Abstract
Aim: This study was focused on the formulation of the multi-unit extended-release peroral delivery device of lamotrigine for better management of epilepsy.
Background: The single-unit extended-release peroral preparations often suffer from all-or-none effect. A significant number of multi-unit delivery systems have been reported as a solution to this problem. But most of them are found to be composed of synthetic, semi-synthetic or their combination having physiological toxicity as well as negative environmental impact. Therefore, fabrication and formulation of multi-unit extended-release peroral preparations with natural, non-toxic, biodegradable polymers employing green manufacturing processes are being appreciated worldwide.
Objective: Lamotrigine-loaded extended-release multi-unit beads have been fabricated with the incorporation of a natural polysaccharide Cassia fistula seed gum in calcium-cross-linked alginate matrix employing a simple green process and 23 full factorial design.
Methods: The total polymer concentration, polymer ratio and [CaCl2] were considered as independent formulation variables with two different levels of each for the experiment-design. The extended-release beads were then prepared by the ionotropic gelation method using calcium chloride as the crosslinkerions provider. The beads were then evaluated for drug encapsulation efficiency and drug release. ANOVA of all the dependent variables such as DEE, cumulative % drug release at 2h, 5h, 12h, rate constant and dissolution similarity factor (f2) was done by 23 full factorial design using Design-Expert software along with numerical optimization of the independent variables in order to meet USP-reference release profile.
Results: The optimized batch showed excellent outcomes with DEE of 84.7 ± 2.7 (%), CPR2h of 8.41± 2.96 (%), CPR5h of 36.8± 4.7 (%), CPR12h of 87.3 ± 3.64 (%) and f2 of 65.9.
Conclusion: This approach of the development of multi-unit oral devices utilizing natural polysaccharides might be inspiring towards the world-wide effort for green manufacturing of sustained-release drug products by the QbD route.
Keywords: Lamotrigine, extended-release, multi-unit, beads, Cassia fistula seed gum, epilepsy.
Graphical Abstract
[http://dx.doi.org/10.1111/j.1528-1167.2007.01274.x] [PMID: 17825077]
[PMID: 20505846]
[http://dx.doi.org/10.2147/TCRM.S3343] [PMID: 19209284]
[http://dx.doi.org/10.1016/j.eplepsyres.2014.08.004] [PMID: 25205163]
[http://dx.doi.org/10.2165/00023210-200721090-00005] [PMID: 17696575]
[http://dx.doi.org/10.1586/14737175.9.2.167] [PMID: 19210192]
[PMID: 25593380]
[PMID: 22615649]
[http://dx.doi.org/10.1016/j.jsps.2014.10.001] [PMID: 27330377]
[PMID: 21589795]
[http://dx.doi.org/10.1016/j.carbpol.2017.07.016] [PMID: 28821135]
[http://dx.doi.org/10.1016/j.jopr.2013.04.040]
[http://dx.doi.org/10.1016/j.carbpol.2018.11.096] [PMID: 30600003]
[http://dx.doi.org/10.1016/j.ijbiomac.2012.08.021] [PMID: 22947454]
[http://dx.doi.org/10.1016/j.ijbiomac.2015.04.067] [PMID: 25987461]
[http://dx.doi.org/10.1016/j.carbpol.2010.06.009]
[http://dx.doi.org/10.1016/j.ijbiomac.2012.12.008] [PMID: 23246901]
[http://dx.doi.org/10.1016/j.ijbiomac.2015.10.027] [PMID: 26472516]
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.064] [PMID: 29567498]
[http://dx.doi.org/10.1016/j.carbpol.2011.08.050]
[http://dx.doi.org/10.1016/j.ajps.2017.02.004] [PMID: 32104348]
[http://dx.doi.org/10.1016/j.ajps.2018.02.006] [PMID: 32104414]
[http://dx.doi.org/10.1208/s12249-012-9763-x]
[http://dx.doi.org/10.1016/j.carbpol.2019.03.088] [PMID: 30981348]
[http://dx.doi.org/10.1016/0168-3659(94)00085-9]
[http://dx.doi.org/10.1002/jps.2600561005] [PMID: 6059440]
[http://dx.doi.org/10.1002/jps.2600521210] [PMID: 14088963]
[http://dx.doi.org/10.1002/jps.2600520310] [PMID: 13938476]
[http://dx.doi.org/10.1016/0378-5173(83)90064-9]
[http://dx.doi.org/10.1016/S0928-0987(01)00095-1] [PMID: 11297896]
[http://dx.doi.org/10.1208/s12249-012-9800-9] [PMID: 22588676]
[PMID: 22615586]
[http://dx.doi.org/10.1016/j.polymertesting.2003.11.001]
[http://dx.doi.org/10.1016/j.carbpol.2010.09.017]
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.052] [PMID: 25316428]