Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Influence of Vitamin D on Neurodegeneration and Neurological Disorders: A Rationale for its Physio-pathological Actions

Author(s): Maria Morello*, Massimo Pieri, Rossella Zenobi, Alessandra Talamo, Delphine Stephan, Verena Landel, François Féron and Pascal Millet

Volume 26, Issue 21, 2020

Page: [2475 - 2491] Pages: 17

DOI: 10.2174/1381612826666200316145725

Price: $65

Abstract

Vitamin D is a steroid hormone implicated in the regulation of neuronal integrity and many brain functions. Its influence, as a nutrient and a hormone, on the physiopathology of the most common neurodegenerative diseases is continuously emphasized by new studies. This review addresses what is currently known about the action of vitamin D on the nervous system and neurodegenerative diseases such as Multiple Sclerosis, Alzheimer’s disease, Parkinson’s disease and Amyotrophic Lateral Sclerosis. Further vitamin D research is necessary to understand how the action of this “neuroactive” steroid can help to optimize the prevention and treatment of several neurological diseases.

Keywords: Vitamin D, neurodegenerative diseases, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis.

[1]
Slominski A, Kim TK, Zmijewski MA, et al. Novel vitamin D photoproducts and their precursors in the skin. Dermatoendocrinol 2013; 5(1): 7-19.
[http://dx.doi.org/10.4161/derm.23938]
[2]
DeLuca GC, Kimball SM, Kolasinski J, Ramagopalan SV, Ebers GC. Review: the role of vitamin D in nervous system health and disease. Neuropathol Appl Neurobiol 2013; 39(5): 458-84.
[http://dx.doi.org/10.1111/nan.12020] [PMID: 23336971]
[3]
DeLuca HF, Vitamin D. Historical Overview. Vitam Horm 2016; 100: 1-20.
[4]
Deeb KK, Trump DL, Johnson CS. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer 2007; 7(9): 684-700.
[5]
Holick MF, Matsuoka LY, Wortsman J. Age, vitamin D, and solar ultraviolet. Lancet 1989; 2(8671): 1104-5.
[6]
Holtrop ME, Cox KA, Clark MB, Holick MF, Anast CS. 1,25-dihydroxycholecalciferol stimulates osteoclasts in rat bones in the absence of parathyroid hormone. Endocrinology 1981; 108(6): 2293-301.
[http://dx.doi.org/10.1210/endo-108-6-2293] [PMID: 6894424]
[7]
Holick MF. The cutaneous photosynthesis of previtamin D3: a unique photoendocrine system. J Invest Dermatol 1981; 77(1): 51-8.
[8]
Webb AR, Holick MF. The role of sunlight in the cutaneous production of vitamin D3. Annu Rev Nutr 1988; 8: 375-99.
[http://dx.doi.org/10.1146/annurev.nu.08.070188.002111] [PMID: 2849469]
[9]
Holick MF, Chen TC, Lu Z, Sauter E. Vitamin D and skin physiology: a D-lightful story. J Bone Miner Res 2007; 22(Suppl. 2): V28-33.
[http://dx.doi.org/10.1359/jbmr.07s211] [PMID: 18290718]
[10]
Clemens TL, Horiuchi N, Nguyen M, Holick MF. Binding of 1,25-dihydroxy-[3H]vitamin D3 in nuclear and cytosol fractions of whole mouse skin in vivo and in vitro. FEBS Lett 1981; 134(2): 203-6.
[11]
Gozdzik A, Barta JL, Wu H, et al. 2008; Low wintertime vitamin D levels in a sample of healthy young adults of diverse ancestry living in the Toronto area: associations with vitamin D intake and skin pigmentation. BMC Public Health 2008; 8: 336.
[http://dx.doi.org/10.1186/1471-2458-8-336]
[12]
Matsuoka LY, Ide L, Wortsman J, MacLaughlin JA, Holick MF. Sunscreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab 1987; 64(6): 1165-8.
[http://dx.doi.org/10.1210/jcem-64-6-1165] [PMID: 3033008]
[13]
Salih FM. 2004; Effect of clothing varieties on solar photosynthesis of previtamin D3: an in vitro study. Photodermatol Photoimmunol Photomed 20(1): 53-8.
[http://dx.doi.org/10.1111/j.1600-0781.2004.00068.x]
[14]
MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest 1985; 76(4): 1536-8.
[http://dx.doi.org/10.1172/JCI112134] [PMID: 2997282]
[15]
Kasahara AK, Singh RJ, Noymer A. Vitamin D (25OHD) Serum Seasonality in the United States. PLoS One 2013; 8(6)
[16]
Kimlin MG. Geographic location and vitamin D synthesis. Mol Aspects Med 2008; 29(6)
[http://dx.doi.org/10.1016/j.mam.2008.08.005]
[17]
Bikle DD. Vitamin D and immune function: understanding common pathways. Curr Osteoporos Rep 2009; 7(2): 58-63.
[http://dx.doi.org/10.1007/s11914-009-0011-6] [PMID: 19631030]
[18]
Cheng S, Tylavsky F, Kröger H, et al. Association of low 25-hydroxyvitamin D concentrations with elevated parathyroid hormone concentrations and low cortical bone density in early pubertal and prepubertal Finnish girls. Am J Clin Nutr 2003; 78(3): 485-92.
[http://dx.doi.org/10.1093/ajcn/78.3.485] [PMID: 12936933]
[19]
Strushkevich N, Usanov SA, Plotnikov AN, Jones G, Park HW. Structural analysis of CYP2R1 in complex with vitamin D3. J Mol Biol 2008; 380(1): 95-106.
[20]
Schuster I. Cytochromes P450 are essential players in the vitamin D signaling system. Biochim Biophys Acta 2011; 1814(1): 186-99.
[http://dx.doi.org/10.1016/j.bbapap.2010.06.022]
[21]
Anderson PH, May BK, Morris HA. Vitamin D metabolism: new concepts and clinical implications. Clin Biochem Rev 2003; 24(1): 13-26.
[PMID: 18650961]
[22]
Zittermann A. Serum 25-hydroxyvitamin D response to oral vitamin D intake in children. Am J Clin Nutr 2003; 78(3): 496-7.
[http://dx.doi.org/10.1093/ajcn/78.3.496a] [PMID: 12936937]
[23]
Peterlik M, Cross HS. Vitamin D and calcium insufficiency-related chronic diseases: molecular and cellular pathophysiology. Eur J Clin Nutr 2009; 63(12): 1377-86.
[24]
Chun RF, Adams JS, Hewison M. What is new in vitamin D: 2006-2007. Curr Opin Rheumatol 2007; 19(4): 383-8.
[25]
Bikle DD. Back to the future: a new look at ‘old’ vitamin D. J Endocrinol 2008; 198(2): 261-9.
[26]
Buell JS, Dawson-Hughes B. Vitamin D and neurocognitive dysfunction: preventing “D”ecline? Mol Aspects Med 2008; 29(6): 415-22.
[27]
Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat 2005; 29(1): 21-30.
[28]
Garcion E, Wion-Barbot N, Montero-Menei CN, Berger F, Wion D. New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab 13(3): 100-5.
[http://dx.doi.org/10.1016/S1043-2760(01)00547-1]
[29]
Hewison M, Zehnder D, Chakraverty R, Adams JS. Vitamin D and barrier function: a novel role for extra-renal 1 alpha-hydroxylase. Mol Cell Endocrinol 215(1-2): 31-8.
[30]
Jones G, Horst R, Carter G, Makin HLj. Contemporary diagnosis and treatment of vitamin D-related disorders. J Bone Miner Res 2007; 22(Suppl. 2): V11-5.
[http://dx.doi.org/10.1359/jbmr.07s219] [PMID: 18290713]
[31]
Kiraly SJ, Kiraly MA, Hawe RD, Makhani N. Vitamin D as a neuroactive substance: review. Scientific World Journal 2006; 6: 125-39. [review]
[http://dx.doi.org/10.1100/tsw.2006.25] [PMID: 16493517]
[32]
Lechner D, Manhardt T, Bajna E, Posner GH, Cross HS. A 24-phenylsulfone analog of vitamin D inhibits 1alpha,25-dihydroxyvitamin D(3) degradation in vitamin D metabolism-competent cells. J Pharmacol Exp Ther 2007; 320(3): 1119-26.
[33]
Lai JK, Lucas RM, Clements MS, Roddam AW, Banks E. Hip fracture risk in relation to vitamin D supplementation and serum 25-hydroxyvitamin D levels: a systematic review and meta-analysis of randomised controlled trials and observational studies. BMC Public Health 2010; 10: 331.
[34]
Wootton R, Bryson E, Elsasser U, et al. Risk factors for fractured neck of femur in the elderly. Age Ageing 1982; 11(3): 160-8.
[http://dx.doi.org/10.1093/ageing/11.3.160] [PMID: 7124555]
[35]
Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011; 96(7): 1911-30.
[36]
Giustina A, Adler RA, Binkley N, et al. Controversies in Vitamin D: Summary Statement From an International Conference. J Clin Endocrinol Metab 104(2): 234-40.
[http://dx.doi.org/10.1210/jc.2018-014145148139]
[37]
Gordon CM, DePeter KC, Feldman HA, Grace E, Emans SJ. Prevalence of vitamin D deficiency among healthy adolescents. Arch Pediatr Adolesc Med 2004; 158(6): 531-7.
[http://dx.doi.org/10.1001/archpedi.158.6.531]
[38]
Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc 2006; 81(3): 353-73.
[http://dx.doi.org/10.4065/81.3.353]
[39]
Jaroszewski DE, Huh J, Malaisrie SC, Riffel AD, Gordon HS, Wang XL. Utility of detailed preoperative cardiac testing and incidence of post-thoracotomy myocardial infarction. J Thorac Cardiovasc Surg 2008; 135(3): 648-55.
[40]
Looker AC, Dawson-Hughes B, Calvo MS, Gunter EW, Sahyoun NR. Serum 25-hydroxyvitamin D status of adolescents and adults in two seasonal subpopulations from NHANES III.Bone 2002; 30(5): 771-7.
[41]
Annweiler C, Souberbielle JC, Schott AM, et al. Vitamin D in the elderly: 5 points to remember. Geriatr Psychol Neuropsychiatr Vieil 2011; 9(3): 259-67.
[42]
Fantino B, Beauchet O, Savignat S, Bouvard B, Legrand E, Annweiler C. Profile of French community-dwelling older adults supplemented with vitamin D: findings and lessons. Adv Ther 2011; 28(6): 483-9.
[http://dx.doi.org/10.1007/s12325-011-0030-4] [PMID: 21604142]
[43]
Kim YS, Hwang JH, Song MR. The Association Between Vitamin D Deficiency and Metabolic Syndrome in Korean Adolescents. J Pediatr Nurs 2018; 38(17): e7-e11. S0882-5963
[44]
Lips P. Vitamin D status and nutrition in Europe and Asia. J Steroid Biochem Mol Biol 2007; 103(3-5): 620-5.
[45]
Lawson M, Thomas M, Hardiman A. Dietary and lifestyle factors affecting plasma vitamin D levels in Asian children living in England. Eur J Clin Nutr 1999; 53(4): 268-72.
[http://dx.doi.org/10.1038/sj.ejcn.1600717] [PMID: 10334651]
[46]
Thomas MK, Lloyd-Jones DM, Thadhani RI, et al. Hypovitaminosis D in medical inpatients. N Engl J Med 1998; 338(12): 777-83.
[http://dx.doi.org/10.1056/NEJM199803193381201] [PMID: 9504937]
[47]
Utiger RD. The need for more vitamin D. N Engl J Med 1998; 338(12): 828-9.
[http://dx.doi.org/10.1056/NEJM199803193381209] [PMID: 9504945]
[48]
Song HR, Kweon SS, Choi JS, et al. High prevalence of vitamin D deficiency in adults aged 50 years and older in Gwangju, Korea: the Dong-gu Study. J Korean Med Sci 2014; 29(1): 149-52.
[http://dx.doi.org/10.3346/jkms.2014.29.1.149] [PMID: 24431921]
[49]
Bassil D, Rahme M, Hoteit M, Fuleihan Gel-H. Hypovitaminosis D in the Middle East and North Africa: Prevalence, risk factors and impact on outcomes. Dermatoendocrinol 2013; 5(2): 274-98.
[50]
Chapuy MC, Preziosi P, Maamer M, et al. Prevalence of vitamin D insufficiency in an adult normal population. Osteoporos Int 1997; 7(5): 439-43.
[http://dx.doi.org/10.1007/s001980050030] [PMID: 9425501]
[51]
Hillman LS, Haddad JG. Perinatal vitamin D metabolism. III. Factors influencing late gestational human serum 25-hydroxyvitamin D. Am J Obstet Gynecol 1976; 125(2): 196-200.
[http://dx.doi.org/10.1016/0002-9378(76)90592-5]
[52]
Markestad T, Aksnes L, Aarskog D, Dahl LB. Vitamin D metabolism in pre-term infants. Lancet 1983; 2(8356): 976.
[53]
Zeghoud F, Vervel C, Guillozo H, Walrant-Debray O, Boutignon H, Garabédian M. Subclinical vitamin D deficiency in neonates: definition and response to vitamin D supplements. Am J Clin Nutr 1997; 65(3): 771-8.
[http://dx.doi.org/10.1093/ajcn/65.3.771] [PMID: 9062528]
[54]
Grek C, Townsend DM. Protein Disulfide Isomerase Superfamily in Disease and the Regulation of Apoptosis. Endoplasmic Reticulum Stress Dis 2014; 1(1): 4-17.
[http://dx.doi.org/10.2478/ersc-2013-0001] [PMID: 25309899]
[55]
Li Y, Camacho P. Ca2+-dependent redox modulation of SERCA 2b by ERp57. J Cell Biol 2004; 164(1): 35-46.
[56]
Gezen-Ak D, Atasoy IL, Candaş E, Alaylioglu M, Yılmazer S, Dursun E. Vitamin D Receptor Regulates Amyloid Beta 1-42 Production with Protein Disulfide Isomerase A3. ACS Chem Neurosci 2017; 8(10): 2335-46.
[http://dx.doi.org/10.1021/acschemneuro.7b00245] [PMID: 28707894]
[57]
Montibeller L, de Belleroche J. Amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD) are characterised by differential activation of ER stress pathways: focus on UPR target genes. Cell Stress Chaperones 2018; 23(5): 897-912.
[58]
Kim-Han JS, O’Malley KL. Cell stress induced by the parkinsonian mimetic, 6-hydroxydopamine, is concurrent with oxidation of the chaperone, ERp57, and aggresome formation. Antioxid Redox Signal 2007; 9(12): 2255-64.
[http://dx.doi.org/10.1089/ars.2007.1791] [PMID: 17848102]
[59]
Parakh S, Jagaraj CJ, Vidal M, et al. ERp57 is protective against mutant SOD1-induced cellular pathology in amyotrophic lateral sclerosis. Hum Mol Genet 2018; 27(8): 1311-31.
[http://dx.doi.org/10.1093/hmg/ddy041]
[60]
Maharjan N, Saxena S. ER strikes again: Proteostasis Dysfunction In ALS. EMBO J 2016; 35(8): 798-800.
[http://dx.doi.org/10.15252/embj.201694117]
[61]
Woehlbier U, Colombo A, Saaranen MJ, et al. ALS-linked protein disulfide isomerase variants cause motor dysfunction. EMBO J 2016; 35(8): 845-65.
[62]
Gonzalez-Perez P, Woehlbier U, Chian RJ, et al. Identification of rare protein disulfide isomerase gene variants in amyotrophic lateral sclerosis patients 2015; 566(2): 158-65.
[http://dx.doi.org/10.1016/j.gene.2015.04.035]
[63]
Pytel V, Matías-Guiu JA, Torre-Fuentes L, et al. Exonic variants of genes related to the vitamin D signaling pathway in the families of familial multiple sclerosis using whole-exome next generation sequencing. Brain Behav 2019; 9(4) e01272
[http://dx.doi.org/10.1002/brb3.1272] [PMID: 30900415]
[64]
Buitrago C, Pardo VG, Boland R. Boland (2013) Role of VDR in 1alpha,25-dihydroxyvitamin D3-dependent non-genomic activation of MAPKs, Src and Akt in skeletal muscle cells. J Steroid Biochem Mol Biol 2013; 136: 125-30.
[65]
Landel V, Stephan D, Cui X, Eyles D, Feron F. Differential expression of vitamin D-associated enzymes and receptors in brain cell subtypes. J Steroid Biochem Mol Biol 2018; 177: 129-34.
[66]
Haussler MR, Whitfield GK, Haussler CA, et al. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res 1998; 13(3): 325-49.
[http://dx.doi.org/10.1359/jbmr.1998.13.3.325] [PMID: 9525333]
[67]
Huhtakangas JA, Olivera CJ, Bishop JE, Zanello LP, Norman AW. The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1 alpha,25(OH)2-vitamin D3 in vivo and in vitro. Mol Endocrinol 2004; 18(11): 2660-71.
[68]
Bouillon R, Suda T. Vitamin D: calcium and bone homeostasis during evolution. Bonekey Rep 2014; 3: 480.
[http://dx.doi.org/10.1038/bonekey.2013.214] [PMID: 24466411]
[69]
Carlberg C, Molnar F. Current status of vitamin D signaling and its therapeutic applications. Curr Top Med Chem 2012; 12(6): 528-47.
[http://dx.doi.org/10.2174/156802612799436623]
[70]
Haussler MR, Jurutka PW, Mizwicki M, Norman AW. Vitamin D receptor (VDR)-mediated actions of 1alpha,25(OH)(2)vitamin D(3): genomic and non-genomic mechanisms. Best Pract Res Clin Endocrinol Metab 2011; 25(4): 543-49.
[71]
Wang Y, Zhu J, DeLuca HF. Where is the vitamin D receptor? 2012; 523(1): 123-33.
[http://dx.doi.org/10.1016/j.abb.2012.04.001]
[72]
Haussler MR, Haussler CA, Bartik L, et al. Vitamin D receptor: molecular signaling and actions of nutritional ligands in disease prevention 2008; 66(10 Suppl 2): S98-112.
[73]
Ryan JW, Anderson PH, Morris HA. Pleiotropic Activities of Vitamin D Receptors - Adequate Activation for Multiple Health Outcomes. Clin Biochem Rev 2015; 36(2): 53-61.
[PMID: 26224895]
[74]
Reschly EJ, Bainy AC, Mattos JJ, et al. Functional evolution of the vitamin D and pregnane X receptors. BMC Evol Biol 2007; 7(222) 1471-2148-7-222
[http://dx.doi.org/10.1186/1471-2148-7-222]
[75]
Wang TT, Tavera-Mendoza LE, Laperriere D, et al. Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol 2005; 19(11): 2685-95.
[76]
Landel V, Annweiler C, Millet P, Morello M, Feron F. Vitamin D, Cognition and Alzheimer’s Disease: The Therapeutic Benefit is in the D-Tails. J Alzheimers Dis 2016; 53(2): 419-4.
[77]
Saporito MS, Brown ER, Hartpence KC, et al. Chronic 1,25-dihydroxyvitamin D3-mediated induction of nerve growth factor mRNA and protein in L929 fibroblasts and in adult rat brain. Brain Res 1994; 633(1-2): 189-96.
[78]
Neveu I, Naveilhan P, Jehan F, et al. 1,25-dihydroxyvitamin D3 regulates the synthesis of nerve growth factor in primary cultures of glial cells. Brain Res Mol Brain Res 1994; 24(1-4): 70-6.
[79]
Brown J, Bianco JI, McGrath JJ, Eyles DW. 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett 2003; 343(2): 139-43.
[80]
Boyan BD, Chen J, Schwartz Z. Mechanism of Pdia3-dependent 1α,25-dihydroxy vitamin D3 signaling in musculoskeletal cells. Steroids 2012; 77(10): 892-6.
[81]
Razani B, Woodman SE, Lisanti MP. Caveolae: from cell biology to animal physiology. Pharmacol Rev 2002; 54(3): 431-67.
[http://dx.doi.org/10.1124/pr.54.3.431] [PMID: 12223531]
[82]
Fernandes de Abreu DA, Eyles D, Feron F. Vitamin D, a neuro-immunomodulator: implications for neurodegenerative and autoimmune diseases. Psychoneuroendocrinology 2009; 34(Suppl. 1): S265-77.
[83]
Dursun E, Gezen-Ak D. Vitamin D receptor is present on the neuronal plasma membrane and is co-localized with amyloid precursor protein, ADAM10 or Nicastrin. PLoS One 2017; 12(11) e0188605
[84]
King H, Rosenheim O, Webster TA. Vitamin D from sterols of mummified Egyptian brain. Biochem J 1929; 23(2): 166-7.
[http://dx.doi.org/10.1042/bj0230166] [PMID: 16744198]
[85]
Rosenheim O, Webster TA. Note on the absorption spectrum of vitamin A. Biochem J 1929; 23(4): 633.
[http://dx.doi.org/10.1042/bj0230633] [PMID: 16744249]
[86]
Balabanova S, Richter HP, Antoniadis G, et al. 25-Hydroxyvitamin D, 24, 25-dihydroxyvitamin D and 1,25-dihydroxyvitamin D in human cerebrospinal fluid. Klin Wochenschr 1984; 62(22): 1086-90.
[http://dx.doi.org/10.1007/BF01711378] [PMID: 6334780]
[87]
Stumpf WE, O’Brien LP. 1,25 (OH)2 vitamin D3 sites of action in the brain. An autoradiographic study. Histochemistry 1987; 87(5): 393-406.
[http://dx.doi.org/10.1007/BF00496810] [PMID: 2828283]
[88]
Sheridan PJ. Autoradiographic localization of steroid receptors in the brain. Clin Neuropharmacol 1984; 7(4): 281-95.
[http://dx.doi.org/10.1097/00002826-198412000-00003] [PMID: 6095993]
[89]
Gezen-Ak D, Dursun E, Yilmazer S. Vitamin D inquiry in hippocampal neurons: consequences of vitamin D-VDR pathway disruption on calcium channel and the vitamin D requirement. Neurol Sci 2013; 34(8): 1453-8.
[http://dx.doi.org/10.1007/s10072-012-1268-6] [PMID: 23250517]
[90]
Taniura H, Ito M, Sanada N, et al. Chronic vitamin D3 treatment protects against neurotoxicity by glutamate in association with upregulation of vitamin D receptor mRNA expression in cultured rat cortical neurons. J Neurosci Res 2006; 83(7): 1179-89.
[http://dx.doi.org/10.1002/jnr.20824] [PMID: 16521124]
[91]
Baas D, Prufer K, Ittel ME, et al. Rat oligodendrocytes express the vitamin D(3) receptor and respond to 1,25-dihydroxyvitamin D(3). Glia 2000; 31(1): 59-68.
[92]
Cui QL, Kuhlmann T, Miron VE, et al. Oligodendrocyte progenitor cell susceptibility to injury in multiple sclerosis. Am J Pathol 2013; 183(2): 516-25.
[http://dx.doi.org/10.1016/j.ajpath.2013.04.016]
[93]
Durk MR, Chan GN, Campos CR, et al. 1α,25-Dihydroxyvitamin D3-liganded vitamin D receptor increases expression and transport activity of P-glycoprotein in isolated rat brain capillaries and human and rat brain microvessel endothelial cells. J Neurochem 2012; 123(6): 944-53.
[http://dx.doi.org/10.1111/jnc.12041] [PMID: 23035695]
[94]
Ito S, Ohtsuki S, Nezu Y, Koitabashi Y, Murata S, Terasaki T. 1α,25-Dihydroxyvitamin D3 enhances cerebral clearance of human amyloid-β peptide(1-40) from mouse brain across the blood-brain barrier. Fluids Barriers CNS 2011; 8: 20.
[95]
Landel V, Millet P, Baranger K, Loriod B, Feron F. Vitamin D interacts with Esr1 and Igf1 to regulate molecular pathways relevant to Alzheimer’s disease. Mol Neurodegener 2016; 11: 22.
[96]
Naveilhan P, Neveu I, Baudet C, Ohyama KY, Brachet P, Wion D. Expression of 25(OH) vitamin D3 24-hydroxylase gene in glial cells. Neuroreport 1993; 5(3): 255-7.
[http://dx.doi.org/10.1097/00001756-199312000-00018] [PMID: 7507724]
[97]
Kalueff AV, Tuohimaa P. Neurosteroid hormone vitamin D and its utility in clinical nutrition. Curr Opin Clin Nutr Metab Care 2007; 10(1): 12-9.
[http://dx.doi.org/10.1097/MCO.0b013e328010ca18]
[98]
Cui X, Pertile R, Eyles DW. The vitamin D receptor (VDR) binds to the nuclear matrix via its hinge domain: A potential mechanism for the reduction in VDR mediated transcription in mitotic cells. Mol Cell Endocrinol 2018; 472: 18-25.
[99]
Veenstra TD, Fahnestock M, Kumar R. An AP-1 site in the nerve growth factor promoter is essential for 1, 25-dihydroxyvitamin D3-mediated nerve growth factor expression in osteoblasts. Biochemistry 1998; 37(17): 5988-94.
[100]
Eyles DW, Liu PY, Josh P, Cui X. Intracellular distribution of the vitamin D receptor in the brain: comparison with classic target tissues and redistribution with development. Neuroscience 2014; 268: 1-9.
[http://dx.doi.org/10.1016/j.neuroscience.2014.02.042]
[101]
Moretti R, Morelli ME, Caruso P. Vitamin D in Neurological Diseases: A Rationale for a Pathogenic Impact. Int J Mol Sci 2018; 19(8)
[102]
Cornet A, Baudet C, Neveu I, Baron-Van Evercooren A, Brachet P, Naveilhan P. 1,25-Dihydroxyvitamin D3 regulates the expression of VDR and NGF gene in Schwann cells in vitro. J Neurosci Res 1998; 53(56): 742-6.
[103]
Wion D, MacGrogan D, Neveu I, Jehan F, Houlgatte R, Brachet P. 1,25-Dihydroxyvitamin D3 is a potent inducer of nerve growth factor synthesis. J Neurosci Res 1991; 28(1): 110-4.
[http://dx.doi.org/10.1002/jnr.490280111] [PMID: 1904101]
[104]
Naveilhan P, Neveu I, Wion D, Brachet P. 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport 1996; 7(13): 2171-5.
[http://dx.doi.org/10.1097/00001756-199609020-00023] [PMID: 8930983]
[105]
Feron F, Burne TH, Brown J, et al. Developmental Vitamin D3 deficiency alters the adult rat brain. Brain Res Bull 2005; 65(2): 141-8.
[http://dx.doi.org/10.1016/j.brainresbull.2004.12.007]
[106]
Baksi SN, Hughes MJ. Chronic vitamin D deficiency in the weanling rat alters catecholamine metabolism in the cortex. Brain Res 1982; 242(2): 387-90.
[http://dx.doi.org/10.1016/0006-8993(82)90331-6]
[107]
Cass WA, Peters LE, Harned ME, Seroogy KB. Protection by GDNF and other trophic factors against the dopamine-depleting effects of neurotoxic doses of methamphetamine. Ann N Y Acad Sci 2006; 1074: 272-81.
[http://dx.doi.org/10.1196/annals.1369.024]
[108]
Kesby JP, Cui X, O’Loan J, McGrath JJ, Burne TH, Eyles DW. Developmental vitamin D deficiency alters dopamine-mediated behaviors and dopamine transporter function in adult female rats. Psychopharmacology (Berl) 2010; 208(1): 159-68.
[http://dx.doi.org/10.1007/s00213-009-1717-y] [PMID: 19921153]
[109]
Puchacz E, Stumpf WE, Stachowiak EK, Stachowiak MK. Vitamin D increases expression of the tyrosine hydroxylase gene in adrenal medullary cells. Brain Res Mol Brain Res 1996; 36(1): 193-6.
[110]
Sonnenberg J, Luine VN, Krey LC, Christakos S. 1,25-Dihydroxyvitamin D3 treatment results in increased choline acetyltransferase activity in specific brain nuclei. Endocrinology 1986; 118(4): 1433-9.
[http://dx.doi.org/10.1210/endo-118-4-1433] [PMID: 3753932]
[111]
Almeras L, Eyles D, Benech P, et al. Developmental vitamin D deficiency alters brain protein expression in the adult rat: implications for neuropsychiatric disorders. Proteomics 2007; 7(5): 769-80.
[http://dx.doi.org/10.1002/pmic.200600392] [PMID: 17295352]
[112]
Eyles D, Almeras L, Benech P, et al. Developmental vitamin D deficiency alters the expression of genes encoding mitochondrial, cytoskeletal and synaptic proteins in the adult rat brain. J Steroid Biochem Mol Biol 2007; 103(3-5): 538-45.
[113]
Latimer CS, Brewer LD, Searcy JL, et al. Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats. Proc Natl Acad Sci USA 2014; 111(41): E4359-66.
[114]
Salami M, Talaei SA, Davari S, Taghizadeh M. Hippocampal long term potentiation in rats under different regimens of vitamin D: an in vivo study. Neurosci Lett 2012; 509(1): 56-9.
[115]
Taghizadeh M, Talaei SA, Djazayeri A, Salami M. Vitamin D supplementation restores suppressed synaptic plasticity in Alzheimer’s disease. Nutr Neurosci 2014; 17(4): 172-7.
[116]
de Viragh PA, Haglid KG, Celio MR. Parvalbumin increases in the caudate putamen of rats with vitamin D hypervitaminosis. Proc Natl Acad Sci USA 1989; 86(10): 3887-90.
[http://dx.doi.org/10.1073/pnas.86.10.3887] [PMID: 2542952]
[117]
Wood TL, Kobayashi Y, Frantz G, Varghese S, Christakos S, Tobin AJ. Molecular cloning of mammalian 28,000 Mr vitamin D-dependent calcium binding protein (calbindin-D28K): expression of calbindin-D28K RNAs in rodent brain and kidney. DNA 1988; 7(9): 585-93.
[http://dx.doi.org/10.1089/dna.1988.7.585] [PMID: 2465881]
[118]
Gezen-Ak D, Dursun E, Yilmazer S. The effects of vitamin D receptor silencing on the expression of LVSCC-A1C and LVSCC-A1D and the release of NGF in cortical neurons. PLoS One 2011; 6(3) e17553
[http://dx.doi.org/10.1371/journal.pone.0017553] [PMID: 21408608]
[119]
Brewer LD, Thibault V, Chen KC, Langub MC, Landfield PW, Porter NM. Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons. J Neurosci 2001; 21(1): 98-108.
[120]
Zanatta L, Goulart PB, Goncalves R, et al. 1α,25-dihydroxyvitamin D(3) mechanism of action: modulation of L-type calcium channels leading to calcium uptake and intermediate filament phosphorylation in cerebral cortex of young rats. Biochim Biophys Acta 2012; 1823(10): 1708-19.
[http://dx.doi.org/10.1016/j.bbamcr.2012.06.023]
[121]
Masoumi A, Goldenson B, Ghirmai S, et al. 1alpha,25-dihydroxyvitamin D3 interacts with curcuminoids to stimulate amyloid-beta clearance by macrophages of Alzheimer’s disease patients. J Alzheimers Dis 2009; 17(3): 703-17.
[http://dx.doi.org/10.3233/JAD-2009-1080K457101686R62685]
[122]
Brown AJ, Slatopolsky E. 2007; Drug insight: vitamin D analogs in the treatment of secondary hyperparathyroidism in patients with chronic kidney disease. Nat Clin Pract Endocrinol Metab 3(2): 134-44.
[http://dx.doi.org/10.1038/ncpendmet0394]
[123]
Garcion E, Nataf S, Berod A, Darcy F, Brachet P. 1,25-Dihydroxyvitamin D3 inhibits the expression of inducible nitric oxide synthase in rat central nervous system during experimental allergic encephalomyelitis. Brain Res Mol Brain Res 1997; 45(2): 255-67.
[124]
Fernandes de Abreu DA, Ibrahim EC, Boucraut J, Khrestchatisky M, Feron F. Severity of experimental autoimmune encephalomyelitis is unexpectedly reduced in mice born to vitamin D-deficient mothers. J Steroid Biochem Mol Biol 2010; 121(1-2): 250-3.
[http://dx.doi.org/10.1016/j.jsbmb.2010.03.006S0960-0760(10)00095-6]
[125]
Jozefowicz O, Rabe-Jablonska J, Wozniacka A, Strzelecki D. Analysis of vitamin D status in major depression. J Psychiatr Pract 2014; 20(5): 329-37.
[http://dx.doi.org/10.1097/01.pra.0000454777.21810.1500131746-201409000-00002]
[126]
Kerr DC, Zava DT, Piper WT, Saturn SR, Frei B, Gombart AF. 2015; Associations between vitamin D levels and depressive symptoms in healthy young adult women. Psychiatry Res 227(1): 46-51.
[http://dx.doi.org/10.1016/j.psychres.2015.02.016]
[127]
Patrick RP, Ames BN. Ames (2014) Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism. FASEB J 2014; 28(6): 2398-413.
[http://dx.doi.org/10.1096/fj.13-246546fj.13-246546]
[128]
von Kanel R, Fardad N, Steurer N, et al. Vitamin D Deficiency and Depressive Symptomatology in Psychiatric Patients Hospitalized with a Current Depressive Episode: A Factor Analytic Study. PLoS One 2015; 10(9) e0138550
[http://dx.doi.org/10.1371/journal.pone.0138550PONE-D-15-32811]
[129]
Partonen T. Vitamin D and serotonin in winter. Med Hypotheses 1998; 51(3): 267-8.
[130]
Bala KA, Dogan M, Kaba S, Mutluer T, Aslan O, Doğan SZ. Hormone disorder and vitamin deficiency in attention deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASDs). J Pediatr Endocrinol Metab 2016; 29(9): 1077-82.
[131]
Muscogiuri G, Palomba S, Caggiano M, Tafuri D, Colao A, Orio F. Low 25 (OH) vitamin D levels are associated with autoimmune thyroid disease in polycystic ovary syndrome. Endocrine 2016; 53(2): 538-42.
[http://dx.doi.org/10.1007/s12020-015-0745-0]
[132]
Coskun S, Simsek S, Camkurt MA, Cim A, Celik SB. Association of polymorphisms in the vitamin D receptor gene and serum 25-hydroxyvitamin D levels in children with autism spectrum disorder. Gene 2016; 588(2): 109-14.
[http://dx.doi.org/10.1016/j.gene.2016.05.004]
[133]
Faulkner JL, Cornelius DC, Amaral LM, et al. Vitamin D supplementation improves pathophysiology in a rat model of preeclampsia. Am J Physiol Regul Integr Comp Physiol 2016; 310(4): R346-54.
[http://dx.doi.org/10.1152/ajpregu.00388.2015]
[134]
Dogan Y, Sarli B, Baktir AO, et al. 25-Hydroxy-vitamin D level may predict presence of coronary collaterals in patients with chronic coronary total occlusion. Postepy Kardiol Interwencyjnej 2015; 11(3): 191-6. [pii].
[http://dx.doi.org/10.5114/pwki.2015.5401225701]
[135]
Balden R, Selvamani A, Sohrabji F. Vitamin D deficiency exacerbates experimental stroke injury and dysregulates ischemia-induced inflammation in adult rats. Endocrinology 2012; 153(5): 2420-35. [pii].
[http://dx.doi.org/10.1210/en.2011-1783en.2011-1783]
[136]
Sato Y, Kikuyama M, Oizumi K. High prevalence of vitamin D deficiency and reduced bone mass in Parkinson’s disease. Neurology 1997; 49(5): 1273-8.
[http://dx.doi.org/10.1212/WNL.49.5.1273] [PMID: 9371907]
[137]
Evatt ML, Delong MR, Khazai N, Rosen A, Triche S, Tangpricha V. Prevalence of vitamin d insufficiency in patients with Parkinson disease and Alzheimer disease. Arch Neurol 2008; 65(10): 1348-52.
[http://dx.doi.org/10.1001/archneur.65.10.1348]
[138]
Evatt ML. 2010; Beyond vitamin status: is there a role for vitamin d in Parkinson disease? Arch Neurol 67(7): 795-7.
[http://dx.doi.org/10.1001/archneurol.2010.123]
[139]
Derex L, Trouillas P. Reversible parkinsonism, hypophosphoremia, and hypocalcemia under vitamin D therapy. Mov Disord 1997; 12(4): 612-3.
[http://dx.doi.org/10.1002/mds.870120424] [PMID: 9251086]
[140]
Smith DA. Commentary on variability in vitamin K antagonist metabolism. Expert Opin Drug Metab Toxicol 2006; 2(1): 1-2.
[http://dx.doi.org/10.1517/17425255.2.1.1] [PMID: 16863463]
[141]
Orme RP, Middleditch C, Waite L, Fricker RA. Fricker (2016) The Role of Vitamin D(3) in the Development and Neuroprotection of Midbrain Dopamine Neurons. Vitam Horm 2016; 100: 273-97. [pii].
[http://dx.doi.org/10.1016/bs.vh.2015.10.007S0083-6729(15)00059-X]
[142]
Annweiler C, Brugg B, Peyrin JM, Bartha R, Beauchet O. Combination of memantine and vitamin D prevents axon degeneration induced by amyloid-beta and glutamate 2014; 35(2): 331-5.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.07.029]
[143]
Wang Q, Liu Y, Ma Y, et al. Severe hypovitaminosis D in active tuberculosis patients and its predictors. Clin Nutr 2018; 37(3): 1034-40.
[http://dx.doi.org/10.1016/j.clnu.2017.04.018]
[144]
Cannell JJ, Vieth R, Umhau JC, et al. Epidemic influenza and vitamin D. Epidemiol Infect 2006; 134(6): 1129-40.
[http://dx.doi.org/10.1017/S0950268806007175]
[145]
Szodoray P, Nakken B, Gaal J, et al. The complex role of vitamin D in autoimmune diseases. Scand J Immunol 2008; 68(3): 261-9.
[http://dx.doi.org/10.1111/j.1365-3083.2008.02127.x]
[146]
Lemire JM, Adams JS, Sakai R, Jordan SC. 1 alpha,25-dihydroxyvitamin D3 suppresses proliferation and immunoglobulin production by normal human peripheral blood mononuclear cells. J Clin Invest 1984; 74(2): 657-61.
[http://dx.doi.org/10.1172/JCI111465] [PMID: 6611355]
[147]
Rigby WF, Stacy T, Fanger MW. Inhibition of T lymphocyte mitogenesis by 1,25-dihydroxyvitamin D3 (calcitriol). J Clin Invest 1984; 74(4): 1451-5.
[http://dx.doi.org/10.1172/JCI111557] [PMID: 6332829]
[148]
Brennan A, Katz DR, Nunn JD, et al. Dendritic cells from human tissues express receptors for the immunoregulatory vitamin D3 metabolite, dihydroxycholecalciferol. Immunology 1987; 61(4): 457-61.
[PMID: 2832307]
[149]
Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol 2008; 8(9): 685-98. [pii].
[http://dx.doi.org/10.1038/nri2378nri2378]
[150]
Hewison M. Vitamin D and the immune system: new perspectives on an old theme. Rheum Dis Clin North Am 2012; 38(1): 125-39. [pii].
[http://dx.doi.org/10.1016/j.rdc.2012.03.012S0889-857X(12)00013-0]
[151]
Lemire JM, Adams JS, Kermani-Arab V, Bakke AC, Sakai R, Jordan SC. 1,25-Dihydroxyvitamin D3 suppresses human T helper/inducer lymphocyte activity in vitro. J Immunol 1985; 134(5): 3032-5.
[PMID: 3156926]
[152]
Alroy I, Towers TL, Freedman LP. Transcriptional repression of the interleukin-2 gene by vitamin D3: direct inhibition of NFATp/AP-1 complex formation by a nuclear hormone receptor. Mol Cell Biol 1995; 15(10): 5789-99.
[http://dx.doi.org/10.1128/MCB.15.10.5789] [PMID: 7565732]
[153]
Cippitelli M, Santoni A. Vitamin D3: a transcriptional modulator of the interferon-gamma gene. Eur J Immunol 1998; 28(10): 3017-30.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199810)28:10<3017:AID-IMMU3017>3.0.CO;2-6] [PMID: 9808170]
[154]
Cantorna MT, Nashold FE, Hayes CE. Vitamin A deficiency results in a priming environment conducive for Th1 cell development. Eur J Immunol 1995; 25(6): 1673-9.
[http://dx.doi.org/10.1002/eji.1830250629] [PMID: 7614995]
[155]
Correale J, Ysrraelit MC, Gaitan MI. Immunomodulatory effects of Vitamin D in multiple sclerosis. Brain 2009; 132(Pt 5): 1146-60. [pii].
[http://dx.doi.org/10.1093/brain/awp033awp033]
[156]
Moore ME, Piazza A, McCartney Y, Lynch MA. Evidence that vitamin D3 reverses age-related inflammatory changes in the rat hippocampus. Biochem Soc Trans 2005; 33(Pt 4): 573-7.
[http://dx.doi.org/10.1042/BST0330573]
[157]
Sloka S, Stokes J, Randell E, Newhook LA. Seasonal variation of maternal serum vitamin D in Newfoundland and Labrador. J Obstet Gynaecol Can 2009; 31(4): 313-21.http://dx.doi.org/S1701-2163(16)34148-2 [pii].
[158]
Pierrot-Deseilligny C, Souberbielle JC. Contribution of vitamin D insufficiency to the pathogenesis of multiple sclerosis. Ther Adv Neurol Disord 2013; 6(2): 81-116.
[http://dx.doi.org/10.1177/1756285612473513]
[159]
Nashold FE, Spach KM, Spanier JA, Hayes CE. Estrogen controls vitamin D3-mediated resistance to experimental autoimmune encephalomyelitis by controlling vitamin D3 metabolism and receptor expression. J Immunol 2009; 183(6): 3672-81.
[http://dx.doi.org/10.4049/jimmunol.0901351]
[160]
Cantorna MT, Nashold FE, Chun TY, Hayes CE. Vitamin A down-regulation of IFN-gamma synthesis in cloned mouse Th1 lymphocytes depends on the CD28 costimulatory pathway. J Immunol 1996; 156(8): 2674-9.
[PMID: 8609382]
[161]
Spach KM, Hayes CE. Vitamin D3 confers protection from autoimmune encephalomyelitis only in female mice. J Immunol 2005; 175(6): 4119-26.http://dx.doi.org/175/6/4119 [pii]10.4049/jimmunol.175.6.4119
[162]
Soilu-Hanninen M, Aivo J, Lindstrom BM, et al. A randomised, double blind, placebo controlled trial with vitamin D3 as an add on treatment to interferon β-1b in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 2012; 83(5): 565-71. [pii].
[http://dx.doi.org/10.1136/jnnp-2011-301876jnnp-2011-301876]
[163]
Kumar P, Shenoi A, Kumar RK, Girish SV, Subbaiah S. Vitamin D Deficiency Among Women in Labor and Cord Blood of Newborns. Indian Pediatr 2015; 52(6): 530-1.
[PMID: 26121736]
[164]
Alafuzoff I, Aho L, Helisalmi S, Mannermaa A, Soininen H. Beta-amyloid deposition in brains of subjects with diabetes. Neuropathol Appl Neurobiol 2009; 35(1): 60-8.
[http://dx.doi.org/10.1111/j.1365-2990.2008.00948.xNAN948]
[165]
Khachaturian ZS. Diagnosis of Alzheimer’s disease. Arch Neurol 1985; 42(11): 1097-105.
[http://dx.doi.org/10.1001/archneur.1985.04060100083029] [PMID: 2864910]
[166]
Polvikoski T, Sulkava R, Myllykangas L, et al. Prevalence of Alzheimer’s disease in very elderly people: a prospective neuropathological study. Neurology 2001; 56(12): 1690-6.
[http://dx.doi.org/10.1212/WNL.56.12.1690] [PMID: 11425935]
[167]
Mirra SS, Heyman A, McKeel D, et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 1991; 41(4): 479-86.
[http://dx.doi.org/10.1212/WNL.41.4.479] [PMID: 2011243]
[168]
Duyckaerts C, Delatour B, Potier MC. Classification and basic pathology of Alzheimer disease. Acta Neuropathol 2009; 118(1): 5-36.
[http://dx.doi.org/10.1007/s00401-009-0532-1] [PMID: 19381658]
[169]
Braak H, Rüb U, Schultz C, Del Tredici K. Vulnerability of cortical neurons to Alzheimer’s and Parkinson’s diseases. J Alzheimers Dis 2006; 9(3)(Suppl.): 35-44.
[http://dx.doi.org/10.3233/JAD-2006-9S305] [PMID: 16914843]
[170]
Feldman HH, Van Baelen B, Kavanagh SM, Torfs KE. Cognition, function, and caregiving time patterns in patients with mild-to-moderate Alzheimer disease: a 12-month analysis. Alzheimer Dis Assoc Disord 2005; 19(1): 29-36.
[171]
Dubois B, Hampel H, Feldman HH, et al. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement 2016; 12(3): 292-323. [pii].
[http://dx.doi.org/10.1016/j.jalz.2016.02.002S1552-5260(16)00050-9]
[172]
Grimm MOW, Lauer AA, Grosgen S, et al. Profiling of Alzheimer’s disease related genes in mild to moderate vitamin D hypovitaminosis. J Nutr Biochem 2019; 67: 123-37.
[http://dx.doi.org/10.1016/j.jnutbio.2019.01.015]
[173]
Grimm MOW, Thiel A, Lauer AA, et al. Vitamin D and Its Analogues Decrease Amyloid-β (Aβ) Formation and Increase Aβ-Degradation. Int J Mol Sci 2017; 18(12) E2764
[174]
Brouwer-Brolsma EM, de Groot LC. Vitamin D and cognition in older adults: an update of recent findings. Curr Opin Clin Nutr Metab Care 2015; 18(1): 11-6.
[http://dx.doi.org/10.1097/MCO.0000000000000114] [PMID: 25225898]
[175]
Raha S, Lee HJ, Yumnam S, et al. Vitamin D2 suppresses amyloid-β 25-35 induced microglial activation in BV2 cells by blocking the NF-κB inflammatory signaling pathway. Life Sci 2016; 161: 37-44.
[http://dx.doi.org/10.1016/j.lfs.2016.07.017]
[176]
Mizwicki MT, Liu G, Fiala M, et al. 1α,25-dihydroxyvitamin D3 and resolvin D1 retune the balance between amyloid-β phagocytosis and inflammation in Alzheimer’s disease patients. J Alzheimers Dis 2013; 34(1): 155-70. [pii].
[http://dx.doi.org/10.3233/JAD-121735M73252850M04G801]
[177]
Morello M, Landel V, Lacassagne E, et al. Vitamin D Improves Neurogenesis and Cognition in a Mouse Model of Alzheimer’s Disease. Mol Neurobiol 2018; 55(8): 6463-79.
[http://dx.doi.org/10.1007/s12035-017-0839-1]
[178]
Yamini P, Ray RS, Chopra K. Vitamin D3 attenuates cognitive deficits and neuroinflammatory responses in ICV-STZ induced sporadic Alzheimer’s disease. Inflammopharmacology 2018; 26(1): 39-55.
[http://dx.doi.org/10.1007/s10787-017-0372-x]
[179]
Sutherland MK, Wong L, Somerville MJ, et al. Reduction of thyroid hormone receptor c-ERB A alpha mRNA levels in the hippocampus of Alzheimer as compared to Huntington brain. Neurobiol Aging 1992; 13(2): 301-12.
[180]
Riedel G, Platt B, Micheau J. Glutamate receptor function in learning and memory. Behav Brain Res 2003; 140(1-2): 1-47.
[http://dx.doi.org/10.1016/S0166-4328(02)00272-3]
[181]
Kawamoto EM, Munhoz CD, Glezer I, et al. Oxidative state in platelets and erythrocytes in aging and Alzheimer’s disease. Neurobiol Aging 2005; 26(6): 857-64.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.08.011]
[182]
Domingues SC, Henriques AG, Wu W, Da Cruz e Silva EF, Da Cruz e Silva OA. Altered subcellular distribution of the Alzheimer’s amyloid precursor protein under stress conditions. Ann N Y Acad Sci 2007; 1096: 184-95.
[http://dx.doi.org/10.1196/annals.1397.085]
[183]
Brewer LD, Porter NM, Kerr DS, Landfield PW, Thibault O. Chronic 1alpha,25-(OH)2 vitamin D3 treatment reduces Ca2+ -mediated hippocampal biomarkers of aging. Cell Calcium 2006; 40(3): 277-86.
[http://dx.doi.org/10.1016/j.ceca.2006.04.001]
[184]
Dursun E, Gezen-Ak D, Yilmazer S. A novel perspective for Alzheimer’s disease: vitamin D receptor suppression by amyloid-β and preventing the amyloid-β induced alterations by vitamin D in cortical neurons. J Alzheimers Dis 2011; 23(2): 207-19.
[http://dx.doi.org/10.3233/JAD-2010-101377]
[185]
Gezen-Ak D, Dursun E, Bilgic B, et al. Vitamin D receptor gene haplotype is associated with late-onset Alzheimer’s disease. Tohoku J Exp Med 2012; 228(3): 189-96.
[186]
Gezen-Ak D, Dursun E, Ertan T, et al. Association between vitamin D receptor gene polymorphism and Alzheimer’s disease. Tohoku J Exp Med 2007; 212(3): 275-82.
[http://dx.doi.org/10.1620/tjem.212.275]
[187]
Laczmanski L, Jakubik M, Bednarek-Tupikowska G, Rymaszewska J, Słoka N, Lwow F. Vitamin D receptor gene polymorphisms in Alzheimer’s disease patients. Exp Gerontol 2015; 69: 142-7.
[http://dx.doi.org/10.1016/j.exger.2015.06.012]
[188]
Tohda C, Urano T, Umezaki M, Nemere I, Kuboyama T. Diosgenin is an exogenous activator of 1,25D3-MARRS/Pdia3/ERp57 and improves Alzheimer’s disease pathologies in 5XFAD mice. Sci Rep 2012; 2: 535.
[http://dx.doi.org/10.1038/srep00535] [PMID: 22837815]
[189]
Cirrito JR, Holtzman DM. Amyloid beta and Alzheimer disease therapeutics: the devil may be in the details. J Clin Invest 2003; 112(3): 321-3. [pii].
[http://dx.doi.org/10.1172/JCI19420112/3/321]
[190]
Hong YK, Park SH, Lee S, et al. Neuroprotective effect of SuHeXiang Wan in Drosophila models of Alzheimer’s disease. J Ethnopharmacol 2011; 134(3): 1028-32.
[http://dx.doi.org/10.1016/j.jep.2011.02.012]
[191]
Guo YX, He LY, Zhang M, Wang F, Liu F, Peng WX. 1,25-Dihydroxyvitamin D3 regulates expression of LRP1 and RAGE in vitro and in vivo, enhancing Aβ1-40 brain-to-blood efflux and peripheral uptake transport. Neuroscience 2016; 322: 28-38.
[http://dx.doi.org/10.1016/j.neuroscience.2016.01.041]
[192]
Briones TL, Darwish H. Vitamin D mitigates age-related cognitive decline through the modulation of pro-inflammatory state and decrease in amyloid burden. J Neuroinflammation 2012; 9: 244.
[193]
Mizwicki MT, Menegaz D, Zhang J, et al. Genomic and nongenomic signaling induced by 1α,25(OH)2-vitamin D3 promotes the recovery of amyloid-β phagocytosis by Alzheimer’s disease macrophages. J Alzheimers Dis 2012; 29(1): 51-62.
[http://dx.doi.org/10.3233/JAD-2012-110560]
[194]
Llewellyn DJ, Lang IA, Langa KM, Melzer D. Vitamin D and cognitive impairment in the elderly U.S. population. J Gerontol A Biol Sci Med Sci 2011; 66(1): 59-65. [pii].
[http://dx.doi.org/10.1093/gerona/glq185glq185]
[195]
Wilkins CH, Sheline YI, Roe CM, Birge SJ, Morris JC. Vitamin D deficiency is associated with low mood and worse cognitive performance in older adults. Am J Geriatr Psychiatry 2006; 14(12): 1032-40.
[http://dx.doi.org/10.1097/01.JGP.0000240986.74642.7c]
[196]
Annweiler C, Fantino B, Gautier J, Beaudenon M, Thiery S, Beauchet O. Cognitive effects of vitamin D supplementation in older outpatients visiting a memory clinic: a pre-post study. J Am Geriatr Soc 2012; 60(4): 793-5.
[http://dx.doi.org/10.1111/j.1532-5415.2011.03877.x] [PMID: 22494292]
[197]
Jorde R, Mathiesen EB, Rogne S, et al. Vitamin D and cognitive function: The Tromso Study. J Neurol Sci 2015; 335(1-2): 155-61.
[http://dx.doi.org/10.1016/j.jns.2015.06.009]
[198]
Annweiler C, Herrmann FR, Fantino B, Brugg B, Beauchet O. Effectiveness of the combination of memantine plus vitamin D on cognition in patients with Alzheimer disease: a pre-post pilot study. Cogn Behav Neurol 2012; 25(3): 121-7.
[http://dx.doi.org/10.1097/WNN.0b013e31826df647]
[199]
Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 2011; 70(4): 687-702.
[http://dx.doi.org/10.1016/j.neuron.2011.05.001]
[200]
Snyder JS, Cameron HA. 2012; Could adult hippocampal neurogenesis be relevant for human behavior? Behav Brain Res 227(2): 384-90.
[http://dx.doi.org/10.1016/j.bbr.2011.06.024]
[201]
Mu Y, Gage FH. Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 2011; 6: 85.
[http://dx.doi.org/10.1186/1750-1326-6-85]
[202]
Zhu Y, Zhou R, Yang R, et al. Abnormal neurogenesis in the dentate gyrus of adult mice lacking 1,25-dihydroxy vitamin D3 (1,25-(OH)2 D3). Hippocampus 2012; 22(3): 421-33.
[http://dx.doi.org/10.1002/hipo.20908] [PMID: 21125584]
[203]
Eyles D, Brown J, Mackay-Sim A, McGrath J, Feron F. Vitamin D3 and brain development. Neuroscience 2003; 118(3): 641-53.
[http://dx.doi.org/10.1016/S0306-4522(03)00040-X]
[204]
Becker A, Eyles DW, McGrath JJ, Grecksch G. Transient prenatal vitamin D deficiency is associated with subtle alterations in learning and memory functions in adult rats. Behav Brain Res 2005; 161(2): 306-12.
[http://dx.doi.org/10.1016/j.bbr.2005.02.015]
[205]
Shirazi HA, Rasouli J, Ciric B, Rostami A, Zhang GX. 1,25-Dihydroxyvitamin D3 enhances neural stem cell proliferation and oligodendrocyte differentiation. Exp Mol Pathol 2015; 98(2): 240-5.
[http://dx.doi.org/10.1016/j.yexmp.2015.02.004]
[206]
Houlden H, Singleton AB. The genetics and neuropathology of Parkinson’s disease. Acta Neuropathol 2012; 124(3): 325-38.
[http://dx.doi.org/10.1007/s00401-012-1013-5] [PMID: 22806825]
[207]
Knekt P, Kilkkinen A, Rissanen H, Marniemi J, Sääksjärvi K, Heliövaara M. Serum vitamin D and the risk of Parkinson disease. Arch Neurol 2010; 67(7): 808-11.
[http://dx.doi.org/10.1001/archneurol.2010.120]
[208]
Shrestha S, Lutsey PL, Alonso A, Huang X, Mosley TH Jr, Chen H. Serum 25-hydroxyvitamin D concentrations in Mid-adulthood and Parkinson’s disease risk. Mov Disord 2016; 31(7): 972-8.
[http://dx.doi.org/10.1002/mds.26573] [PMID: 27090608]
[209]
Lv Z, Qi H, Wang L, et al. Vitamin D status and Parkinson’s disease: a systematic review and meta-analysis. Neurol Sci 2014; 35(11): 1723-30.
[http://dx.doi.org/10.1007/s10072-014-1821-6] [PMID: 24847960]
[210]
Rimmelzwaan LM, van Schoor NM, Lips P, Berendse HW, Eekhoff EM. Association Between Serum Vitamin D Levels and Parkinson’s Disease: A Systematic Review and Meta-Analysis. Front Neurol 2016; 909.
[211]
Luo X, Ou R, Dutta R, Tian Y, Xiong H, Shang H. Association Between Serum Vitamin D Levels and Parkinson’s Disease: A Systematic Review and Meta-Analysis. Front Neurol 2018; 9: 909.
[http://dx.doi.org/10.3389/fneur.2018.00909] [PMID: 30483205]
[212]
Shinpo K, Kikuchi S, Sasaki H, Moriwaka F, Tashiro K. Effect of 1,25-dihydroxyvitamin D(3) on cultured mesencephalic dopaminergic neurons to the combined toxicity caused by L-buthionine sulfoximine and 1-methyl-4-phenylpyridine. J Neurosci Res 2000; 62(3): 374-82.
[213]
Smith MP, Cass WA. GDNF reduces oxidative stress in a 6-hydroxydopamine model of Parkinson’s disease. Neurosci Lett 2007; 412(3): 259-63.
[http://dx.doi.org/10.1016/j.neulet.2006.11.017]
[214]
Smith MP, Fletcher-Turner A, Yurek DM, Cass WA. Calcitriol protection against dopamine loss induced by intracerebroventricular administration of 6-hydroxydopamine. Neurochem Res 2006; 31(4): 533-9.
[http://dx.doi.org/10.1007/s11064-006-9048-4] [PMID: 16758362]
[215]
Wang JY, Wu JN, Cherng TL, et al. Vitamin D(3) attenuates 6-hydroxydopamine-induced neurotoxicity in rats. Brain Res 2001; 904(1): 67-75.
[216]
Kim JS, Ryu SY, Yun I, et al. 1alpha,25-Dihydroxyvitamin D(3) Protects Dopaminergic Neurons in Rodent Models of Parkinson’s Disease through Inhibition of Microglial Activation. J Clin Neurol 2006; 2(4): 252-7.
[http://dx.doi.org/10.3988/jcn.2006.2.4.252] [PMID: 20396528]
[217]
Liu Y, Li YW, Tang YL, et al. Vitamin D: preventive and therapeutic potential in Parkinson’s disease. Curr Drug Metab 2013; 14(9): 989-93.
[218]
Peterson AL, Murchison C, Zabetian C, et al. Memory, mood, and vitamin D in persons with Parkinson’s disease. J Parkinsons Dis 2013; 3(4): 547-55.
[219]
Sato Y, Honda Y, Iwamoto J, Kanoko T, Satoh K. Abnormal bone and calcium metabolism in immobilized Parkinson’s disease patients. Mov Disord 2005; 20(12): 1598-603.
[http://dx.doi.org/10.1002/mds.20658] [PMID: 16114020]
[220]
Sato Y, Honda Y, Kaji M, et al. Amelioration of osteoporosis by menatetrenone in elderly female Parkinson’s disease patients with vitamin D deficiency. Bone 2002; 31(1): 114-8.
[http://dx.doi.org/10.1016/S8756-3282(02)00783-4]
[221]
Sato Y, Kaji M, Tsuru T, Satoh K, Kondo I. Vitamin K deficiency and osteopenia in vitamin D-deficient elderly women with Parkinson’s disease. Arch Phys Med Rehabil 2002; 83(1): 86-91.
[222]
Sato Y, Iwamoto J, Honda Y. Vitamin d deficiency-induced vertebral fractures may cause stooped posture in Parkinson disease. Am J Phys Med Rehabil 2011; 90(4): 281-6.
[http://dx.doi.org/10.1097/PHM.0b013e3182063a42] [PMID: 21273899]
[223]
Vinh Quôc Luong K, Thi Hoàng Nguyên L. Vitamin D and Parkinson’s disease. J Neurosci Res 2012; 90(12): 2227-36.
[http://dx.doi.org/10.1002/jnr.23115] [PMID: 22930493]
[224]
Tanaka K, Miyake Y, Fukushima W, et al. Vitamin D receptor gene polymorphisms, smoking, and risk of sporadic Parkinson’s disease in Japan. Neurosci Lett 2017; 643: 97-102.
[225]
Gatto NM, Sinsheimer JS, Cockburn M, Escobedo LA, Bordelon Y, Ritz B. Vitamin D receptor gene polymorphisms and Parkinson’s disease in a population with high ultraviolet radiation exposure. J Neurol Sci 2015; 352(1-2): 88-93.
[226]
Rcom-H’cheo-Gauthier AN, Meedeniya AC, Pountney DL. Calcipotriol inhibits α-synuclein aggregation in SH-SY5Y neuroblastoma cells by a Calbindin-D28k-dependent mechanism. J Neurochem 2017; 141(2): 263-74.
[http://dx.doi.org/10.1111/jnc.13971] [PMID: 28164279]
[227]
Costa J, Gomes C, de Carvalho M. Diagnosis, pathogenesis and therapeutic targets in amyotrophic lateral sclerosis. CNS Neurol sci Ther 2010; 20(2): 101-1.
[http://dx.doi.org/10.2174/187152710793237502]
[228]
Gianforcaro A, Hamadeh MJ. Vitamin D as a potential therapy in amyotrophic lateral sclerosis. CNS Neurosci Ther 2014; 20(2): 101-11.
[http://dx.doi.org/10.1111/cns.12204] [PMID: 24428861]
[229]
Karam C, Barrett MJ, Imperato T, MacGowan DJ, Scelsa S. Vitamin D deficiency and its supplementation in patients with amyotrophic lateral sclerosis. J Clin Neurosci 2013; 20(11): 1550-3.
[230]
Camu W, Tremblier B, Plassot C, et al. Vitamin D confers protection to motoneurons and is a prognostic factor of amyotrophic lateral sclerosis. Neurobiol Aging 2014; 35(5): 1198-205.
[231]
Mantadakis E, Deftereos S, Tsouvala E, Thomaidis S. Chatzimichael Seizures as initial manifestation of vitamin D-deficiency rickets in a 5-month-old exclusively breastfed infant. Pediatr Neonatol
[232]
Moghimi E, Solomon JA, Gianforcaro A, Hamadeh MJ. Dietary Vitamin D3 Restriction Exacerbates Disease Pathophysiology in the Spinal Cord of the G93A Mouse Model of Amyotrophic Lateral Sclerosis. PLoS One 2015; 10(5) e0126355
[233]
Gianforcaro A, Hamadeh MJ. Dietary vitamin D3 supplementation at 10× the adequate intake improves functional capacity in the G93A transgenic mouse model of ALS, a pilot study. CNS Neurosci Ther 2012; 18(7): 547-57.
[http://dx.doi.org/10.1111/j.1755-5949.2012.00316.x] [PMID: 22591278]
[234]
Libonati L, Onesti E, Gori MC, et al. Vitamin D in amyotrophic lateral sclerosis. Funct Neurol 2017; 32(1): 35-40.
[235]
Yang J, Park JS, Oh KW, Oh SI, Park HM, Kim SH. Vitamin D levels are not predictors of survival in a clinic population of patients with ALS. J Neurol Sci 2016; 367: 83-8.
[236]
Blasco H, Madji Hounoum B, Dufour-Rainfray D, et al. Vitamin D is Not a Protective Factor in ALS. CNS Neurosci Ther 2015; 21(8): 651-6.
[http://dx.doi.org/10.1111/cns.12423] [PMID: 26096806]
[237]
Bartosik-Psujek H, and M Psujek. (2019); Vitamin D as an immune modulator in multiple sclerosis. Neurol Neurochir Pol 53(2): 113-22. [pii].
[http://dx.doi.org/10.5603/PJNNS.a2019.0015VM/OJS/J/62783]
[238]
Roullet CM, Roullet JB, Martin AS, McCarron DA. In vivo effect of calcitriol on calcium transport and calcium binding proteins in the spontaneously hypertensive rat. Hypertension 1994; 24(2): 176-82.
[http://dx.doi.org/10.1161/01.HYP.24.2.176] [PMID: 8039841]
[239]
Cui X, Gooch H, Petty A, McGrath JJ, Eyles D. Vitamin D and the brain: Genomic and non-genomic actions. Mol Cell Endrocrinol 2017; 453: 131-43.
[240]
Balbuena LD, Middleton RM, Tuite-Dalton K, Pouliou T, Williams KE, Noble GJ. Sunshine, Sea, and Season of Birth: MS Incidence in Wales. PLoS One 2016; 11(5) e0155181
[241]
Rodriguez Cruz PM, Matthews L, Boggild M, et al. Time- and Region-Specific Season of Birth Effects in Multiple Sclerosis in the United Kingdom. JAMA Neurol 2016; 73(8): 954-60.
[242]
Dobson R, Giovannoni G, Ramagopalan S. The month of birth effect in multiple sclerosis: systematic review, meta-analysis and effect of latitude. BMJ 2012; 84(4)
[243]
Féron F. Vitamin D and multiple sclerosis: what are the guidelines for a reliable clinical trial? Expert Rev Neurother 2010; 10(9): 1375-8.
[http://dx.doi.org/10.1586/ern.10.118] [PMID: 20819008]
[244]
Alonso A, Hernan MA. 2008.Temporal trends in the incidence of multiple sclerosis: a systematic review
[http://dx.doi.org/10.1212/01.wnl.0000316802.35974.34]
[245]
Lucas RM, A.M. Hughes, M.L. Lay, et al. Epstein-Barr virus and multiple sclerosis. J Neurol Neurosurg Psychiatry 2011; 82(10): 1142-8. [pii].
[http://dx.doi.org/10.1136/jnnp-2011-300174jnnp-2011-300174]
[246]
van der Mei IA, Ponsonby AL, Dwyer T, et al. 2003.Past exposure to sun, skin phenotype, and risk of multiple sclerosis: case-control study
[http://dx.doi.org/10.1097/00001648-200309001-00275]
[247]
Tremlett H, Zhu F, Ascherio A, Munger KL. 2018.Sun exposure over the life course and associations with multiple sclerosis
[http://dx.doi.org/10.1212/WNL.0000000000005257]
[248]
Cortese M, T Riise, K Bjornevik, et al. (2015); Timing of use of cod liver oil, a vitamin D source, and multiple sclerosis risk: The EnvIMS study. Mult Scler 21(14): 1856-64.
[249]
Staples GO, Naimy H, Yin H, et al. Improved hydrophilic interaction chromatography LC/MS of heparinoids using a chip with postcolumn makeup flow. Anal Chem 2010; 82(2): 516-22.
[http://dx.doi.org/10.1021/ac901706f] [PMID: 20000724]
[250]
Munger KL, K Hongell, J Aivo, M Soilu-Hanninen, H.M Surcel, et al. (2017); 25-Hydroxyvitamin D deficiency and risk of MS among women in the Finnish Maternity Cohort. Neurology 89(15): 1578-83.
[251]
Salzer J, G Hallmans, M Nystrom, H Stenlund, G Wadell, et al. (2012); Vitamin D as a protective factor in multiple sclerosis. Neurology 79(21): 2140-5.
[252]
Ueda P, Rafatnia F, Bäärnhielm M, et al. Neonatal vitamin D status and risk of multiple sclerosis. Ann Neurol 2014; 76(3): 338-46.
[http://dx.doi.org/10.1002/ana.24210] [PMID: 24985080]
[253]
Fernandes de Abreu DA, Landel V, Barnett AG, McGrath J, Eyles D, et al. 2012.Prenatal vitamin D deficiency induces an early and more severe experimental autoimmune encephalomyelitis in the second generation
[http://dx.doi.org/10.3390/ijms130910911]
[254]
Stepkowski SM, Qu X, Wang ME, et al. Inhibition of C-raf expression by antisense oligonucleotides extends heart allograft survival in rats. Transplantation 2000; 70(4): 656-61.
[http://dx.doi.org/10.1097/00007890-200008270-00020] [PMID: 10972225]
[255]
Gorter RP, Nutma E, Jahrei MC, et al. Heat shock proteins are differentially expressed in brain and spinal cord: implications for multiple sclerosis. Clin Exp Immunol 2018; 194(2): 137-52.
[http://dx.doi.org/10.1111/cei.13186] [PMID: 30014472]
[256]
Ramagopalan SV, Maugeri NJ, Handunnetthi L, et al. Expression of the multiple sclerosis-associated MHC class II Allele HLA-DRB1*1501 is regulated by vitamin D. PLoS Genet 2009; 5(2) e1000369
[http://dx.doi.org/10.1371/journal.pgen.1000369] [PMID: 19197344]
[257]
Shirazi HA, J Rasouli, B Ciric, D Wei, A Rostami, et al. (2017); 1,25-Dihydroxyvitamin D3 suppressed experimental autoimmune encephalomyelitis through both immunomodulation and oligodendrocyte maturation. Exp Mol Pathol 102(3): 515-21.
[258]
Matias-Guiu J, C. Oreja-Guevara, J.A. Matias-Guiu, and U. Gomez- Pinedo. (2018); Vitamin D and remyelination in multiple sclerosis. Neurologia 33(3): 177-86.
[259]
Mimura LA, Chiuso-Minicucci F, Fraga-Silva TF, et al. 2016.Association of myelin peptide with vitamin D prevents autoimmune encephalomyelitis development
[http://dx.doi.org/10.1016/j.neuroscience.2015.12.053]
[260]
Sandberg L, Bistrom M, Salzer J, Vagberg M, Svenningsson A, et al. 2016.
[261]
Veldman CM, M.T. Cantorna, and H.F. DeLuca. (2000); Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system. Arch Biochem Biophys 374(2): 334-8.
[262]
Gottfried E, Rehli M, Hahn J, Holler E, Andreesen R, et al. 2006.Monocyte-derived cells express CYP27A1 and convert vitamin D3 into its active metabolite
[http://dx.doi.org/10.1016/j.bbrc.2006.08.034]
[263]
Adams JS, and M. Hewison. (2010); Update in vitamin D. J Clin Endocrinol Metab 95(2): 471-8.
[264]
Kundu R, Chain BM, Coussens AK, Khoo B, Noursadeghi M. Regulation of CYP27B1 and CYP24A1 hydroxylases limits cell-autonomous activation of vitamin D in dendritic cells. Eur J Immunol 2014; 44(6): 1781-90.
[http://dx.doi.org/10.1002/eji.201344157] [PMID: 24643654]
[265]
Hewison M. (2011); Vitamin D and innate and adaptive immunity. Vitam Horm 86: 23-62.
[266]
Chen C, H Zibiao, Z Ming, et al. (2014); Expression pattern of Toll-like receptors (TLRs) in different organs and effects of lipopolysaccharide on the expression of TLR 2 and 4 in reproductive organs of female rabbit. Dev Comp Immunol 46(2): 341-8.
[267]
Pedersen LB, Nashold FE, Spach KM, Hayes CE. 1,25-dihydroxyvitamin D3 reverses experimental autoimmune encephalomyelitis by inhibiting chemokine synthesis and monocyte trafficking. J Neurosci Res 2007; 85(11): 2480-90.
[http://dx.doi.org/10.1002/jnr.21382] [PMID: 17600374]
[268]
Xie X, Y Zhang, R Ke, et al. (2015); Vitamin D-binding protein gene polymorphisms and chronic obstructive pulmonary disease susceptibility: A meta-analysis. Biomed Rep 3(2): 183-8.
[269]
Piemonti L, P Monti, M Sironi, et al. (2000); Vitamin D3 affects differentiation, maturation, and function of human monocyte-derived dendritic cells. J Immunol 164(9): 4443-51.
[270]
Dankers W, Colin EM, van Hamburg JP, Lubberts E. Vitamin D in Autoimmunity: Molecular Mechanisms and Therapeutic Potential. Front Immunol 2017; 7: 697.
[http://dx.doi.org/10.3389/fimmu.2016.00697] [PMID: 28163705]
[271]
Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature 1996; 383(6603): 787-93.
[http://dx.doi.org/10.1038/383787a0] [PMID: 8893001]
[272]
Romagnani S, Parronchi P, D’Elios MM, et al. An update on human Th1 and Th2 cells. Int Arch Allergy Immunol 1997; 113(1-3): 153-6.
[http://dx.doi.org/10.1159/000237532] [PMID: 9130508]
[273]
Di Rosa M, Malaguarnera M, Nicoletti F, Malaguarnera L. Vitamin D3: a helpful immuno-modulator. Immunology 2011; 134(2): 123-39.
[http://dx.doi.org/10.1111/j.1365-2567.2011.03482.x] [PMID: 21896008]
[274]
Prietl B, G Treiber, T.R Pieber, and K Amrein. (2013); Vitamin D and immune function. Nutrients 5(7): 2502-21.
[275]
Rigby WF, Denome S, Fanger MW. Regulation of lymphokine production and human T lymphocyte activation by 1,25-dihydroxyvitamin D3. Specific inhibition at the level of messenger RNA. J Clin Invest 1987; 79(6): 1659-64.
[http://dx.doi.org/10.1172/JCI113004] [PMID: 2884234]
[276]
Reichel H, Koeffler HP, Tobler A, Norman AW. 1 alpha,25-Dihydroxyvitamin D3 inhibits gamma-interferon synthesis by normal human peripheral blood lymphocytes. Proc Natl Acad Sci USA 1987; 84(10): 3385-9.
[http://dx.doi.org/10.1073/pnas.84.10.3385] [PMID: 3033646]
[277]
Yu XP, Bellido T, Manolagas SC. Down-regulation of NF-kappa B protein levels in activated human lymphocytes by 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 1995; 92(24): 10990-4.
[http://dx.doi.org/10.1073/pnas.92.24.10990] [PMID: 7479923]
[278]
Lemire JM, Archer DC. 1,25-dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. J Clin Invest 1991; 87(3): 1103-7.
[http://dx.doi.org/10.1172/JCI115072] [PMID: 1705564]
[279]
Cantorna MT, L. Snyder, Y.D Lin, and L. Yang. (2015); Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients 7(4): 3011-21.
[280]
Hewison M. (2010); Vitamin D and the immune system: new perspectives on an old theme. Endocrinol Metab Clin North Am 39(2): 365-79. table of contents.
[281]
Babaloo Z, M.R Aliparasti, F Babaiea, Almasi S, Baradaran B, Farhoudi M. (2015); The role of Th17 cells in patients with relapsing-remitting multiple sclerosis: interleukin-17A and interleukin-17F serum levels. Immunol Lett 164(2): 76-80.
[282]
Kleinewietfeld M, Hafler DA. 2013.The plasticity of human Treg and Th17 cells and its role in autoimmunity
[http://dx.doi.org/10.1016/j.smim.2013.10.009]
[283]
MUller J, K Feige, P Wunderlin, et al. (2011); Double-blind placebo-controlled study with interleukin-18 and interleukin-12-encoding plasmid DNA shows antitumor effect in metastatic melanoma in gray horses. J Immunother 34(1): 58-64.
[284]
Sintzel MB, M Rametta, and A.T Reder. (2018); Vitamin D and Multiple Sclerosis: A Comprehensive Review. Neurol Ther 7(1): 59-85.
[285]
Hewison M. An update on vitamin D and human immunity. Clin Endocrinol (Oxf) 2012; 76(3): 315-25.
[http://dx.doi.org/10.1111/j.1365-2265.2011.04261.x] [PMID: 21995874]
[286]
Hewison M. (2012); Vitamin D and immune function: an overview. Proc Nutr Soc 71(1): 50-61.
[287]
Sinha S, Boyden AW, Itani FR, Crawford MP, Karandikar NJ. CD8(+) T-Cells as Immune Regulators of Multiple Sclerosis. Front Immunol 2015; 6: 619.
[http://dx.doi.org/10.3389/fimmu.2015.00619] [PMID: 26697014]
[288]
Machado-Santos J, E Saji, A.R Troscher, et al. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain 141(7): 2066-82.
[289]
Lysandropoulos AP, E Jaquiery, S Jilek, Pantaleo G, Schluep M, Du Pasquier RA. (2011); Vitamin D has a direct immunomodulatory effect on CD8+ T cells of patients with early multiple sclerosis and healthy control subjects. J Neuroimmunol 233(1-2): 240-4.
[290]
Chen Z, and M.S Freedman. (2008); Correlation of specialized CD16(+) gammadelta T cells with disease course and severity in multiple sclerosis. J Neuroimmunol 194(1-2): 147-52.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy