.jpha.2015.11.005] [PMID: 29403965]
[88]
Wu X, Wang Z, Li X, et al. In vitro and in vivo activities of antimicrobial peptides developed using an amino acid-based activity prediction method. Antimicrob Agents Chemother 2014; 58(9): 5342-9.
[http://dx.doi.org/10.1128/AAC.02823-14] [PMID: 24982064]
[89]
Jorgensen JH, Turnidge JD. Susceptibility Test Methods: Dilution and Disk Diffusion Methods*. Microbiology, 11th Edition. In: Manual of Clinical American Society of Microbiology. 2015; pp. 1253-73.
[90]
Zhao J, Guo L, Zeng H, et al. Purification and characterization of a novel antimicrobial peptide from Brevibacillus laterosporus strain A60. Peptides 2012; 33(2): 206-11.
[http://dx.doi.org/10.1016/j.peptides.2012.01.001] [PMID: 22244810]
[91]
Harrison PL, Abdel-Rahman MA, Strong PN, Tawfik MM, Miller K. Characterisation of three alpha-helical antimicrobial peptides from the venom of Scorpio maurus palmatus. Toxicon 2016; 117: 30-6.
[http://dx.doi.org/10.1016/j.toxicon.2016.03.014] [PMID: 27019370]
[92]
Ranjani R. Anticancer properties of blue green algae Spirulina platensis – Review. Int J Med Pharm Sci 2013; 3: 159-68.
[93]
Borghouts C, Kunz C, Groner B. Current strategies for the development of peptide-based anti-cancer therapeutics. J Pept Sci 2005; 11(11): 713-26.
[http://dx.doi.org/10.1002/psc.717] [PMID: 16138387]
[94]
Shahidi F, Li Q, Shahidi F Li Q. from Foods
[95]
Pangestuti R, Kim SK. Bioactive peptide of marine origin for the prevention and treatment of non-communicable diseases. Mar Drugs 2017; 15(3): 1-23.
[http://dx.doi.org/10.3390/md15030067] [PMID: 28282929]
[97]
Gali-Muhtasib H, Hmadi R, Kareh M, Tohme R, Darwiche N. Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis. Apoptosis 2015; 20(12): 1531-62.
[http://dx.doi.org/10.1007/s10495-015-1169-2] [PMID: 26362468]
[98]
Hernández-Ledesma B, Hsieh CC. Chemopreventive role of food-derived proteins and peptides: A review. Crit Rev Food Sci Nutr 2017; 57(11): 2358-76.
[http://dx.doi.org/10.1080/10408398.2015.1057632] [PMID: 26565142]
[99]
Cicero AFG, Fogacci F, Colletti A. Potential role of bioactive peptides in prevention and treatment of chronic diseases: a narrative review. Br J Pharmacol 2017; 174(11): 1378-94.
[http://dx.doi.org/10.1111/bph.13608] [PMID: 27572703]
[100]
Li B, Zhang X, Gao M, Chu X. Effects of CD59 on antitumoral activities of phycocyanin from Spirulina platensis. Biomed Pharmacother 2005; 59(10): 551-60.
[http://dx.doi.org/10.1016/j.biopha.2005.06.012] [PMID: 16271846]
[101]
Li B, Gao M-H, Zhang X-C, Chu XM. Molecular immune mechanism of C-phycocyanin from Spirulina platensis induces apoptosis in HeLa cells in vitro. Biotechnol Appl Biochem 2006; 43(Pt 3): 155-64.
[http://dx.doi.org/10.1042/BA20050142] [PMID: 16316316]
[102]
Czerwonka A, Kaławaj K, Sławińska-Brych A, et al. Anticancer effect of the water extract of a commercial Spirulina (Arthrospira platensis) product on the human lung cancer A549 cell line. Biomed Pharmacother 2018; 106: 292-302.
[http://dx.doi.org/10.1016/j.biopha.2018.06.116] [PMID: 29966973]
[103]
Lee Y, Phat C, Hong S-C. Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications. Peptides 2017; 95: 94-105.
[http://dx.doi.org/10.1016/j.peptides.2017.06.002] [PMID: 28610952]
[104]
Raucher D, Ryu JS. Cell-penetrating peptides: strategies for anticancer treatment. Trends Mol Med 2015; 21(9): 560-70.
[http://dx.doi.org/10.1016/j.molmed.2015.06.005] [PMID: 26186888]
[105]
Oelkrug C, Hartke M, Schubert A. Mode of action of anticancer peptides (ACPs) from amphibian origin. Anticancer Res 2015; 35(2): 635-43.
[PMID: 25667440]
[106]
Chalamaiah M, Yu W, Wu J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem 2018; 245: 205-22.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.087] [PMID: 29287362]
[107]
Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene 2008; 27(50): 6398-406.
[http://dx.doi.org/10.1038/onc.2008.307] [PMID: 18955968]
[108]
Lessene G, Czabotar PE, Colman PM. BCL-2 family antagonists for cancer therapy. Nat Rev Drug Discov 2008; 7(12): 989-1000.
[http://dx.doi.org/10.1038/nrd2658] [PMID: 19043450]
[109]
Perlman H, Zhang X, Chen MW, Walsh K, Buttyan R. An elevated bax/bcl-2 ratio corresponds with the onset of prostate epithelial cell apoptosis. Cell Death Differ 1999; 6(1): 48-54.
[http://dx.doi.org/10.1038/sj.cdd.4400453] [PMID: 10200547]
[110]
Zheng L, Lin X, Wu N, et al. Targeting cellular apoptotic pathway with peptides from marine organisms. Biochim Biophys Acta 2013; 1836(1): 42-8.
[PMID: 23470652]
[111]
Creagh EM. Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends Immunol 2014; 35(12): 631-40.
[http://dx.doi.org/10.1016/j.it.2014.10.004] [PMID: 25457353]
[112]
Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 1999; 68: 383-424.
[http://dx.doi.org/10.1146/annurev.biochem.68.1.383] [PMID: 10872455]
[113]
Wagner EF, Nebreda ÁR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 2009; 9(8): 537-49.
[http://dx.doi.org/10.1038/nrc2694] [PMID: 19629069]
[114]
Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene 2008; 27(48): 6245-51.
[http://dx.doi.org/10.1038/onc.2008.301] [PMID: 18931691]
[115]
Sang T, Kim Y, Hung D, et al. International Journal of Biological Macromolecules Spirulina maxima peptides suppress mast cell degranulation via inactivating Akt and MAPKs phosphorylation in RBL-2H3 cells. Int J Biol Macromol 2018; 3-8.
[116]
Xia Y, Shen S, Verma IMNF-B. NF-κB, an active player in human cancers. Cancer Immunol Res 2014; 2(9): 823-30.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0112] [PMID: 25187272]
[117]
Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007; 35(4): 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[118]
Suleria HAR, Gobe G, Masci P, et al. Marine bioactive compounds and health promoting perspectives; innovation pathways for drug discovery. Trends Food Sci Technol 2016; 50: 44-55.
[http://dx.doi.org/10.1016/j.tifs.2016.01.019]
[119]
Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY) 2016; 8(4): 603-19.
[http://dx.doi.org/10.18632/aging.100934] [PMID: 27019364]
[120]
Jin Z, El-Deiry WS. Overview of cell death signaling pathways. Cancer Biol Ther 2005; 4(2): 139-63.
[http://dx.doi.org/10.4161/cbt.4.2.1508] [PMID: 15725726]
[121]
Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 2013; 1833(12): 3448-59.
[http://dx.doi.org/10.1016/j.bbamcr.2013.06.001] [PMID: 23770045]
[122]
Navam H, Sato K, Marshall M, et al. Bioactive Food 2012.
[123]
Proskuryakov SY, Gabai VL. Mechanisms of tumor cell necrosis. Curr Pharm Des 2010; 16(1): 56-68.
[http://dx.doi.org/10.2174/138161210789941793] [PMID: 20214618]
[124]
Wu D, Gao Y, Qi Y, Chen L, Ma Y, Li Y. Peptide-based cancer therapy: opportunity and challenge. Cancer Lett 2014; 351(1): 13-22.
[http://dx.doi.org/10.1016/j.canlet.2014.05.002] [PMID: 24836189]
[125]
Zheng LH, Wang YJ, Sheng J, et al. Antitumor peptides from marine organisms. Mar Drugs 2011; 9(10): 1840-59.
[http://dx.doi.org/10.3390/md9101840] [PMID: 22072999]
[126]
Yadav L. Tumour Angiogenesis and Angiogenic Inhibitors: AReview. J Clin DIAGNOSTIC Res Epub ahead of print 2015
[127]
Harrison R. Conventional chromatography 1993.
[128]
Shahidi F, Zhong Y. Bioactive peptides. J AOAC Int 2008; 91(4): 914-31.
[http://dx.doi.org/10.1093/jaoac/91.4.914] [PMID: 18727554]
[129]
Lemes AC, Sala L, Ores JDC, et al. A review of the latest advances in encrypted bioactive peptides from protein-richwaste
[130]
Mant CT, Chen Y, Yan Z, et al. HPLC analysis and purification of peptides. Methods Mol Biol 2007; 386: 3-55.
[http://dx.doi.org/10.1007/978-1-59745-430-8_1] [PMID: 18604941]
[131]
Lam H. Purification of ProteinPrinciples and Reactions of Protein Extraction, Purification, and Characterization Hafiz Ahmed. Florida: CRC Press LLC 2004; pp. 133-90.
[132]
Aguilar MTM. HPLC of Peptides 2004.
[133]
Andrew Hughes. Amino Acids, Peptides and Proteins in Organic Chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA2010. Epub ahead of print December 2010
[134]
Hara T, Huang Y, Ito A, Kawakami T, Hojo H, Murata M. Trifluoroethanol-containing RP-HPLC mobile phases for the separation of transmembrane peptides human glycophorin-A, integrin alpha-1, and p24: analysis and prevention of potential side reactions due to formic acid. J Pept Sci 2015; 21(2): 61-70.
[http://dx.doi.org/10.1002/psc.2717] [PMID: 25504594]
[135]
Roe S. Protein Purification Applications: A Practical Approach 2001.
[136]
Mori S, Barth HG. Size exclusion chromatography 1999.
[http://dx.doi.org/10.1007/978-3-662-03910-6]
[137]
Williams A, Frasca V. Ion-Exchange ChromatographyCurrent Protocols in Protein Science. Hoboken, NJ, USA: John Wiley & Sons, Inc. 1999; pp. 10-8.
[138]
Perez Espitia PJ, de Fátima Ferreira Soares N, dos Reis Coimbra JS, et al. Bioactive Peptides: Synthesis, Properties, and Applications in the Packaging and Preservation of Food. Compr Rev Food Sci Food Saf 2012; 11: 187-204.
[http://dx.doi.org/10.1111/j.1541-4337.2011.00179.x]
[139]
Saxena A, Tripathi BP, Kumar M, Shahi VK. Membrane-based techniques for the separation and purification of proteins: an overview. Adv Colloid Interface Sci 2009; 145(1-2): 1-22.
[http://dx.doi.org/10.1016/j.cis.2008.07.004] [PMID: 18774120]
[140]
Sperstad SV, Haug T, Blencke HM, Styrvold OB, Li C, Stensvåg K. Antimicrobial peptides from marine invertebrates: challenges and perspectives in marine antimicrobial peptide discovery. Biotechnol Adv 2011; 29(5): 519-30.
[http://dx.doi.org/10.1016/j.biotechadv.2011.05.021] [PMID: 21683779]
[141]
Ali I, Al-Othman ZA, Al-Warthan A, Asnin L, Chudinov A. Advances in chiral separations of small peptides by capillary electrophoresis and chromatography. J Sep Sci 2014; 37(18): 2447-66.
[http://dx.doi.org/10.1002/jssc.201400587] [PMID: 25044566]
[142]
Hühner J, Lämmerhofer M, Neusüß C. Capillary isoelectric focusing-mass spectrometry: Coupling strategies and applications. Electrophoresis 2015; 36(21-22): 2670-86.
[http://dx.doi.org/10.1002/elps.201500185] [PMID: 26299384]
[143]
Burgi D, Smith AJ. Capillary electrophoresis of proteins and peptides. In: Curr Protoc Protein Sci 2001. 9.
[PMID: 18429100]
[144]
Knight M, Fagarasan MO, Takahashi K, Geblaoui AZ, Ma Y, Ito Y. Separation and purification of peptides by high-speed counter-current chromatography. J Chromatogr A 1995; 702(1-2): 207-14.
[http://dx.doi.org/10.1016/0021-9673 (94)01158-B] [PMID: 7599740]
[145]
Wang X, Dong H, Liu Y, Yang B, Wang X, Huang L. Application of high-speed counter-current chromatography for preparative separation of cyclic peptides from Vaccaria segetalis. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879(11-12): 811-4.
[http://dx.doi.org/10.1016/j.jchromb.2011.02.001] [PMID: 21396894]
[146]
Arhewoh IM, Ahonkhai EI, Okhamafe AO. Optimising oral systems for the delivery of therapeutic proteins and peptides. Afr J Biotechnol 2005; 4: 1591-7.
[147]
Sarmadi BH, Ismail A. Antioxidative peptides from food proteins: a review. Peptides 2010; 31(10): 1949-56.
[http://dx.doi.org/10.1016/j.peptides.2010.06.020] [PMID: 20600423]
[148]
Gilbert ER, Wong EA, Webb KE Jr. Board-invited review: Peptide absorption and utilization: Implications for animal nutrition and health. J Anim Sci 2008; 86(9): 2135-55.
[http://dx.doi.org/10.2527/jas.2007-0826] [PMID: 18441086]
[149]
Yang CY, Dantzig AH, Pidgeon C. Intestinal peptide transport systems and oral drug availability. Pharm Res 1999; 16(9): 1331-43.
[http://dx.doi.org/10.1023/A:1018982505021] [PMID: 10496647]
[150]
Segura Campos M, Chel Guerrero L, Betancur Ancona D, et al. Bioavailability of bioactive peptides. Food Rev Int 2011; 27: 213-26.
[http://dx.doi.org/10.1080/87559129.2011.563395]
[151]
Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 1998; 273(45): 29745-53.
[http://dx.doi.org/10.1074/jbc.273.45.29745] [PMID: 9792688]
[152]
Vermeirssen V, Van Camp J, Verstraete W. Bioavailability of angiotensin I converting enzyme inhibitory peptides. Br J Nutr 2004; 92(3): 357-66.
[http://dx.doi.org/10.1079/BJN20041189] [PMID: 15469639]
[153]
Maestri E, Marmiroli M, Marmiroli N. Bioactive peptides in plant-derived foodstuffs. J Proteomics 2016; 147: 140-55.
[http://dx.doi.org/10.1016/j.jprot.2016.03.048] [PMID: 27079980]
[154]
Tavelin S. New Approaches to Studies of Paracellular Drug Transport in Intestinal Epithelial Cell Monolayers. Uppsala 2003.
[155]
Renukuntla J, Vadlapudi AD, Patel A, Boddu SH, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 2013; 447(1-2): 75-93.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.030] [PMID: 23428883]
[156]
Bock JE, Gavenonis J, Kritzer JA. Getting in shape: controlling peptide bioactivity and bioavailability using conformational constraints. ACS Chem Biol 2013; 8(3): 488-99.
[http://dx.doi.org/10.1021/cb300515u] [PMID: 23170954]
[157]
Le Ferrec E, Chesne C, Artusson P, et al. In vitro models of the intestinal barrier
[158]
Manikkam V, Vasiljevic T, Donkor ON, et al. A Review of Potential Marine-Derived Hypotensive and Anti-Obesity Peptides. Crit Rev Food Sci Nutr 2015; 37-41.
[PMID: 25569557]
[159]
Shimizu M, Son DO. Food-derived peptides and intestinal functions. Curr Pharm Des 2007; 13(9): 885-95.
[http://dx.doi.org/10.2174/138161207780414287] [PMID: 17430188]
[160]
Shimizu M. Food-derived peptides and intestinal functions. Biofactors 2004; 21(1-4): 43-7.
[http://dx.doi.org/10.1002/biof.552210109] [PMID: 15630168]
[161]
Ganapathy V, Brandsch M, Leibach FH. Intestinal transport of amino acids and peptides 1994.
[162]
Liu M, Wang Y, Liu Y, Ruan R. Bioactive peptides derived from traditional Chinese medicine and traditional Chinese food: A review. Food Res Int 2016; 89(Pt 1): 63-73.
[http://dx.doi.org/10.1016/j.foodres.2016.08.009] [PMID: 28460959]
[163]
Aito-Inoue M, Lackeyram D, Fan MZ, Sato K, Mine Y. Transport of a tripeptide, Gly-Pro-Hyp, across the porcine intestinal brush-border membrane. J Pept Sci 2007; 13(7): 468-74.
[http://dx.doi.org/10.1002/psc.870] [PMID: 17554807]
[164]
Sánchez-Rivera L, Martínez-Maqueda D, Cruz-Huerta E, et al. Peptidomics for discovery, bioavailability and monitoring of dairy bioactive peptides. Food Res Int 2014; 63: 170-81.
[http://dx.doi.org/10.1016/j.foodres.2014.01.069]
[165]
Dziuba J, Minkiewicz P, Nałȩcz D, et al. Database of biologically active peptide sequences 1999.
[http://dx.doi.org/10.1002/ (SICI)1521-3803(19990601)43:3<190::AID-FOOD190>3.0.CO;2-A]
[166]
Palmieri G, Balestrieri M, Proroga YTR, et al. New antimicrobial peptides against foodborne pathogens: From in silico design to experimental evidence. Food Chem 2016; 211: 546-54.
[http://dx.doi.org/10.1016/j.foodchem.2016.05.100] [PMID: 27283665]
[167]
Iwaniak A, Minkiewicz P, Darewicz M, Sieniawski K, Starowicz P. BIOPEP database of sensory peptides and amino acids. Food Res Int 2016; 85: 155-61.
[http://dx.doi.org/10.1016/j.foodres.2016.04.031] [PMID: 29544830]
[168]
Dziuba M, Dziuba B. In silico Analysis of Bioactive PeptidesBioactive Proteins and Peptides as Functional Foods and Nutraceuticals. Oxford, UK: Wiley-Blackwell 2010; pp. 325-40.
[http://dx.doi.org/10.1002/9780813811048.ch22]
[169]
Gangopadhyay N, Wynne K, O’Connor P, et al. In silico and in vitro analyses of the angiotensin-I converting enzyme inhibitory activity of hydrolysates generated from crude barley (Hordeum vulgare) protein concentrates. Food Chem 2016; 203: 367-74.
[http://dx.doi.org/10.1016/j.foodchem.2016.02.097] [PMID: 26948626]
[170]
Shtatland T, Guettler D, Kossodo M, Pivovarov M, Weissleder R. PepBank--a database of peptides based on sequence text mining and public peptide data sources. BMC Bioinformatics 2007; 8: 280.
[http://dx.doi.org/10.1186/1471-2105-8-280] [PMID: 17678535]
[171]
Shi L, Zhang Q, Rui W, et al. BioPD: a web-based information center for bioactive peptides. Regul Pept 2004; 120(1-3): 1-3.
[http://dx.doi.org/10.1016/j.regpep.2004.03.002] [PMID: 15177914]
[172]
UniProt: a hub for protein information. Nucleic Acids Res 2015; 43(Database issue): D204-12.
[PMID: 25348405]
[173]
Wang Z, Wang G. APD: the Antimicrobial Peptide Database. Nucleic Acids Res 2004; 32(Database issue): D590-2.
[http://dx.doi.org/10.1093/nar/gkh025] [PMID: 14681488]
[174]
Fälth M, Sköld K, Norrman M, Svensson M, Fenyö D, Andren PE. SwePep, a database designed for endogenous peptides and mass spectrometry. Mol Cell Proteomics 2006; 5(6): 998-1005.
[http://dx.doi.org/10.1074/mcp.M500401-MCP200] [PMID: 16501280]
[175]
Xu H, Freitas MA. MassMatrix: a database search program for rapid characterization of proteins and peptides from tandem mass spectrometry data. Proteomics 2009; 9(6): 1548-55.
[http://dx.doi.org/10.1002/pmic.200700322] [PMID: 19235167]
[176]
Piotto SP, Sessa L, Concilio S, Iannelli P. YADAMP: yet another database of antimicrobial peptides. Int J Antimicrob Agents 2012; 39(4): 346-51.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.12.003] [PMID: 22325123]
[177]
Kumar R, Chaudhary K, Sharma M, et al. AHTPDB : a comprehensive platform for analysis and presentation of antihypertensive peptides 2015.
[http://dx.doi.org/10.1093/nar/gku1141]
[178]
Pirtskhalava M, Gabrielian A, Cruz P, et al. DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res 2016; 44(D1): D1104-12.
[http://dx.doi.org/10.1093/nar/gkv1174] [PMID: 26578581]
[179]
Sharma A, Gupta P, Kumar R, Bhardwaj A. dPABBs: A novel in silico approach for predicting and designing anti-biofilm peptides. Sci Rep 2016; 6: 21839.
[http://dx.doi.org/10.1038/srep21839] [PMID: 26912180]
[180]
Usmani SS, Bedi G, Samuel JS, et al. THPdb: Database of FDA-approved peptide and protein therapeutics. 2017; 1-12.
[181]
Manavalan B, Basith S, Shin TH, et al. MLACP : machine-learning-based peptides prediction of anticancer 2017.
[http://dx.doi.org/10.18632/oncotarget.20365]
[182]
Anekthanakul K, Hongsthong A, Senachak J, et al. SpirPep : an in silico digestion-based platform to assist bioactive peptides discovery from a genome-wide database 2018.
[http://dx.doi.org/10.1186/s12859-018-2143-0]
[183]
Bhadra P, Yan J, Li J, Fong S, Siu SWI. AmPEP: Sequencebased prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest Sci Rep 2018; 8(1): 1697.
[http://dx.doi.org/10.1038/s41598-018-19752-w] [PMID: 29374199]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy