Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Eosinophils, a Jack of All Trades in Immunity: Therapeutic Approaches for Correcting Their Functional Disorders

Author(s): Thea Magrone*, Manrico Magrone and Emilio Jirillo

Volume 20, Issue 8, 2020

Page: [1166 - 1181] Pages: 16

DOI: 10.2174/1871530320666200309094726

Price: $65

conference banner
Abstract

Background and Objective: Eosinophils are primitive myeloid cells derived from bonemarrow precursors and require the intervention of interleukin (IL)-5 for their survival and persistence in blood and tissues. Under steady-state conditions, they contribute to immune regulation and homeostasis. Under pathological circumstances, eosinophils are involved in host protection against parasites and participate in allergy and inflammation.

Discussion: Mostly, in asthma, eosinophils provoke airway damage via the release of granule contents and IL-13 with mucus hypersecretion and differentiation of goblet cells. Then, tissue remodeling follows with the secretion of transforming growth factor-β. Eosinophils are able to kill helminth larvae acting as antigen-presenting cells with the involvement of T helper (h)-2 cells and subsequent antibody response. However, they also exert pro-worm activity with the production of suppressive cytokine (IL- 10 and IL-4) and inhibition of nitric oxide. Eosinophils may play a pathogenic role in the course of chronic and autoimmune disease, e.g., inflammatory bowel disease and eosinophilic gastroenteritis, regulating Th2 responses and promoting a profibrotic effect. In atopic dermatitis, eosinophils are commonly detected and may be associated with disease severity. In cutaneous spontaneous urticaria, eosinophils participate in the formation of wheals, tissue remodeling and modifications of vascular permeability. With regard to tumor growth, it seems that IgE can exert anti-neoplastic surveillance via mast cell and eosinophil-mediated cytotoxicity, the so-called allergo-oncology. From a therapeutic point of view, monoclonal antibodies directed against IL-5 or the IL-5 receptors have been shown to be very effective in patients with severe asthma. Finally, as an alternative treatment, polyphenols for their anti-inflammatory and anti-allergic activities seem to be effective in reducing serum IgE and eosinophil count in bronchoalveolar lavage in murine asthma.

Conclusion: Eosinophils are cells endowed with multiple functions and their modulation with monoclonal antibodies and nutraceuticals may be effective in the treatment of chronic disease.

Keywords: Asthma, eosinophils, granules, interleukins, mast cells, parasites, polyphenols.

Graphical Abstract

[1]
Ramirez, G.A.; Yacoub, M.R.; Ripa, M.; Mannina, D.; Cariddi, A.; Saporiti, N.; Ciceri, F.; Castagna, A.; Colombo, G.; Dagna, L. Eosinophils from physiology to disease: A comprehensive review. BioMed Res. Int., 2018, 2018, 9095275
[http://dx.doi.org/10.1155/2018/9095275] [PMID: 29619379]
[2]
Sonoda, Y.; Arai, N.; Ogawa, M. Humoral regulation of eosinophilopoiesis in vitro: Analysis of the targets of interleukin-3, granulocyte/macrophage colony-stimulating factor (GM-CSF), and interleukin-5. Leukemia, 1989, 3(1), 14-18.
[PMID: 2642572]
[3]
Clutterbuck, E.J.; Hirst, E.M.; Sanderson, C.J. Human interleukin-5 (IL-5) regulates the production of eosinophils in human bone marrow cultures: comparison and interaction with IL-1, IL-3, IL-6, and GMCSF. Blood, 1989, 73(6), 1504-1512.
[http://dx.doi.org/10.1182/blood.V73.6.1504.1504] [PMID: 2653458]
[4]
Sehmi, R.; Wood, L.J.; Watson, R.; Foley, R.; Hamid, Q.; O’Byrne, P.M.; Denburg, J.A. Allergen-induced increases in IL-5 receptor alpha-subunit expression on bone marrow-derived CD34+ cells from asthmatic subjects. A novel marker of progenitor cell commitment towards eosinophilic differentiation. J. Clin. Invest., 1997, 100(10), 2466-2475.
[http://dx.doi.org/10.1172/JCI119789] [PMID: 9366561]
[5]
Iwasaki, H.; Mizuno, S.; Mayfield, R.; Shigematsu, H.; Arinobu, Y.; Seed, B.; Gurish, M.F.; Takatsu, K.; Akashi, K. Identification of eosinophil lineage-committed progenitors in the murine bone marrow. J. Exp. Med., 2005, 201(12), 1891-1897.
[http://dx.doi.org/10.1084/jem.20050548] [PMID: 15955840]
[6]
Cherry, W.B.; Yoon, J.; Bartemes, K.R.; Iijima, K.; Kita, H. A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. J. Allergy Clin. Immunol., 2008, 121(6), 1484-1490.
[http://dx.doi.org/10.1016/j.jaci.2008.04.005] [PMID: 18539196]
[7]
Johnston, L.K.; Hsu, C.L.; Krier-Burris, R.A.; Chhiba, K.D.; Chien, K.B.; McKenzie, A.; Berdnikovs, S.; Bryce, P.J. IL-33 Precedes IL-5 in Regulating Eosinophil Commitment and Is Required for Eosinophil Homeostasis. J. Immunol., 2016, 197(9), 3445-3453.
[http://dx.doi.org/10.4049/jimmunol.1600611] [PMID: 27683753]
[8]
Chu, V.T.; Fröhlich, A.; Steinhauser, G.; Scheel, T.; Roch, T.; Fillatreau, S.; Lee, J.J.; Löhning, M.; Berek, C. Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat. Immunol., 2011, 12(2), 151-159.
[http://dx.doi.org/10.1038/ni.1981] [PMID: 21217761]
[9]
Chu, V.T.; Berek, C. The establishment of the plasma cell survival niche in the bone marrow. Immunol. Rev., 2013, 251(1), 177-188.
[http://dx.doi.org/10.1111/imr.12011] [PMID: 23278749]
[10]
Brestoff, J.R.; Kim, B.S.; Saenz, S.A.; Stine, R.R.; Monticelli, L.A.; Sonnenberg, G.F.; Thome, J.J.; Farber, D.L.; Lutfy, K.; Seale, P.; Artis, D. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature, 2015, 519(7542), 242-246.
[http://dx.doi.org/10.1038/nature14115] [PMID: 25533952]
[11]
Amini, M.; Bashirova, D.; Prins, B.P.; Corpeleijn, E.; Bruinenberg, M.; Franke, L.; Harst, P.V.; Navis, G.; Wolffenbuttel, B.H.; Stolk, R.P.; Wijmenga, C.; Postma, D.S.; Koppelman, G.H.; Boezen, H.M.; Vonk, J.; Snieder, H.; Alizadeh, B.Z. LifeLines cohort study. Eosinophil count is a common factor for complex metabolic and pulmonary traits and diseases: the lifelines cohort study. PLoS One, 2016, 11(12), e0168480
[http://dx.doi.org/10.1371/journal.pone.0168480] [PMID: 27978545]
[12]
Magrone, T.; Jirillo, E. Development and organization of the secondary and tertiary lymphoid organs: Influence of microbial and food antigens. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(2), 128-135.
[http://dx.doi.org/10.2174/1871530319666181128160411] [PMID: 30488802]
[13]
Berek, C. Eosinophils: Important players in humoral immunity. Clin. Exp. Immunol., 2016, 183(1), 57-64.
[http://dx.doi.org/10.1111/cei.12695] [PMID: 26291602]
[14]
Sugawara, R.; Lee, E.J.; Jang, M.S.; Jeun, E.J.; Hong, C.P.; Kim, J.H.; Park, A.; Yun, C.H.; Hong, S.W.; Kim, Y.M.; Seoh, J.Y.; Jung, Y.; Surh, C.D.; Miyasaka, M.; Yang, B.G.; Jang, M.H. Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist. J. Exp. Med., 2016, 213(4), 555-567.
[http://dx.doi.org/10.1084/jem.20141388] [PMID: 26951334]
[15]
Mesnil, C.; Raulier, S.; Paulissen, G.; Xiao, X.; Birrell, M.A.; Pirottin, D.; Janss, T.; Starkl, P.; Ramery, E.; Henket, M.; Schleich, F.N.; Radermecker, M.; Thielemans, K.; Gillet, L.; Thiry, M.; Belvisi, M.G.; Louis, R.; Desmet, C.; Marichal, T.; Bureau, F. Lung resident eosinophils represent a distinct regulatory eosinophil subset. J. Clin. Invest., 2016, 126(9), 3279-3295.
[http://dx.doi.org/10.1172/JCI85664] [PMID: 27548519]
[16]
Shi, H.Z.; Humbles, A.; Gerard, C.; Jin, Z.; Weller, P.F. Lymph node trafficking and antigen presentation by endobronchial eosinophils. J. Clin. Invest., 2000, 105(7), 945-953.
[http://dx.doi.org/10.1172/JCI8945] [PMID: 10749574]
[17]
Lingblom, C.; Andersson, J.; Andersson, K.; Wennerås, C. Regulatory eosinophils suppress t cells partly through galectin-10. J. Immunol., 2017, 198(12), 4672-4681.
[http://dx.doi.org/10.4049/jimmunol.1601005] [PMID: 28515279]
[18]
McBrien, C.N.; Menzies-Gow, A. The biology of eosinophils and their role in asthma. Front. Med. (Lausanne), 2017, 4, 93.
[http://dx.doi.org/10.3389/fmed.2017.00093] [PMID: 28713812]
[19]
Acharya, K.R.; Ackerman, S.J. Eosinophil granule proteins: form and function. J. Biol. Chem., 2014, 289(25), 17406-17415.
[http://dx.doi.org/10.1074/jbc.R113.546218] [PMID: 24802755]
[20]
Diny, N.L.; Rose, N.R.; Čiháková, D. Eosinophils in autoimmune diseases. Front. Immunol., 2017, 8, 484.
[http://dx.doi.org/10.3389/fimmu.2017.00484] [PMID: 28496445]
[21]
Cline, M.J.; Hanifin, J.; Lehrer, R.I. Phagocytosis by human eosinophils. Blood, 1968, 32(6), 922-934.
[http://dx.doi.org/10.1182/blood.V32.6.922.922] [PMID: 4881979]
[22]
Lehrer, R.I.; Szklarek, D.; Barton, A.; Ganz, T.; Hamann, K.J.; Gleich, G.J. Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J. Immunol., 1989, 142(12), 4428-4434.
[PMID: 2656865]
[23]
Svensson, L.; Wennerås, C. Human eosinophils selectively recognize and become activated by bacteria belonging to different taxonomic groups. Microbes Infect., 2005, 7(4), 720-728.
[http://dx.doi.org/10.1016/j.micinf.2005.01.010] [PMID: 15857806]
[24]
Yousefi, S.; Gold, J.A.; Andina, N.; Lee, J.J.; Kelly, A.M.; Kozlowski, E.; Schmid, I.; Straumann, A.; Reichenbach, J.; Gleich, G.J.; Simon, H.U. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat. Med., 2008, 14(9), 949-953.
[http://dx.doi.org/10.1038/nm.1855] [PMID: 18690244]
[25]
Verjan Garcia, N.; Umemoto, E.; Saito, Y.; Yamasaki, M.; Hata, E.; Matozaki, T.; Murakami, M.; Jung, Y.J.; Woo, S.Y.; Seoh, J.Y.; Jang, M.H.; Aozasa, K.; Miyasaka, M. SIRPα/CD172a regulates eosinophil homeostasis. J. Immunol., 2011, 187(5), 2268-2277.
[http://dx.doi.org/10.4049/jimmunol.1101008] [PMID: 21775684]
[26]
Carlens, J.; Wahl, B.; Ballmaier, M.; Bulfone-Paus, S.; Förster, R.; Pabst, O. Common gamma-chain-dependent signals confer selective survival of eosinophils in the murine small intestine. J. Immunol., 2009, 183(9), 5600-5607.
[http://dx.doi.org/10.4049/jimmunol.0801581] [PMID: 19843944]
[27]
Sims, J.E.; Smith, D.E. The IL-1 family: regulators of immunity. Nat. Rev. Immunol., 2010, 10(2), 89-102.
[http://dx.doi.org/10.1038/nri2691] [PMID: 20081871]
[28]
Nakae, S.; Saijo, S.; Horai, R.; Sudo, K.; Mori, S.; Iwakura, Y. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc. Natl. Acad. Sci. USA, 2003, 100(10), 5986-5990.
[http://dx.doi.org/10.1073/pnas.1035999100] [PMID: 12721360]
[29]
Koenders, M.I.; Devesa, I.; Marijnissen, R.J.; Abdollahi-Roodsaz, S.; Boots, A.M.; Walgreen, B.; di Padova, F.E.; Nicklin, M.J.; Joosten, L.A.; van den Berg, W.B. Interleukin-1 drives pathogenic Th17 cells during spontaneous arthritis in interleukin-1 receptor antagonist-deficient mice. Arthritis Rheum., 2008, 58(11), 3461-3470.
[http://dx.doi.org/10.1002/art.23957] [PMID: 18975337]
[30]
Griseri, T.; Arnold, I.C.; Pearson, C.; Krausgruber, T.; Schiering, C.; Franchini, F.; Schulthess, J.; McKenzie, B.S.; Crocker, P.R.; Powrie, F. Granulocyte macrophage colony-stimulating factor-activated eosinophils promote interleukin-23 driven chronic colitis. Immunity, 2015, 43(1), 187-199.
[http://dx.doi.org/10.1016/j.immuni.2015.07.008] [PMID: 26200014]
[31]
Chu, D.K.; Jimenez-Saiz, R.; Verschoor, C.P.; Walker, T.D.; Goncharova, S.; Llop-Guevara, A.; Shen, P.; Gordon, M.E.; Barra, N.G.; Bassett, J.D.; Kong, J.; Fattouh, R.; McCoy, K.D.; Bowdish, D.M.; Erjefält, J.S.; Pabst, O.; Humbles, A.A.; Kolbeck, R.; Waserman, S.; Jordana, M. Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo. J. Exp. Med., 2014, 211(8), 1657-1672.
[http://dx.doi.org/10.1084/jem.20131800] [PMID: 25071163]
[32]
Uzzaman, A.; Cho, S.H. Chapter 28: Classification of hypersensitivity reactions. Allergy Asthma Proc., 2012, 33(Suppl. 1), 96-99.
[http://dx.doi.org/10.2500/aap.2012.33.3561] [PMID: 22794701]
[33]
Bagnasco, D.; Ferrando, M.; Varricchi, G.; Puggioni, F.; Passalacqua, G.; Canonica, G.W. Anti-interleukin 5 (IL-5) and IL-5Ra biological drugs: Efficacy, safety, and future perspectives in severe eosinophilic asthma. Front. Med. (Lausanne), 2017, 4, 135.
[http://dx.doi.org/10.3389/fmed.2017.00135] [PMID: 28913336]
[34]
Buonomo, E.L.; Cowardin, C.A.; Wilson, M.G.; Saleh, M.M.; Pramoonjago, P.; Petri, W.A., Jr. Microbiota-regulated IL-25 increases eosinophil number to provide protection during clostridium difficile infection. Cell Rep., 2016, 16(2), 432-443.
[http://dx.doi.org/10.1016/j.celrep.2016.06.007] [PMID: 27346351]
[35]
Symowski, C.; Voehringer, D. Interactions between Innate lymphoid cells and cells of the innate and adaptive immune system. Front. Immunol., 2017, 8, 1422.
[http://dx.doi.org/10.3389/fimmu.2017.01422] [PMID: 29163497]
[36]
Van Epps, D.E.; Bankhurst, A.D. Human eosinophils: Surface receptors and antibody-dependent cytotoxicity. J. Lab. Clin. Med., 1978, 91(4), 612-617.
[PMID: 565384]
[37]
Maino, A.; Rossio, R.; Cugno, M.; Marzano, A.V.; Tedeschi, A. Hypereosinophilic syndrome, churg-strauss syndrome and parasitic diseases: Possible links between eosinophilia and thrombosis. Curr. Vasc. Pharmacol., 2012, 10(5), 670-675.
[http://dx.doi.org/10.2174/157016112801784594] [PMID: 22272911]
[38]
Reiman, R.M.; Thompson, R.W.; Feng, C.G.; Hari, D.; Knight, R.; Cheever, A.W.; Rosenberg, H.F.; Wynn, T.A. Interleukin-5 (IL-5) augments the progression of liver fibrosis by regulating IL-13 activity. Infect. Immun., 2006, 74(3), 1471-1479.
[http://dx.doi.org/10.1128/IAI.74.3.1471-1479.2006] [PMID: 16495517]
[39]
Gieseck, R.L., III; Wilson, M.S.; Wynn, T.A. Type 2 immunity in tissue repair and fibrosis. Nat. Rev. Immunol., 2018, 18(1), 62-76.
[http://dx.doi.org/10.1038/nri.2017.90] [PMID: 28853443]
[40]
Pégorier, S.; Wagner, L.A.; Gleich, G.J.; Pretolani, M. Eosinophil-derived cationic proteins activate the synthesis of remodeling factors by airway epithelial cells. J. Immunol., 2006, 177(7), 4861-4869.
[http://dx.doi.org/10.4049/jimmunol.177.7.4861] [PMID: 16982928]
[41]
Mack, M. Inflammation and fibrosis. Matrix Biol., 2018, 68-69, 106-121.
[http://dx.doi.org/10.1016/j.matbio.2017.11.010] [PMID: 29196207]
[42]
Bousquet, J.; Chanez, P.; Lacoste, J.Y.; Barnéon, G.; Ghavanian, N.; Enander, I.; Venge, P.; Ahlstedt, S.; Simony-Lafontaine, J.; Godard, P. Eosinophilic inflammation in asthma. N. Engl. J. Med., 1990, 323(15), 1033-1039.
[http://dx.doi.org/10.1056/NEJM199010113231505] [PMID: 2215562]
[43]
Robinson, D.S.; Hamid, Q.; Ying, S.; Tsicopoulos, A.; Barkans, J.; Bentley, A.M.; Corrigan, C.; Durham, S.R.; Kay, A.B. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N. Engl. J. Med., 1992, 326(5), 298-304.
[http://dx.doi.org/10.1056/NEJM199201303260504] [PMID: 1530827]
[44]
Sur, S.; Gleich, G.J.; Swanson, M.C.; Bartemes, K.R.; Broide, D.H. Eosinophilic inflammation is associated with elevation of interleukin-5 in the airways of patients with spontaneous symptomatic asthma. J. Allergy Clin. Immunol., 1995, 96(5 Pt 1), 661-668.
[http://dx.doi.org/10.1016/S0091-6749(95)70265-2] [PMID: 7499683]
[45]
Price, D.B.; Rigazio, A.; Campbell, J.D.; Bleecker, E.R.; Corrigan, C.J.; Thomas, M.; Wenzel, S.E.; Wilson, A.M.; Small, M.B.; Gopalan, G.; Ashton, V.L.; Burden, A.; Hillyer, E.V.; Kerkhof, M.; Pavord, I.D. Blood eosinophil count and prospective annual asthma disease burden: A UK cohort study. Lancet Respir. Med., 2015, 3(11), 849-858.
[http://dx.doi.org/10.1016/S2213-2600(15)00367-7] [PMID: 26493938]
[46]
Gundel, R.H.; Letts, L.G.; Gleich, G.J. Human eosinophil major basic protein induces airway constriction and airway hyperresponsiveness in primates. J. Clin. Invest., 1991, 87(4), 1470-1473.
[http://dx.doi.org/10.1172/JCI115155] [PMID: 2010556]
[47]
Coyle, A.J.; Ackerman, S.J.; Burch, R.; Proud, D.; Irvin, C.G. Human eosinophil-granule major basic protein and synthetic polycations induce airway hyperresponsiveness in vivo dependent on bradykinin generation. J. Clin. Invest., 1995, 95(4), 1735-1740.
[http://dx.doi.org/10.1172/JCI117850] [PMID: 7706481]
[48]
Grünig, G.; Warnock, M.; Wakil, A.E.; Venkayya, R.; Brombacher, F.; Rennick, D.M.; Sheppard, D.; Mohrs, M.; Donaldson, D.D.; Locksley, R.M.; Corry, D.B. Requirement for IL-13 independently of IL-4 in experimental asthma. Science, 1998, 282(5397), 2261-2263.
[http://dx.doi.org/10.1126/science.282.5397.2261] [PMID: 9856950]
[49]
Hallstrand, T.S.; Henderson, W.R., Jr. An update on the role of leukotrienes in asthma. Curr. Opin. Allergy Clin. Immunol., 2010, 10(1), 60-66.
[http://dx.doi.org/10.1097/ACI.0b013e32833489c3] [PMID: 19915456]
[50]
Leckie, M.J.; ten Brinke, A.; Khan, J.; Diamant, Z.; O’Connor, B.J.; Walls, C.M.; Mathur, A.K.; Cowley, H.C.; Chung, K.F.; Djukanovic, R.; Hansel, T.T.; Holgate, S.T.; Sterk, P.J.; Barnes, P.J. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet, 2000, 356(9248), 2144-2148.
[http://dx.doi.org/10.1016/S0140-6736(00)03496-6] [PMID: 11191542]
[51]
Farne, H.A.; Wilson, A.; Powell, C.; Bax, L.; Milan, S.J. Anti-IL5 therapies for asthma. Cochrane Database Syst. Rev., 2017, 9(9), CD010834
[http://dx.doi.org/10.1002/14651858.CD010834.pub3] [PMID: 28933516]
[52]
Frigas, E.; Gleich, G.J. The eosinophil and the pathophysiology of asthma. J. Allergy Clin. Immunol., 1986, 77(4), 527-537.
[http://dx.doi.org/10.1016/0091-6749(86)90341-6] [PMID: 3514730]
[53]
Navarro, S.; Aleu, J.; Jiménez, M.; Boix, E.; Cuchillo, C.M.; Nogués, M.V. The cytotoxicity of eosinophil cationic protein/ribonuclease 3 on eukaryotic cell lines takes place through its aggregation on the cell membrane. Cell. Mol. Life Sci., 2008, 65(2), 324-337.
[http://dx.doi.org/10.1007/s00018-007-7499-7] [PMID: 18087674]
[54]
van Dalen, C.J.; Kettle, A.J. Substrates and products of eosinophil peroxidase. Biochem. J., 2001, 358(Pt 1), 233-239.
[http://dx.doi.org/10.1042/bj3580233] [PMID: 11485572]
[55]
Bergeron, C.; Tulic, M.K.; Hamid, Q. Airway remodelling in asthma: from benchside to clinical practice. Can. Respir. J., 2010, 17(4), e85-e93.
[http://dx.doi.org/10.1155/2010/318029] [PMID: 20808979]
[56]
Makinde, T.; Murphy, R.F.; Agrawal, D.K. The regulatory role of TGF-beta in airway remodeling in asthma. Immunol. Cell Biol., 2007, 85(5), 348-356.
[http://dx.doi.org/10.1038/sj.icb.7100044] [PMID: 17325694]
[57]
Shenoy, N.G.; Gleich, G.J.; Thomas, L.L. Eosinophil major basic protein stimulates neutrophil superoxide production by a class IA phosphoinositide 3-kinase and protein kinase C-zeta-dependent pathway. J. Immunol., 2003, 171(7), 3734-3741.
[http://dx.doi.org/10.4049/jimmunol.171.7.3734] [PMID: 14500673]
[58]
Piliponsky, A.M.; Gleich, G.J.; Nagler, A.; Bar, I.; Levi-Schaffer, F. Non-IgE-dependent activation of human lung- and cord blood derived mast cells is induced by eosinophil major basic protein and modulated by the membrane form of stem cell factor. Blood, 2003, 101(5), 1898-1904.
[http://dx.doi.org/10.1182/blood-2002-05-1488] [PMID: 12393403]
[59]
Kannan, Y.; Ushio, H.; Koyama, H.; Okada, M.; Oikawa, M.; Yoshihara, T.; Kaneko, M.; Matsuda, H. 2.5S nerve growth factor enhances survival, phagocytosis, and superoxide production of murine neutrophils. Blood, 1991, 77(6), 1320-1325.
[http://dx.doi.org/10.1182/blood.V77.6.1320.1320] [PMID: 1848116]
[60]
Kawamoto, K.; Okada, T.; Kannan, Y.; Ushio, H.; Matsumoto, M.; Matsuda, H. Nerve growth factor prevents apoptosis of rat peritoneal mast cells through the trk proto-oncogene receptor. Blood, 1995, 86(12), 4638-4644.
[http://dx.doi.org/10.1182/blood.V86.12.4638.bloodjournal86124638] [PMID: 8541555]
[61]
Yang, D.; Chen, Q.; Rosenberg, H.F.; Rybak, S.M.; Newton, D.L.; Wang, Z.Y.; Fu, Q.; Tchernev, V.T.; Wang, M.; Schweitzer, B.; Kingsmore, S.F.; Patel, D.D.; Oppenheim, J.J.; Howard, O.M. Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J. Immunol., 2004, 173(10), 6134-6142.
[http://dx.doi.org/10.4049/jimmunol.173.10.6134] [PMID: 15528350]
[62]
Geha, R.S.; Jabara, H.H.; Brodeur, S.R. The regulation of immunoglobulin E class-switch recombination. Nat. Rev. Immunol., 2003, 3(9), 721-732.
[http://dx.doi.org/10.1038/nri1181] [PMID: 12949496]
[63]
Jourdan, M.; Cren, M.; Robert, N.; Bolloré, K.; Fest, T.; Duperray, C.; Guilloton, F.; Hose, D.; Tarte, K.; Klein, B. IL-6 supports the generation of human long-lived plasma cells in combination with either APRIL or stromal cell-soluble factors. Leukemia, 2014, 28(8), 1647-1656.
[http://dx.doi.org/10.1038/leu.2014.61] [PMID: 24504026]
[64]
Liu, L.Y.; Bates, M.E.; Jarjour, N.N.; Busse, W.W.; Bertics, P.J.; Kelly, E.A. Generation of Th1 and Th2 chemokines by human eosinophils: evidence for a critical role of TNF-alpha. J. Immunol., 2007, 179(7), 4840-4848.
[http://dx.doi.org/10.4049/jimmunol.179.7.4840] [PMID: 17878383]
[65]
Ravin, K.A.; Loy, M. The Eosinophil in Infection. Clin. Rev. Allergy Immunol., 2016, 50(2), 214-227.
[http://dx.doi.org/10.1007/s12016-015-8525-4] [PMID: 26690368]
[66]
Rosenberg, H.F.; Dyer, K.D.; Foster, P.S. Eosinophils: Changing perspectives in health and disease. Nat. Rev. Immunol., 2013, 13(1), 9-22.
[http://dx.doi.org/10.1038/nri3341] [PMID: 23154224]
[67]
Hogan, S.P.; Rosenberg, H.F.; Moqbel, R.; Phipps, S.; Foster, P.S.; Lacy, P.; Kay, A.B.; Rothenberg, M.E. Eosinophils: biological properties and role in health and disease. Clin. Exp. Allergy, 2008, 38(5), 709-750.
[http://dx.doi.org/10.1111/j.1365-2222.2008.02958.x] [PMID: 18384431]
[68]
Torrent, M.; Navarro, S.; Moussaoui, M.; Nogués, M.V.; Boix, E. Eosinophil cationic protein high-affinity binding to bacteria-wall lipopolysaccharides and peptidoglycans. Biochemistry, 2008, 47(11), 3544-3555.
[http://dx.doi.org/10.1021/bi702065b] [PMID: 18293932]
[69]
Domachowske, J.B.; Dyer, K.D.; Bonville, C.A.; Rosenberg, H.F. Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J. Infect. Dis., 1998, 177(6), 1458-1464.
[http://dx.doi.org/10.1086/515322] [PMID: 9607820]
[70]
Mishra, P.K.; Li, Q.; Munoz, L.E.; Mares, C.A.; Morris, E.G.; Teale, J.M.; Cardona, A.E. Reduced leukocyte infiltration in absence of eosinophils correlates with decreased tissue damage and disease susceptibility in ΔdblGATA mice during murine neurocysticercosis. PLoS Negl. Trop. Dis., 2016, 10(6), e0004787.
[http://dx.doi.org/10.1371/journal.pntd.0004787] [PMID: 27332553]
[71]
Swartz, J.M.; Dyer, K.D.; Cheever, A.W.; Ramalingam, T.; Pesnicak, L.; Domachowske, J.B.; Lee, J.J.; Lee, N.A.; Foster, P.S.; Wynn, T.A.; Rosenberg, H.F. Schistosoma mansoni infection in eosinophil lineage-ablated mice. Blood, 2006, 108(7), 2420-2427.
[http://dx.doi.org/10.1182/blood-2006-04-015933] [PMID: 16772607]
[72]
Padigel, U.M.; Hess, J.A.; Lee, J.J.; Lok, J.B.; Nolan, T.J.; Schad, G.A.; Abraham, D. Eosinophils act as antigen-presenting cells to induce immunity to Strongyloides stercoralis in mice. J. Infect. Dis., 2007, 196(12), 1844-1851.
[http://dx.doi.org/10.1086/522968] [PMID: 18190266]
[73]
O’Connell, A.E.; Hess, J.A.; Santiago, G.A.; Nolan, T.J.; Lok, J.B.; Lee, J.J.; Abraham, D. Major basic protein from eosinophils and myeloperoxidase from neutrophils are required for protective immunity to Strongyloides stercoralis in mice. Infect. Immun., 2011, 79(7), 2770-2778.
[http://dx.doi.org/10.1128/IAI.00931-10] [PMID: 21482685]
[74]
Huang, L.; Beiting, D.P.; Gebreselassie, N.G.; Gagliardo, L.F.; Ruyechan, M.C.; Lee, N.A.; Lee, J.J.; Appleton, J.A. Eosinophils and IL-4 Support Nematode Growth Coincident with an Innate Response to Tissue Injury. PLoS Pathog., 2015, 11(12)e1005347
[http://dx.doi.org/10.1371/journal.ppat.1005347] [PMID: 26720604]
[75]
Huang, L.; Gebreselassie, N.G.; Gagliardo, L.F.; Ruyechan, M.C.; Lee, N.A.; Lee, J.J.; Appleton, J.A. Eosinophil-derived IL-10 supports chronic nematode infection. J. Immunol., 2014, 193(8), 4178-4187.
[http://dx.doi.org/10.4049/jimmunol.1400852] [PMID: 25210122]
[76]
Huang, L.; Gebreselassie, N.G.; Gagliardo, L.F.; Ruyechan, M.C.; Luber, K.L.; Lee, N.A.; Lee, J.J.; Appleton, J.A. Eosinophils mediate protective immunity against secondary nematode infection. J. Immunol., 2015, 194(1), 283-290.
[http://dx.doi.org/10.4049/jimmunol.1402219] [PMID: 25429065]
[77]
Ventura, M.T.; Buquicchio, R.; Gatti, F.; Traetta, F.L.; Iadarola, G. Anisakis Simplex Infestation and Immune-Mediated Responses. In: Immune Response to Parasitic Infections. Immunity to Helminths and Novel Therapeutic Approaches; Jirillo, E.; Magrone, T.; Miragliotta, G., Eds.; Bentham Science Publishers Ltd., 2014, Vol. 2, pp. 163-173. ISSN: 1879-744X., 2014.
[78]
Magrone, T.; Ianniello, G.; Buquicchio, R.; Galantino, V.; Jirillo, E.; Ventura, M.T. Cytokine Profile in Patients Infected with Anisakis simplex in Endemic Areas: Dietary intervention with polyphenols: A working hypothesis. Endocr. Metab. Immune Disord. Drug Targets, 2016, 16(2), 74-79.
[http://dx.doi.org/10.2174/1871530316666160506150349] [PMID: 27150602]
[79]
Buquicchio, R.; Ventura, M.T.; Traetta, P.L.; Nenna, S.; Iadarola, G.; Magrone, T. A Multicenter study of ige sensitization to Anisakis simplex and diet recommendations. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(2), 170-174.
[http://dx.doi.org/10.2174/1871530318666171129211350] [PMID: 29189183]
[80]
Deardoff, T.; Jones, R.E.; Kayes, S.G. Adherence of eosinophils to the epicuticle of infective juveniles of Anisakis simplex (Nematoda: Anisakidae). J. Helminthol. Soc. Wash., 1991, 58(1), 131-137.
[81]
Jung, Y.; Wen, T.; Mingler, M.K.; Caldwell, J.M.; Wang, Y.H.; Chaplin, D.D.; Lee, E.H.; Jang, M.H.; Woo, S.Y.; Seoh, J.Y.; Miyasaka, M.; Rothenberg, M.E. IL-1β in eosinophil-mediated small intestinal homeostasis and IgA production. Mucosal Immunol., 2015, 8(4), 930-942.
[http://dx.doi.org/10.1038/mi.2014.123] [PMID: 25563499]
[82]
Terrier, B.; Fontaine, H.; Schmitz, J.; Perdu, J.; Hermine, O.; Varet, B.; Buzyn, A.; Suarez, F. Coexistence and parallel evolution of hypereosinophilic syndrome, autoimmune hepatitis, and ulcerative colitis suggest common pathogenic features. Am. J. Gastroenterol., 2007, 102(5), 1132-1134.
[http://dx.doi.org/10.1111/j.1572-0241.2007.01180_9.x] [PMID: 17489793]
[83]
Awano, N.; Ryu, T.; Yoshimura, N.; Takazoe, M.; Kitamura, S.; Tanaka, M. Successful treatment of ulcerative colitis associated with hypereosinophilic syndrome/chronic eosinophilic leukemia. Intern. Med., 2011, 50(16), 1741-1745.
[http://dx.doi.org/10.2169/internalmedicine.50.5569] [PMID: 21841337]
[84]
Lecouffe-Desprets, M.; Groh, M.; Bour, B.; Le Jeunne, C.; Puéchal, X. Eosinophilic gastrointestinal disorders associated with autoimmune connective tissue disease. Joint Bone Spine, 2016, 83(5), 479-484.
[http://dx.doi.org/10.1016/j.jbspin.2015.11.006] [PMID: 26709253]
[85]
Peterson, K.; Firszt, R.; Fang, J.; Wong, J.; Smith, K.R.; Brady, K.A. Risk of Autoimmunity in EoE and Families: A Population-Based Cohort Study. Am. J. Gastroenterol., 2016, 111(7), 926-932.
[http://dx.doi.org/10.1038/ajg.2016.185] [PMID: 27215923]
[86]
Sleiman, P.M.; Wang, M.L.; Cianferoni, A.; Aceves, S.; Gonsalves, N.; Nadeau, K.; Bredenoord, A.J.; Furuta, G.T.; Spergel, J.M.; Hakonarson, H. GWAS identifies four novel eosinophilic esophagitis loci. Nat. Commun., 2014, 5, 5593.
[http://dx.doi.org/10.1038/ncomms6593] [PMID: 25407941]
[87]
Nguyen, N.; Fernando, S.D.; Biette, K.A.; Hammer, J.A.; Capocelli, K.E.; Kitzenberg, D.A.; Glover, L.E.; Colgan, S.P.; Furuta, G.T.; Masterson, J.C. TGF-β1 alters esophageal epithelial barrier function by attenuation of claudin-7 in eosinophilic esophagitis. Mucosal Immunol., 2018, 11(2), 415-426.
[http://dx.doi.org/10.1038/mi.2017.72] [PMID: 28832026]
[88]
Das, K.M.; Biancone, L. Is IBD an autoimmune disorder? Inflamm. Bowel Dis., 2008, 14(Suppl. 2), S97-S101.
[http://dx.doi.org/10.1097/00054725-200810001-00049] [PMID: 18816728]
[89]
Makiyama, K.; Kanzaki, S.; Yamasaki, K.; Zea-Iriarte, W.; Tsuji, Y. Activation of eosinophils in the pathophysiology of ulcerative colitis. J. Gastroenterol., 1995, 30(Suppl. 8), 64-69.
[PMID: 8563894]
[90]
Dubucquoi, S.; Janin, A.; Klein, O.; Desreumaux, P.; Quandalle, P.; Cortot, A.; Capron, M.; Colombel, J.F. Activated eosinophils and interleukin 5 expression in early recurrence of Crohn’s disease. Gut, 1995, 37(2), 242-246.
[http://dx.doi.org/10.1136/gut.37.2.242] [PMID: 7557575]
[91]
Vieira, A.T.; Fagundes, C.T.; Alessandri, A.L.; Castor, M.G.; Guabiraba, R.; Borges, V.O.; Silveira, K.D.; Vieira, E.L.; Gonçalves, J.L.; Silva, T.A.; Deruaz, M.; Proudfoot, A.E.; Sousa, L.P.; Teixeira, M.M. Treatment with a novel chemokine-binding protein or eosinophil lineage-ablation protects mice from experimental colitis. Am. J. Pathol., 2009, 175(6), 2382-2391.
[http://dx.doi.org/10.2353/ajpath.2009.090093] [PMID: 19893035]
[92]
Radnai, B.; Sturm, E.M.; Stančić, A.; Jandl, K.; Labocha, S.; Ferreirós, N.; Grill, M.; Hasenoehrl, C.; Gorkiewicz, G.; Marsche, G.; Heinemann, Á.; Högenauer, C.; Schicho, R. Eosinophils Contribute to Intestinal Inflammation via Chemoattractant Receptor homologous Molecule Expressed on Th2 Cells, CRTH2, in Experimental Crohn’s Disease. J. Crohn’s Colitis, 2016, 10(9), 1087-1095.
[http://dx.doi.org/10.1093/ecco-jcc/jjw061] [PMID: 26928963]
[93]
Chen, W.; Paulus, B.; Shu, D.; Wilson; Chadwick, V. Increased serum levels of eotaxin in patients with inflammatory bowel disease. Scand. J. Gastroenterol., 2001, 36(5), 515-520.
[http://dx.doi.org/10.1080/003655201750153377] [PMID: 11346206]
[94]
Park, Y.R.; Choi, S.C.; Lee, S.T.; Kim, K.S.; Chae, S.C.; Chung, H.T. The association of eotaxin-2 and eotaxin-3 gene polymorphisms in a Korean population with ulcerative colitis. Exp. Mol. Med., 2005, 37(6), 553-558.
[http://dx.doi.org/10.1038/emm.2005.68] [PMID: 16391516]
[95]
Waddell, A.; Ahrens, R.; Steinbrecher, K.; Donovan, B.; Rothenberg, M.E.; Munitz, A.; Hogan, S.P. Colonic eosinophilic inflammation in experimental colitis is mediated by Ly6C(high) CCR2(+) inflammatory monocyte/macrophage-derived CCL11. J. Immunol., 2011, 186(10), 5993-6003.
[http://dx.doi.org/10.4049/jimmunol.1003844] [PMID: 21498668]
[96]
Nishitani, H.; Okabayashi, M.; Satomi, M.; Shimoyama, T.; Dohi, Y. Infiltration of peroxidase-producing eosinophils into the lamina propria of patients with ulcerative colitis. J. Gastroenterol., 1998, 33(2), 189-195.
[http://dx.doi.org/10.1007/s005350050068] [PMID: 9605947]
[97]
Bischoff, S.C.; Mayer, J.; Nguyen, Q.T.; Stolte, M.; Manns, M.P. Immunnohistological assessment of intestinal eosinophil activation in patients with eosinophilic gastroenteritis and inflammatory bowel disease. Am. J. Gastroenterol., 1999, 94(12), 3521-3529.
[http://dx.doi.org/10.1111/j.1572-0241.1999.01641.x] [PMID: 10606314]
[98]
Carlson, M.; Raab, Y.; Peterson, C.; Hällgren, R.; Venge, P. Increased intraluminal release of eosinophil granule proteins EPO, ECP, EPX, and cytokines in ulcerative colitis and proctitis in segmental perfusion. Am. J. Gastroenterol., 1999, 94(7), 1876-1883.
[http://dx.doi.org/10.1111/j.1572-0241.1999.01223.x] [PMID: 10406252]
[99]
Levy, A.M.; Gleich, G.J.; Sandborn, W.J.; Tremaine, W.J.; Steiner, B.L.; Phillips, S.F. Increased eosinophil granule proteins in gut lavage fluid from patients with inflammatory bowel disease. Mayo Clin. Proc., 1997, 72(2), 117-123.
[http://dx.doi.org/10.4065/72.2.117] [PMID: 9033543]
[100]
Pronk-Admiraal, C.J.; Linskens, R.K.; Van Bodegraven, A.A.; Tuynman, H.A.; Bartels, P.C. Serum eosinophil cationic protein in active and quiescent ulcerative colitis. Clin. Chem. Lab. Med., 2000, 38(7), 619-622.
[http://dx.doi.org/10.1515/CCLM.2000.090] [PMID: 11028767]
[101]
Wędrychowicz, A.; Tomasik, P.; Pieczarkowski, S.; Kowalska-Duplaga, K.; Grzenda-Adamek, Z.; Fyderek, K. Clinical value of serum eosinophilic cationic protein assessment in children with inflammatory bowel disease. Arch. Med. Sci., 2014, 10(6), 1142-1146.
[http://dx.doi.org/10.5114/aoms.2013.34415] [PMID: 25624851]
[102]
Blom, K.; Rubin, J.; Halfvarson, J.; Törkvist, L.; Rönnblom, A.; Sangfelt, P.; Lördal, M.; Jönsson, U.B.; Sjöqvist, U.; Håkansson, L.D.; Venge, P.; Carlson, M. Eosinophil associated genes in the inflammatory bowel disease 4 region: correlation to inflammatory bowel disease revealed. World J. Gastroenterol., 2012, 18(44), 6409-6419.
[http://dx.doi.org/10.3748/wjg.v18.i44.6409] [PMID: 23197886]
[103]
Forbes, E.; Murase, T.; Yang, M.; Matthaei, K.I.; Lee, J.J.; Lee, N.A.; Foster, P.S.; Hogan, S.P. Immunopathogenesis of experimental ulcerative colitis is mediated by eosinophil peroxidase. J. Immunol., 2004, 172(9), 5664-5675.
[http://dx.doi.org/10.4049/jimmunol.172.9.5664] [PMID: 15100311]
[104]
Furuta, G.T.; Nieuwenhuis, E.E.; Karhausen, J.; Gleich, G.; Blumberg, R.S.; Lee, J.J.; Ackerman, S.J. Eosinophils alter colonic epithelial barrier function: role for major basic protein. Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 289(5), G890-G897.
[http://dx.doi.org/10.1152/ajpgi.00015.2005] [PMID: 16227527]
[105]
Wallon, C.; Persborn, M.; Jönsson, M.; Wang, A.; Phan, V.; Lampinen, M.; Vicario, M.; Santos, J.; Sherman, P.M.; Carlson, M.; Ericson, A.C.; McKay, D.M.; Söderholm, J.D. Eosinophils express muscarinic receptors and corticotropin-releasing factor to disrupt the mucosal barrier in ulcerative colitis. Gastroenterology, 2011, 140(5), 1597-1607.
[http://dx.doi.org/10.1053/j.gastro.2011.01.042] [PMID: 21277851]
[106]
Wolk, K.; Witte, E.; Hoffmann, U.; Doecke, W.D.; Endesfelder, S.; Asadullah, K.; Sterry, W.; Volk, H.D.; Wittig, B.M.; Sabat, R. IL-22 induces lipopolysaccharide-binding protein in hepatocytes: a potential systemic role of IL-22 in Crohn’s disease. J. Immunol., 2007, 178(9), 5973-5981.
[http://dx.doi.org/10.4049/jimmunol.178.9.5973] [PMID: 17442982]
[107]
Andoh, A.; Zhang, Z.; Inatomi, O.; Fujino, S.; Deguchi, Y.; Araki, Y.; Tsujikawa, T.; Kitoh, K.; Kim-Mitsuyama, S.; Takayanagi, A.; Shimizu, N.; Fujiyama, Y. Interleukin-22, a member of the IL-10 subfamily, induces inflammatory responses in colonic subepithelial myofibroblasts. Gastroenterology, 2005, 129(3), 969-984.
[http://dx.doi.org/10.1053/j.gastro.2005.06.071] [PMID: 16143135]
[108]
Carey, E.J.; Ali, A.H.; Lindor, K.D. Primary biliary cirrhosis. Lancet, 2015, 386(10003), 1565-1575.
[http://dx.doi.org/10.1016/S0140-6736(15)00154-3] [PMID: 26364546]
[109]
Yamazaki, K.; Suzuki, K.; Nakamura, A.; Sato, S.; Lindor, K.D.; Batts, K.P.; Tarara, J.E.; Kephart, G.M.; Kita, H.; Gleich, G.J. Ursodeoxycholic acid inhibits eosinophil degranulation in patients with primary biliary cirrhosis. Hepatology, 1999, 30(1), 71-78.
[http://dx.doi.org/10.1002/hep.510300121] [PMID: 10385641]
[110]
Concepcion, A.R.; Medina, J.F. Mouse models of primary biliary cirrhosis. Curr. Pharm. Des., 2015, 21(18), 2401-2413.
[http://dx.doi.org/10.2174/1381612821666150316121622] [PMID: 25777756]
[111]
Wirth, H.P.; Meyenberger, C.; Altorfer, J.; Ammann, R.; Blum, H.E. [Eosinophilia in primary biliary cirrhosis: regression under therapy with ursodeoxycholic acid]. Schweiz. Med. Wochenschr., 1994, 124(19), 810-815.
[PMID: 8209204]
[112]
Willart, M.A.; van Nimwegen, M.; Grefhorst, A.; Hammad, H.; Moons, L.; Hoogsteden, H.C.; Lambrecht, B.N.; Kleinjan, A. Ursodeoxycholic acid suppresses eosinophilic airway inflammation by inhibiting the function of dendritic cells through the nuclear farnesoid X receptor. Allergy, 2012, 67(12), 1501-1510.
[http://dx.doi.org/10.1111/all.12019] [PMID: 23004356]
[113]
Bekou, V.; Thoma-Uszynski, S.; Wendler, O.; Uter, W.; Schwietzke, S.; Hunziker, T.; Zouboulis, C.C.; Schuler, G.; Sorokin, L.; Hertl, M. Detection of laminin 5-specific auto-antibodies in mucous membrane and bullous pemphigoid sera by ELISA. J. Invest. Dermatol., 2005, 124(4), 732-740.
[http://dx.doi.org/10.1111/j.0022-202X.2005.23646.x] [PMID: 15816831]
[114]
Gammon, W.R.; Merritt, C.C.; Lewis, D.M.; Sams, W.M., Jr; Wheeler, C.E., Jr.; Carlo, J. Leukocyte chemotaxis to the dermal-epidermal junction of human skin mediated by pemphigoid antibody and complement: mechanism of cell attachment in the in vitro leukocyte attachment method. J. Invest. Dermatol., 1981, 76(6), 514-522.
[http://dx.doi.org/10.1111/1523-1747.ep12521246] [PMID: 7017015]
[115]
Messingham, K.N.; Wang, J.W.; Holahan, H.M.; Srikantha, R.; Aust, S.C.; Fairley, J.A. Eosinophil localization to the basement membrane zone is autoantibody- and complement-dependent in a human cryosection model of bullous pemphigoid. Exp. Dermatol., 2016, 25(1), 50-55.
[http://dx.doi.org/10.1111/exd.12883] [PMID: 26475989]
[116]
Marzano, A.V.; Tedeschi, A.; Fanoni, D.; Bonanni, E.; Venegoni, L.; Berti, E.; Cugno, M. Activation of blood coagulation in bullous pemphigoid: role of eosinophils, and local and systemic implications. Br. J. Dermatol., 2009, 160(2), 266-272.
[http://dx.doi.org/10.1111/j.1365-2133.2008.08880.x] [PMID: 18945300]
[117]
Wakugawa, M.; Nakamura, K.; Hino, H.; Toyama, K.; Hattori, N.; Okochi, H.; Yamada, H.; Hirai, K.; Tamaki, K.; Furue, M. Elevated levels of eotaxin and interleukin-5 in blister fluid of bullous pemphigoid: Correlation with tissue eosinophilia. Br. J. Dermatol., 2000, 143(1), 112-116.
[http://dx.doi.org/10.1046/j.1365-2133.2000.03599.x] [PMID: 10886144]
[118]
Sitaru, C.; Schmidt, E.; Petermann, S.; Munteanu, L.S.; Bröcker, E.B.; Zillikens, D. Autoantibodies to bullous pemphigoid antigen 180 induce dermal-epidermal separation in cryosections of human skin. J. Invest. Dermatol., 2002, 118(4), 664-671.
[http://dx.doi.org/10.1046/j.1523-1747.2002.01720.x] [PMID: 11918714]
[119]
Bernard, P.; Aucouturier, P.; Denis, F.; Bonnetblanc, J.M. Immunoblot analysis of IgG subclasses of circulating antibodies in bullous pemphigoid. Clin. Immunol. Immunopathol., 1990, 54(3), 484-494.
[http://dx.doi.org/10.1016/0090-1229(90)90060-4] [PMID: 1689231]
[120]
Messingham, K.N.; Holahan, H.M.; Frydman, A.S.; Fullenkamp, C.; Srikantha, R.; Fairley, J.A. Human eosinophils express the high affinity IgE receptor, FcεRI, in bullous pemphigoid. PLoS One, 2014, 9(9), e107725.
[http://dx.doi.org/10.1371/journal.pone.0107725] [PMID: 25255430]
[121]
Niimi, Y.; Pawankar, R.; Kawana, S. Increased expression of matrix metalloproteinase-2, matrix metalloproteinase-9 and matrix metalloproteinase-13 in lesional skin of bullous pemphigoid. Int. Arch. Allergy Immunol., 2006, 139(2), 104-113.
[http://dx.doi.org/10.1159/000090385] [PMID: 16374020]
[122]
Guttman-Yassky, E.; Krueger, J.G. Atopic dermatitis and psoriasis: Two different immune diseases or one spectrum? Curr. Opin. Immunol., 2017, 48, 68-73.
[http://dx.doi.org/10.1016/j.coi.2017.08.008] [PMID: 28869867]
[123]
Furue, M.; Chiba, T.; Tsuji, G.; Ulzii, D.; Kido-Nakahara, M.; Nakahara, T.; Kadono, T. Atopic dermatitis: Immune deviation, barrier dysfunction, IgE autoreactivity and new therapies. Allergol. Int., 2017, 66(3), 398-403.
[http://dx.doi.org/10.1016/j.alit.2016.12.002] [PMID: 28057434]
[124]
Roesner, L.M.; Heratizadeh, A.; Begemann, G.; Kienlin, P.; Hradetzky, S.; Niebuhr, M.; Eiz-Vesper, B.; Hennig, C.; Hansen, G.; Baron-Bodo, V.; Moingeon, P.; Werfel, T. Der p1 and Der p2-Specific T Cells Display a Th2, Th17, and Th2/Th17 Phenotype in Atopic Dermatitis. J. Invest. Dermatol., 2015, 135(9), 2324-2327.
[http://dx.doi.org/10.1038/jid.2015.162] [PMID: 25918982]
[125]
Werfel, T.; Allam, J.P.; Biedermann, T.; Eyerich, K.; Gilles, S.; Guttman-Yassky, E.; Hoetzenecker, W.; Knol, E.; Simon, H.U.; Wollenberg, A.; Bieber, T.; Lauener, R.; Schmid-Grendelmeier, P.; Traidl-Hoffmann, C.; Akdis, C.A. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J. Allergy Clin. Immunol., 2016, 138(2), 336-349.
[http://dx.doi.org/10.1016/j.jaci.2016.06.010] [PMID: 27497276]
[126]
Kay, A.B.; Ying, S.; Ardelean, E.; Mlynek, A.; Kita, H.; Clark, P.; Maurer, M. Elevations in vascular markers and eosinophils in chronic spontaneous urticarial weals with low-level persistence in uninvolved skin. Br. J. Dermatol., 2014, 171(3), 505-511.
[http://dx.doi.org/10.1111/bjd.12991] [PMID: 24665899]
[127]
Tedeschi, A.; Kolkhir, P.; Asero, R.; Pogorelov, D.; Olisova, O.; Kochergin, N.; Cugno, M. Chronic urticaria and coagulation: Pathophysiological and clinical aspects. Allergy, 2014, 69(6), 683-691.
[http://dx.doi.org/10.1111/all.12389] [PMID: 24673528]
[128]
Loktionov, A. Eosinophils in the gastrointestinal tract and their role in the pathogenesis of major colorectal disorders. World J. Gastroenterol., 2019, 25(27), 3503-3526.
[http://dx.doi.org/10.3748/wjg.v25.i27.3503] [PMID: 31367153]
[129]
Galdiero, M.R.; Varricchi, G.; Seaf, M.; Marone, G.; Levi-Schaffer, F.; Marone, G. Bidirectional Mast Cell-Eosinophil Interactions in Inflammatory Disorders and Cancer. Front. Med. (Lausanne), 2017, 4, 103.
[http://dx.doi.org/10.3389/fmed.2017.00103] [PMID: 28791287]
[130]
Lotfi, R.; Lee, J.J.; Lotze, M.T. Eosinophilic granulocytes and damage-associated molecular pattern molecules (DAMPs): role in the inflammatory response within tumors. J. Immunother., 2007, 30(1), 16-28.
[http://dx.doi.org/10.1097/01.cji.0000211324.53396.f6] [PMID: 17198080]
[131]
Ito, T.; Hirahara, K.; Onodera, A.; Koyama-Nasu, R.; Yano, I.; Nakayama, T. Anti-tumor immunity via the superoxide-eosinophil axis induced by a lipophilic component of Mycobacterium lipomannan. Int. Immunol., 2017, 29(9), 411-421.
[http://dx.doi.org/10.1093/intimm/dxx051] [PMID: 29099969]
[132]
Vaughan Hudson, B.; Linch, D.C.; Macintyre, E.A.; Bennett, M.H.; MacLennan, K.A.; Vaughan Hudson, G.; Jelliffe, A.M. British National Lymphoma Investigation. Selective peripheral blood eosinophilia associated with survival advantage in Hodgkin’s disease (BNLI Report No 31). J. Clin. Pathol., 1987, 40(3), 247-250.
[http://dx.doi.org/10.1136/jcp.40.3.247] [PMID: 3558857]
[133]
Hasford, J.; Pfirrmann, M.; Hehlmann, R.; Allan, N.C.; Baccarani, M.; Kluin-Nelemans, J.C.; Alimena, G.; Steegmann, J.L.; Ansari, H. Writing Committee for the Collaborative CML Prognostic Factors Project Group. A new prognostic score for survival of patients with chronic myeloid leukemia treated with interferon alfa. J. Natl. Cancer Inst., 1998, 90(11), 850-858.
[http://dx.doi.org/10.1093/jnci/90.11.850] [PMID: 9625174]
[134]
Rigoni, A.; Colombo, M.P.; Pucillo, C. Mast cells, basophils and eosinophils: From allergy to cancer. Semin. Immunol., 2018, 35, 29-34.
[http://dx.doi.org/10.1016/j.smim.2018.02.001] [PMID: 29428698]
[135]
Nigro, E.A.; Brini, A.T.; Yenagi, V.A.; Ferreira, L.M.; Achatz-Straussberger, G.; Ambrosi, A.; Sanvito, F.; Soprana, E.; van Anken, E.; Achatz, G.; Siccardi, A.G.; Vangelista, L. Cutting Edge: IgE Plays an Active Role in Tumor Immunosurveillance in Mice. J. Immunol., 2016, 197(7), 2583-2588.
[http://dx.doi.org/10.4049/jimmunol.1601026] [PMID: 27566822]
[136]
Strunk, R.C.; Bloomberg, G.R. Omalizumab for asthma. N. Engl. J. Med., 2006, 354(25), 2689-2695.
[http://dx.doi.org/10.1056/NEJMct055184] [PMID: 16790701]
[137]
Jensen-Jarolim, E.; Bax, H.J.; Bianchini, R.; Capron, M.; Corrigan, C.; Castells, M.; Dombrowicz, D.; Daniels-Wells, T.R.; Fazekas, J.; Fiebiger, E.; Gatault, S.; Gould, H.J.; Janda, J.; Josephs, D.H.; Karagiannis, P.; Levi-Schaffer, F.; Meshcheryakova, A.; Mechtcheriakova, D.; Mekori, Y.; Mungenast, F.; Nigro, E.A.; Penichet, M.L.; Redegeld, F.; Saul, L.; Singer, J.; Spicer, J.F.; Siccardi, A.G.; Spillner, E.; Turner, M.C.; Untersmayr, E.; Vangelista, L.; Karagiannis, S.N. AllergoOncology - the impact of allergy in oncology: EAACI position paper. Allergy, 2017, 72(6), 866-887.
[http://dx.doi.org/10.1111/all.13119] [PMID: 28032353]
[138]
Prizment, A.E.; Anderson, K.E.; Visvanathan, K.; Folsom, A.R. Inverse association of eosinophil count with colorectal cancer incidence: atherosclerosis risk in communities study. Cancer Epidemiol. Biomarkers Prev., 2011, 20(9), 1861-1864.
[http://dx.doi.org/10.1158/1055-9965.EPI-11-0360] [PMID: 21742945]
[139]
Pennington, L.F.; Tarchevskaya, S.; Brigger, D.; Sathiyamoorthy, K.; Graham, M.T.; Nadeau, K.C.; Eggel, A.; Jardetzky, T.S. Structural basis of omalizumab therapy and omalizumab-mediated IgE exchange. Nat. Commun., 2016, 7, 11610.
[http://dx.doi.org/10.1038/ncomms11610] [PMID: 27194387]
[140]
Tamer, F.; Gulru Erdogan, F.; Dincer Rota, D.; Yildirim, D.; Akpinar Kara, Y. Efficacy of omalizumab in patients with chronic spontaneous urticaria and its association with serum IgE levels and eosinophil count. Acta Dermatovenerol. Croat., 2019, 27(2), 101-106.
[PMID: 31351504]
[141]
Flood-Page, P.T.; Menzies-Gow, A.N.; Kay, A.B.; Robinson, D.S. Eosinophil’s role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am. J. Respir. Crit. Care Med., 2003, 167(2), 199-204.
[http://dx.doi.org/10.1164/rccm.200208-789OC] [PMID: 12406833]
[142]
Matsuno, O.; Minamoto, S. Eosinophils depletion therapy for severe asthma management following favorable response to mepolizumab. Respir. Med. Case Rep., 2019.28100899
[http://dx.doi.org/10.1016/j.rmcr.2019.100899] [PMID: 31341763]
[143]
Bjermer, L.; Lemiere, C.; Maspero, J.; Weiss, S.; Zangrilli, J.; Germinaro, M. Reslizumab for inadequately controlled asthma with elevated blood eosinophil levels: A randomized phase 3 study. Chest, 2016, 150(4), 789-798.
[http://dx.doi.org/10.1016/j.chest.2016.03.032] [PMID: 27056586]
[144]
Nair, P.; Pizzichini, M.M.; Kjarsgaard, M.; Inman, M.D.; Efthimiadis, A.; Pizzichini, E.; Hargreave, F.E.; O’Byrne, P.M. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N. Engl. J. Med., 2009, 360(10), 985-993.
[http://dx.doi.org/10.1056/NEJMoa0805435] [PMID: 19264687]
[145]
Haldar, P.; Brightling, C.E.; Hargadon, B.; Gupta, S.; Monteiro, W.; Sousa, A.; Marshall, R.P.; Bradding, P.; Green, R.H.; Wardlaw, A.J.; Pavord, I.D. Mepolizumab and exacerbations of refractory eosinophilic asthma. N. Engl. J. Med., 2009, 360(10), 973-984.
[http://dx.doi.org/10.1056/NEJMoa0808991] [PMID: 19264686]
[146]
George, L.; Brightling, C.E. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease. Ther. Adv. Chronic Dis., 2016, 7(1), 34-51.
[http://dx.doi.org/10.1177/2040622315609251] [PMID: 26770668]
[147]
Kolbeck, R.; Kozhich, A.; Koike, M.; Peng, L.; Andersson, C.K.; Damschroder, M.M.; Reed, J.L.; Woods, R.; Dall’acqua, W.W.; Stephens, G.L.; Erjefalt, J.S.; Bjermer, L.; Humbles, A.A.; Gossage, D.; Wu, H.; Kiener, P.A.; Spitalny, G.L.; Mackay, C.R.; Molfino, N.A.; Coyle, A.J. MEDI-563, a humanized anti-IL-5 receptor alpha mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J. Allergy Clin. Immunol., 2010, 125(6), 1344-1353.e2.
[http://dx.doi.org/10.1016/j.jaci.2010.04.004] [PMID: 20513525]
[148]
Koike, M.; Nakamura, K.; Furuya, A.; Iida, A.; Anazawa, H.; Takatsu, K.; Hanai, N. Establishment of humanized anti-interleukin-5 receptor alpha chain monoclonal antibodies having a potent neutralizing activity. Hum. Antibodies, 2009, 18(1-2), 17-27.
[http://dx.doi.org/10.3233/HAB-2009-0198] [PMID: 19478395]
[149]
Busse, W.W.; Katial, R.; Gossage, D.; Sari, S.; Wang, B.; Kolbeck, R.; Coyle, A.J.; Koike, M.; Spitalny, G.L.; Kiener, P.A.; Geba, G.P.; Molfino, N.A. Safety profile, pharmacokinetics, and biologic activity of MEDI-563, an anti-IL-5 receptor alpha antibody, in a phase I study of subjects with mild asthma. J. Allergy Clin. Immunol., 2010, 125(6), 1237-1244.e2.
[http://dx.doi.org/10.1016/j.jaci.2010.04.005] [PMID: 20513521]
[150]
Laviolette, M.; Gossage, D.L.; Gauvreau, G.; Leigh, R.; Olivenstein, R.; Katial, R.; Busse, W.W.; Wenzel, S.; Wu, Y.; Datta, V.; Kolbeck, R.; Molfino, N.A. Effects of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. J. Allergy Clin. Immunol., 2013, 132(5), 1086-1096.e5.
[http://dx.doi.org/10.1016/j.jaci.2013.05.020] [PMID: 23866823]
[151]
Pelaia, C.; Busceti, M.T.; Vatrella, A.; Rago, G.F.; Crimi, C.; Terracciano, R.; Pelaia, G. Real-life rapidity of benralizumab effects in patients with severe allergic eosinophilic asthma: Assessment of blood eosinophils, symptom control, lung function and oral corticosteroid intake after the first drug dose. Pulm. Pharmacol. Ther., 2019.58101830
[http://dx.doi.org/10.1016/j.pupt.2019.101830] [PMID: 31344472]
[152]
Edris, A.; De Feyter, S.; Maes, T.; Joos, G.; Lahousse, L. Monoclonal antibodies in type 2 asthma: A systematic review and network meta-analysis. Respir. Res., 2019, 20(1), 179.
[http://dx.doi.org/10.1186/s12931-019-1138-3] [PMID: 31395084]
[153]
Wenzel, S.; Ford, L.; Pearlman, D.; Spector, S.; Sher, L.; Skobieranda, F.; Wang, L.; Kirkesseli, S.; Rocklin, R.; Bock, B.; Hamilton, J.; Ming, J.E.; Radin, A.; Stahl, N.; Yancopoulos, G.D.; Graham, N.; Pirozzi, G. Dupilumab in persistent asthma with elevated eosinophil levels. N. Engl. J. Med., 2013, 368(26), 2455-2466.
[http://dx.doi.org/10.1056/NEJMoa1304048] [PMID: 23688323]
[154]
Parulekar, A.D.; Kao, C.C.; Diamant, Z.; Hanania, N.A. Targeting the interleukin-4 and interleukin-13 pathways in severe asthma: Current knowledge and future needs. Curr. Opin. Pulm. Med., 2018, 24(1), 50-55.
[http://dx.doi.org/10.1097/MCP.0000000000000436] [PMID: 29036019]
[155]
Simon, D.; Simon, H.U. Therapeutic strategies for eosinophilic dermatoses. Curr. Opin. Pharmacol., 2019, 46, 29-33.
[http://dx.doi.org/10.1016/j.coph.2019.01.002] [PMID: 30743138]
[156]
Schleimer, R.P.; Schnaar, R.L.; Bochner, B.S. Regulation of airway inflammation by Siglec-8 and Siglec-9 sialoglycan ligand expression. Curr. Opin. Allergy Clin. Immunol., 2016, 16(1), 24-30.
[http://dx.doi.org/10.1097/ACI.0000000000000234] [PMID: 26694037]
[157]
Zhao, Y.; Su, H.; Shen, X.; Du, J.; Zhang, X.; Zhao, Y. The immunological function of CD52 and its targeting in organ transplantation. Inflamm. Res., 2017, 66(7), 571-578.
[http://dx.doi.org/10.1007/s00011-017-1032-8] [PMID: 28283679]
[158]
Di Salvo, E.; Ventura-Spagnolo, E.; Casciaro, M.; Navarra, M.; Gangemi, S. IL-33/IL-31 Axis: A Potential Inflammatory Pathway. Mediators Inflamm., 2018, 2018, 3858032
[http://dx.doi.org/10.1155/2018/3858032] [PMID: 29713240]
[159]
Mitchell, P.D.; O’Byrne, P.M. Biologics and the lung: TSLP and other epithelial cell-derived cytokines in asthma. Pharmacol. Ther., 2017, 169, 104-112.
[http://dx.doi.org/10.1016/j.pharmthera.2016.06.009] [PMID: 27365223]
[160]
Semlali, A.; Jacques, E.; Koussih, L.; Gounni, A.S.; Chakir, J. Thymic stromal lymphopoietin-induced human asthmatic airway epithelial cell proliferation through an IL-13-dependent pathway. J. Allergy Clin. Immunol., 2010, 125(4), 844-850.
[http://dx.doi.org/10.1016/j.jaci.2010.01.044] [PMID: 20236697]
[161]
Watson, B.; Gauvreau, G.M. Thymic stromal lymphopoietin: a central regulator of allergic asthma. Expert Opin. Ther. Targets, 2014, 18(7), 771-785.
[http://dx.doi.org/10.1517/14728222.2014.915314] [PMID: 24930783]
[162]
Diveu, C.; Lak-Hal, A.H.; Froger, J.; Ravon, E.; Grimaud, L.; Barbier, F.; Hermann, J.; Gascan, H.; Chevalier, S. Predominant expression of the long isoform of GP130-like (GPL) receptor is required for interleukin-31 signaling. Eur. Cytokine Netw., 2004, 15(4), 291-302.
[PMID: 15627637]
[163]
Jawa, R.S.; Chattopadhyay, S.; Tracy, E.; Wang, Y.; Huntoon, K.; Dayton, M.T.; Baumann, H. Regulated expression of the IL-31 receptor in bronchial and alveolar epithelial cells, pulmonary fibroblasts, and pulmonary macrophages. J. Interferon Cytokine Res., 2008, 28(4), 207-219.
[http://dx.doi.org/10.1089/jir.2007.0057] [PMID: 18439099]
[164]
Schmitz, J.; Owyang, A.; Oldham, E.; Song, Y.; Murphy, E.; McClanahan, T.K.; Zurawski, G.; Moshrefi, M.; Qin, J.; Li, X.; Gorman, D.M.; Bazan, J.F.; Kastelein, R.A. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity, 2005, 23(5), 479-490.
[http://dx.doi.org/10.1016/j.immuni.2005.09.015] [PMID: 16286016]
[165]
Ahmadi, Z.; Hassanshahi, G.; Khorramdelazad, H.; Zainodini, N.; Koochakzadeh, L. An overlook to the characteristics and roles played by eotaxin network in the pathophysiology of food allergies: Allergic Asthma and atopic dermatitis. Inflammation, 2016, 39(3), 1253-1267.
[http://dx.doi.org/10.1007/s10753-016-0303-9] [PMID: 26861136]
[166]
Choi, Y.; Kim, Y.M.; Lee, H.R.; Mun, J.; Sim, S.; Lee, D.H.; Duy, P.L.; Kim, S.H.; Shin, Y.S.; Lee, S.W.; Park, H.S. Eosinophil extracellular traps activate type 2 innate lymphoid cells through stimulating airway epithelium in severe asthma. Allergy, 2020, 75(1), 95-103.
[http://dx.doi.org/10.1111/all.13997] [PMID: 31330043]
[167]
Magrone, T.; Panaro, M.A.; Jirillo, E.; Covelli, V. Molecular effects elicited in vitro by red wine on human healthy peripheral blood mononuclear cells: potential therapeutical application of polyphenols to diet-related chronic diseases. Curr. Pharm. Des., 2008, 14(26), 2758-2766.
[http://dx.doi.org/10.2174/138161208786264179] [PMID: 18991694]
[168]
Magrone, T.; Tafaro, A.; Jirillo, F.; Amati, L.; Jirillo, E.; Covelli, V. Elicitation of immune responsiveness against antigenic challenge in age-related diseases: effects of red wine polyphenols. Curr. Pharm. Des., 2008, 14(26), 2749-2757.
[http://dx.doi.org/10.2174/138161208786264043] [PMID: 18991693]
[169]
Marzulli, G.; Magrone, T.; Kawaguchi, K.; Kumazawa, Y.; Jirillo, E. Fermented grape marc (FGM): immunomodulating properties and its potential exploitation in the treatment of neurodegenerative diseases. Curr. Pharm. Des., 2012, 18(1), 43-50.
[http://dx.doi.org/10.2174/138161212798919011] [PMID: 22211687]
[170]
Marzulli, G.; Magrone, T.; Vonghia, L.; Kaneko, M.; Takimoto, H.; Kumazawa, Y.; Jirillo, E. Immunomodulating and anti-allergic effects of Negroamaro and Koshu Vitis vinifera fermented grape marc (FGM). Curr. Pharm. Des., 2014, 20(6), 864-868.
[http://dx.doi.org/10.2174/138161282006140220120640] [PMID: 23701568]
[171]
Magrone, T.; Jirillo, E.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Fontana, S.; Laforgia, F.; Donvito, I.; Campanella, A.; Silvestris, F.; De Pergola, G. Immune Profile of Obese People and in vitro effects of red grape polyphenols on peripheral blood mononuclear cells. Oxid. Med. Cell. Longev., 2017, 2017, 9210862.
[http://dx.doi.org/10.1155/2017/9210862] [PMID: 28243360]
[172]
Magrone, T.; Jirillo, E. Childhood obesity: Immune response and nutritional approaches. Front. Immunol., 2015, 6, 76.
[http://dx.doi.org/10.3389/fimmu.2015.00076] [PMID: 25759691]
[173]
Magrone, T.; Salvatore, R.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Jirillo, E. In vitro Effects of Nickel on Healthy Non-Allergic Peripheral Blood Mononuclear Cells. The Role of Red Grape Polyphenols. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(2), 166-173.
[http://dx.doi.org/10.2174/1871530317666170713145350] [PMID: 28707594]
[174]
Magrone, T.; Romita, P.; Verni, P.; Salvatore, R.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Jirillo, E.; Foti, C. In vitro Effects of Polyphenols on the Peripheral Immune Responses in Nickel-sensitized Patients. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(4), 324-331.
[http://dx.doi.org/10.2174/1871530317666171003161314] [PMID: 28982342]
[175]
Magrone, T.; Spagnoletta, A.; Salvatore, R.; Magrone, M.; Dentamaro, F.; Russo, M.A.; Difonzo, G.; Summo, C.; Caponio, F.; Jirillo, E. Olive Leaf Extracts Act as Modulators of the Human Immune Response. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(1), 85-93.
[http://dx.doi.org/10.2174/1871530317666171116110537.] [PMID: 29149822]
[176]
Coleman, S.L.; Shaw, O.M. Progress in the understanding of the pathology of allergic asthma and the potential of fruit proanthocyanidins as modulators of airway inflammation. Food Funct., 2017, 8(12), 4315-4324.
[http://dx.doi.org/10.1039/C7FO00789B] [PMID: 29140397]
[177]
Kaneko, M.; Kanesaka, M.; Yoneyama, M.; Tominaga, T.; Jirillo, E.; Kumazawa, Y. Inhibitory effects of fermented grape marc from vitis vinifera Negroamaro on antigen-induced degranulation. Immunopharmacol. Immunotoxicol., 2010, 32(3), 454-461.
[http://dx.doi.org/10.3109/08923970903513139] [PMID: 20100066]
[178]
Tominaga, T.; Kawaguchi, K.; Kanesaka, M.; Kawauchi, H.; Jirillo, E.; Kumazawa, Y. Suppression of type-I allergic responses by oral administration of grape marc fermented with Lactobacillus plantarum. Immunopharmacol. Immunotoxicol., 2010, 32(4), 593-599.
[http://dx.doi.org/10.3109/08923971003604786] [PMID: 20136581]
[179]
Khoury, P.; Akuthota, P.; Ackerman, S.J.; Arron, J.R.; Bochner, B.S.; Collins, M.H.; Kahn, J.E.; Fulkerson, P.C.; Gleich, G.J.; Gopal-Srivastava, R.; Jacobsen, E.A.; Leiferman, K.M.; Francesca, L.S.; Mathur, S.K.; Minnicozzi, M.; Prussin, C.; Rothenberg, M.E.; Roufosse, F.; Sable, K.; Simon, D.; Simon, H.U.; Spencer, L.A.; Steinfeld, J.; Wardlaw, A.J.; Wechsler, M.E.; Weller, P.F.; Klion, A.D. Revisiting the NIH taskforce on the research needs of eosinophil-associated diseases (RE-TREAD). J. Leukoc. Biol., 2018, 104(1), 69-83.
[http://dx.doi.org/10.1002/JLB.5MR0118-028R] [PMID: 29672914]
[180]
Wilkerson, E.M.; Johansson, M.W.; Hebert, A.S.; Westphall, M.S.; Mathur, S.K.; Jarjour, N.N.; Schwantes, E.A.; Mosher, D.F.; Coon, J.J. The Peripheral Blood Eosinophil Proteome. J. Proteome Res., 2016, 15(5), 1524-1533.
[http://dx.doi.org/10.1021/acs.jproteome.6b00006] [PMID: 27005946]
[181]
Soman, K.V.; Stafford, S.J.; Pazdrak, K.; Wu, Z.; Luo, X.; White, W.I.; Wiktorowicz, J.E.; Calhoun, W.J.; Kurosky, A. Activation of human peripheral blood eosinophils by cytokines in a comparative time-course proteomic/phosphoproteomic study. J. Proteome Res., 2017, 16(8), 2663-2679.
[http://dx.doi.org/10.1021/acs.jproteome.6b00367] [PMID: 28679203]
[182]
Esnault, S.; Kelly, E.A.; Schwantes, E.A.; Liu, L.Y.; DeLain, L.P.; Hauer, J.A.; Bochkov, Y.A.; Denlinger, L.C.; Malter, J.S.; Mathur, S.K.; Jarjour, N.N. Identification of genes expressed by human airway eosinophils after an in vivo allergen challenge. PLoS One, 2013, 8(7), e67560.
[http://dx.doi.org/10.1371/journal.pone.0067560] [PMID: 23844029]
[183]
Shen, Z.J.; Hu, J.; Esnault, S.; Dozmorov, I.; Malter, J.S. RNA Seq profiling reveals a novel expression pattern of TGF-β target genes in human blood eosinophils. Immunol. Lett., 2015, 167(1), 1-10.
[http://dx.doi.org/10.1016/j.imlet.2015.06.012] [PMID: 26112417]
[184]
Wen, T.; Stucke, E.M.; Grotjan, T.M.; Kemme, K.A.; Abonia, J.P.; Putnam, P.E.; Franciosi, J.P.; Garza, J.M.; Kaul, A.; King, E.C.; Collins, M.H.; Kushner, J.P.; Rothenberg, M.E. Molecular diagnosis of eosinophilic esophagitis by gene expression profiling. Gastroenterology, 2013, 145(6), 1289-1299.
[http://dx.doi.org/10.1053/j.gastro.2013.08.046] [PMID: 23978633]
[185]
O’Sullivan, J.A.; Carroll, D.J.; Bochner, B.S. Glycobiology of eosinophilic inflammation: Contributions of siglecs, glycans, and other glycan-binding proteins. Front. Med. (Lausanne), 2017, 4, 116.
[http://dx.doi.org/10.3389/fmed.2017.00116] [PMID: 28824909]
[186]
Gudbjartsson, D.F.; Bjornsdottir, U.S.; Halapi, E.; Helgadottir, A.; Sulem, P.; Jonsdottir, G.M.; Thorleifsson, G.; Helgadottir, H.; Steinthorsdottir, V.; Stefansson, H.; Williams, C.; Hui, J.; Beilby, J.; Warrington, N.M.; James, A.; Palmer, L.J.; Koppelman, G.H.; Heinzmann, A.; Krueger, M.; Boezen, H.M.; Wheatley, A.; Altmuller, J.; Shin, H.D.; Uh, S.T.; Cheong, H.S.; Jonsdottir, B.; Gislason, D.; Park, C.S.; Rasmussen, L.M.; Porsbjerg, C.; Hansen, J.W.; Backer, V.; Werge, T.; Janson, C.; Jönsson, U.B.; Ng, M.C.; Chan, J.; So, W.Y.; Ma, R.; Shah, S.H.; Granger, C.B.; Quyyumi, A.A.; Levey, A.I.; Vaccarino, V.; Reilly, M.P.; Rader, D.J.; Williams, M.J.; van Rij, A.M.; Jones, G.T.; Trabetti, E.; Malerba, G.; Pignatti, P.F.; Boner, A.; Pescollderungg, L.; Girelli, D.; Olivieri, O.; Martinelli, N.; Ludviksson, B.R.; Ludviksdottir, D.; Eyjolfsson, G.I.; Arnar, D.; Thorgeirsson, G.; Deichmann, K.; Thompson, P.J.; Wjst, M.; Hall, I.P.; Postma, D.S.; Gislason, T.; Gulcher, J.; Kong, A.; Jonsdottir, I.; Thorsteinsdottir, U.; Stefansson, K. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat. Genet., 2009, 41(3), 342-347.
[http://dx.doi.org/10.1038/ng.323] [PMID: 19198610]
[187]
Bouffi, C.; Kartashov, A.V.; Schollaert, K.L.; Chen, X.; Bacon, W.C.; Weirauch, M.T.; Barski, A.; Fulkerson, P.C. Transcription factor repertoire of homeostatic eosinophilopoiesis. J. Immunol., 2015, 195(6), 2683-2695.
[http://dx.doi.org/10.4049/jimmunol.1500510] [PMID: 26268651]
[188]
Vanharen, M.; Girard, D. Activation of Human Eosinophils with Nanoparticles: A New Area of Research. Inflammation, 2020, 43(1), 8-16.
[http://dx.doi.org/10.1007/s10753-019-01064-4] [PMID: 31376094]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy