Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Hybrids of Quinoline and Anilinopyrimidine: Novel EGFRT790M Inhibitors with Antiproliferative Activity against Non-Small Cell Lung Cancer Cell Lines

Author(s): Chun Han, Jiahong Ren, Feng Su, Xiaoqin Hu, Mengyao Li, Zhijun Wang* and Lintao Wu*

Volume 20, Issue 6, 2020

Page: [724 - 733] Pages: 10

DOI: 10.2174/1871520620666200302113206

Price: $65

Abstract

Background: The third-generation irreversible Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitors (TKIs) inhibit the T790M mutation while sparing EGFRWT. However, the C797S point mutation confers resistance to existing irreversible EGFRT790M inhibitors.

Objective: Novel EGFRT790M inhibitors were designed through hybridization of quinoline and anilinopyrimidine, and biologically evaluated their antiproliferative activity against Non-Small Cell Lung Cancer (NSCLC) cell lines.

Methods: The target compounds 11a-h were synthesized and structurally characterized with 1H, 13C Nuclear Magnetic Resonance (NMR) spectroscopy and High-Resolution Mass Spectrometry (HRMS). Their inhibitory effects on tumor cell proliferation and EGFR kinase were biologically evaluated. Additionally, molecular docking studies were also performed on the representative typical EGFRT790M inhibitor.

Results: Most of the evaluated compounds displayed moderate antiproliferative activity on H1975 cells with EGFRL858R/T790M. However, compound 11a (IC50 = 2.235 ± 0.565μM) showed stronger inhibition than gefitinib (IC50 = 8.830 ± 0.495μM) in concentration- and time-dependent manner. Moreover, compound 11a exhibited weaker inhibitory activities on cells with EGFRWT. Specifically, compound 11a strongly suppressed EGFRL858R/T790M (IC50 = 0.515 ± 0.011μM) relative to EGFRWT (IC50 = 0.913 ± 0.068μM). Furthermore, molecular docking studies demonstrated its strong binding contacts with the EGFRT790M enzyme through hydrogen bonds and other non-bonded interactions.

Conclusion: Taken together, these results indicate that the hybrid of quinoline and anilinopyrimidine 11a, could be a potential inhibitor of EGFRT790M in NSCLC, which warrants further in-depth studies.

Keywords: Quinoline, anilinopyrimidine, hybrids, EGFR, NSCLC, kinase inhibitor, molecular docking.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Herbst, R.S.; Heymach, J.V.; Lippman, S.M. Lung cancer. N. Engl. J. Med., 2008, 359(13), 1367-1380.
[http://dx.doi.org/10.1056/NEJMra0802714] [PMID: 18815398]
[3]
Rothschild, S.I. Targeted therapies in non-small cell lung cancer-beyond EGFR and ALK. Cancers (Basel), 2015, 7(2), 930-949.
[http://dx.doi.org/10.3390/cancers7020816] [PMID: 26018876]
[4]
Singh, M.; Jadhav, H.R. Targeting non-small cell lung cancer with small-molecule EGFR tyrosine kinase inhibitors. Drug Discov. Today, 2018, 23(3), 745-753.
[http://dx.doi.org/10.1016/j.drudis.2017.10.004] [PMID: 29031620]
[5]
Johnson, B.E.; Jänne, P.A. Epidermal growth factor receptor mutations in patients with non-small cell lung cancer. Cancer Res., 2005, 65(17), 7525-7529.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1257] [PMID: 16140912]
[6]
Sharma, S.V.; Bell, D.W.; Settleman, J.; Haber, D.A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer, 2007, 7(3), 169-181.
[http://dx.doi.org/10.1038/nrc2088] [PMID: 17318210]
[7]
Barker, A.J.; Gibson, K.H.; Grundy, W.; Godfrey, A.A.; Barlow, J.J.; Healy, M.P.; Woodburn, J.R.; Ashton, S.E.; Curry, B.J.; Scarlett, L.; Henthorn, L.; Richards, L. Studies leading to the identification of ZD1839 (IRESSA): an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorg. Med. Chem. Lett., 2001, 11(14), 1911-1914.
[http://dx.doi.org/10.1016/S0960-894X(01)00344-4] [PMID: 11459659]
[8]
Moyer, J.D.; Barbacci, E.G.; Iwata, K.K.; Arnold, L.; Boman, B.; Cunningham, A.; DiOrio, C.; Doty, J.; Morin, M.J.; Moyer, M.P.; Neveu, M.; Pollack, V.A.; Pustilnik, L.R.; Reynolds, M.M.; Sloan, D.; Theleman, A.; Miller, P. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res., 1997, 57(21), 4838-4848.
[PMID: 9354447]
[9]
Pao, W.; Miller, V.A.; Politi, K.A.; Riely, G.J.; Somwar, R.; Zakowski, M.F.; Kris, M.G.; Varmus, H. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med., 2005, 2(3)e73
[http://dx.doi.org/10.1371/journal.pmed.0020073] [PMID: 15737014]
[10]
Ramalingam, S.S.; Blackhall, F.; Krzakowski, M.; Barrios, C.H.; Park, K.; Bover, I.; Seog Heo, D.; Rosell, R.; Talbot, D.C.; Frank, R.; Letrent, S.P.; Ruiz-Garcia, A.; Taylor, I.; Liang, J.Q.; Campbell, A.K.; O’Connell, J.; Boyer, M. Randomized phase II study of dacomitinib (PF-00299804), an irreversible pan-human epidermal growth factor receptor inhibitor, versus erlotinib in patients with advanced non-small-cell lung cancer. J. Clin. Oncol., 2012, 30(27), 3337-3344.
[http://dx.doi.org/10.1200/JCO.2011.40.9433] [PMID: 22753918]
[11]
Jänne, P.A.; von Pawel, J.; Cohen, R.B.; Crino, L.; Butts, C.A.; Olson, S.S.; Eiseman, I.A.; Chiappori, A.A.; Yeap, B.Y.; Lenehan, P.F.; Dasse, K.; Sheeran, M.; Bonomi, P.D. Multicenter, randomized, phase II trial of CI-1033, an irreversible pan-ERBB inhibitor, for previously treated advanced non small-cell lung cancer. J. Clin. Oncol., 2007, 25(25), 3936-3944.
[http://dx.doi.org/10.1200/JCO.2007.11.1336] [PMID: 17761977]
[12]
Murakami, H.; Tamura, T.; Takahashi, T.; Nokihara, H.; Naito, T.; Nakamura, Y.; Nishio, K.; Seki, Y.; Sarashina, A.; Shahidi, M.; Yamamoto, N. Phase I study of continuous afatinib (BIBW 2992) in patients with advanced non-small cell lung cancer after prior chemotherapy/erlotinib/gefitinib (LUX-Lung 4). Cancer Chemother. Pharmacol., 2012, 69(4), 891-899.
[http://dx.doi.org/10.1007/s00280-011-1738-1] [PMID: 22071596]
[13]
Sequist, L.V.; Besse, B.; Lynch, T.J.; Miller, V.A.; Wong, K.K.; Gitlitz, B.; Eaton, K.; Zacharchuk, C.; Freyman, A.; Powell, C.; Ananthakrishnan, R.; Quinn, S.; Soria, J.C. Neratinib, an irreversible pan-ErbB receptor tyrosine kinase inhibitor: results of a phase II trial in patients with advanced non-small-cell lung cancer. J. Clin. Oncol., 2010, 28(18), 3076-3083.
[http://dx.doi.org/10.1200/JCO.2009.27.9414] [PMID: 20479403]
[14]
Sullivan, I.; Planchard, D. Next-generation EGFR tyrosine kinase inhibitors for treating EGFR-mutant lung cancer beyond first line. Front. Med. (Lausanne), 2017, 3, 76.
[http://dx.doi.org/10.3389/fmed.2016.00076] [PMID: 28149837]
[15]
Zhou, W.; Ercan, D.; Chen, L.; Yun, C.H.; Li, D.; Capelletti, M.; Cortot, A.B.; Chirieac, L.; Iacob, R.E.; Padera, R.; Engen, J.R.; Wong, K.K.; Eck, M.J.; Gray, N.S.; Jänne, P.A. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature, 2009, 462(7276), 1070-1074.
[http://dx.doi.org/10.1038/nature08622] [PMID: 20033049]
[16]
Walter, A.O.; Sjin, R.T.; Haringsma, H.J.; Ohashi, K.; Sun, J.; Lee, K.; Dubrovskiy, A.; Labenski, M.; Zhu, Z.; Wang, Z.; Sheets, M.; St Martin, T.; Karp, R.; van Kalken, D.; Chaturvedi, P.; Niu, D.; Nacht, M.; Petter, R.C.; Westlin, W.; Lin, K.; Jaw-Tsai, S.; Raponi, M.; Van Dyke, T.; Etter, J.; Weaver, Z.; Pao, W.; Singh, J.; Simmons, A.D.; Harding, T.C.; Allen, A. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov., 2013, 3(12), 1404-1415.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0314] [PMID: 24065731]
[17]
Finlay, M.R.; Anderton, M.; Ashton, S.; Ballard, P.; Bethel, P.A.; Box, M.R.; Bradbury, R.H.; Brown, S.J.; Butterworth, S.; Campbell, A.; Chorley, C.; Colclough, N.; Cross, D.A.; Currie, G.S.; Grist, M.; Hassall, L.; Hill, G.B.; James, D.; James, M.; Kemmitt, P.; Klinowska, T.; Lamont, G.; Lamont, S.G.; Martin, N.; McFarland, H.L.; Mellor, M.J.; Orme, J.P.; Perkins, D.; Perkins, P.; Richmond, G.; Smith, P.; Ward, R.A.; Waring, M.J.; Whittaker, D.; Wells, S.; Wrigley, G.L. Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor. J. Med. Chem., 2014, 57(20), 8249-8267.
[http://dx.doi.org/10.1021/jm500973a] [PMID: 25271963]
[18]
Lu, X.; Yu, L.; Zhang, Z.; Ren, X.; Smaill, J.B.; Ding, K. Targeting EGFRL858R/T790M and EGFRL858R/T790M/C797S resistance mutations in NSCLC: Current developments in medicinal chemistry. Med. Res. Rev., 2018, 38(5), 1550-1581.
[http://dx.doi.org/10.1002/med.21488] [PMID: 29377179]
[19]
Han, C.; Huang, Z.; Zheng, C.; Wan, L.; Lai, Y.; Peng, S.; Ding, K.; Ji, H.; Zhang, Y. Nitric oxide donating anilinopyrimidines: synthesis and biological evaluation as EGFR inhibitors. Eur. J. Med. Chem., 2013, 66, 82-90.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.026] [PMID: 23792318]
[20]
Han, C.; Huang, Z.; Zheng, C.; Wan, L.; Zhang, L.; Peng, S.; Ding, K.; Ji, H.; Tian, J.; Zhang, Y. Novel hybrids of (phenylsulfonyl)furoxan and anilinopyrimidine as potent and selective epidermal growth factor receptor inhibitors for intervention of non-small-cell lung cancer. J. Med. Chem., 2013, 56(11), 4738-4748.
[http://dx.doi.org/10.1021/jm400463q] [PMID: 23668441]
[21]
Han, C.; Wan, L.; Ji, H.; Ding, K.; Huang, Z.; Lai, Y.; Peng, S.; Zhang, Y. Synthesis and evaluation of 2-anilinopyrimidines bearing 3-aminopropamides as potential epidermal growth factor receptor inhibitors. Eur. J. Med. Chem., 2014, 77, 75-83.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.032] [PMID: 24607591]
[22]
Thress, K.S.; Paweletz, C.P.; Felip, E.; Cho, B.C.; Stetson, D.; Dougherty, B.; Lai, Z.; Markovets, A.; Vivancos, A.; Kuang, Y.; Ercan, D.; Matthews, S.E.; Cantarini, M.; Barrett, J.C.; Jänne, P.A.; Oxnard, G.R. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat. Med., 2015, 21(6), 560-562.
[http://dx.doi.org/10.1038/nm.3854] [PMID: 25939061]
[23]
Piotrowska, Z.; Niederst, M.J.; Karlovich, C.A.; Wakelee, H.A.; Neal, J.W.; Mino-Kenudson, M.; Fulton, L.; Hata, A.N.; Lockerman, E.L.; Kalsy, A.; Digumarthy, S.; Muzikansky, A.; Raponi, M.; Garcia, A.R.; Mulvey, H.E.; Parks, M.K.; DiCecca, R.H.; Dias-Santagata, D.; Iafrate, A.J.; Shaw, A.T.; Allen, A.R.; Engelman, J.A.; Sequist, L.V. Heterogeneity underlies the emergence of EGFRT790 wild-type clones following treatment of T790M-positive cancers with a third-generation EGFR inhibitor. Cancer Discov., 2015, 5(7), 713-722.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0399] [PMID: 25934077]
[24]
Chu, X.M.; Wang, C.; Liu, W.; Liang, L.L.; Gong, K.K.; Zhao, C.Y.; Sun, K.L. Quinoline and quinolone dimers and their biological activities: An overview. Eur. J. Med. Chem., 2019, 161, 101-117.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.035] [PMID: 30343191]
[25]
Ramann, G.A.; Cowen, B.J. Recent advances in metal-free quinoline synthesis. Molecules, 2016, 21(8), 986.
[http://dx.doi.org/10.3390/molecules21080986] [PMID: 27483222]
[26]
Su, T.; Zhu, J.; Sun, R.; Zhang, H.; Huang, Q.; Zhang, X.; Du, R.; Qiu, L.; Cao, R. Design, synthesis and biological evaluation of new quinoline derivatives as potential antitumor agents. Eur. J. Med. Chem., 2019, 178, 154-167.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.088] [PMID: 31181480]
[27]
El Shehry, M.F.; Ghorab, M.M.; Abbas, S.Y.; Fayed, E.A.; Shedid, S.A.; Ammar, Y.A. Quinoline derivatives bearing pyrazole moiety: Synthesis and biological evaluation as possible antibacterial and antifungal agents. Eur. J. Med. Chem., 2018, 143, 1463-1473.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.046] [PMID: 29113746]
[28]
Musharrafieh, R.; Zhang, J.; Tuohy, P.; Kitamura, N.; Bellampalli, S.S.; Hu, Y.; Khanna, R.; Wang, J. Discovery of quinoline analogues as potent antivirals against Enterovirus D68 (EV-D68). J. Med. Chem., 2019, 62(8), 4074-4090.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00115] [PMID: 30912944]
[29]
Gryzło, B.; Kulig, K. Quinoline--a promising fragment in the search for new antimalarials. Mini Rev. Med. Chem., 2014, 14(4), 332-344.
[http://dx.doi.org/10.2174/1389557514666140220123226] [PMID: 24552268]
[30]
Chen, Y.L.; Zhao, Y.L.; Lu, C.M.; Tzeng, C.C.; Wang, J.P. Synthesis, cytotoxicity, and anti-inflammatory evaluation of 2-(furan-2-yl)-4-(phenoxy)quinoline derivatives. Part 4. Bioorg. Med. Chem., 2006, 14(13), 4373-4378.
[http://dx.doi.org/10.1016/j.bmc.2006.02.039] [PMID: 16524734]
[31]
Nainwal, L.M.; Tasneem, S.; Akhtar, W.; Verma, G.; Khan, M.F.; Parvez, S.; Shaquiquzzaman, M.; Akhter, M.; Alam, M.M. Green recipes to quinoline: A review. Eur. J. Med. Chem., 2019, 164, 121-170.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.026] [PMID: 30594028]
[32]
Nunes, M.; Shi, C.; Greenberger, L.M. Phosphorylation of extracellular signal-regulated kinase 1 and 2, protein kinase B, and signal transducer and activator of transcription 3 are differently inhibited by an epidermal growth factor receptor inhibitor, EKB-569, in tumor cells and normal human keratinocytes. Mol. Cancer Ther., 2004, 3(1), 21-27.
[http://dx.doi.org/10.1186/1476-4598-3-21] [PMID: 14749472]
[33]
Rabindran, S.K.; Discafani, C.M.; Rosfjord, E.C.; Baxter, M.; Floyd, M.B.; Golas, J.; Hallett, W.A.; Johnson, B.D.; Nilakantan, R.; Overbeek, E.; Reich, M.F.; Shen, R.; Shi, X.; Tsou, H.R.; Wang, Y.F.; Wissner, A. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res., 2004, 64(11), 3958-3965.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2868] [PMID: 15173008]
[34]
Jin, J.W.; Zhang, L.; Meng, G.R.; Zhu, J.H.; Zhang, Q. Facile and efficient oxidation of quinazolines into quinazolin-4(3H)-ones by peracetic acid. Synth. Commun., 2014, 44(3), 346-351.
[http://dx.doi.org/10.1080/00397911.2013.805230]
[35]
Liu, Z.; Wang, L.; Feng, M.; Yi, Y.; Zhang, W.; Liu, W.; Li, L.; Liu, Z.; Li, Y.; Ma, X. New acrylamide-substituted quinazoline derivatives with enhanced potency for the treatment of EGFR T790M-mutant non-small-cell lung cancers. Bioorg. Chem., 2018, 77, 593-599.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.035] [PMID: 29482151]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy