Abstract
Objective: The folate-modified graphene oxide (GO-FA), which had good stability and biocompatibility on rat glioma cells was successfully prepared.
Methods: The formation and composition of GO-FA were confirmed by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Fourier Transform Infrared Spectrum (FT-IR), Raman spectra and X-ray Photoelectron Spectroscopy (XPS spectra). The cell experiment suggested good biocompatibility of GO-FA on rat glioma cells.
Results: The experiment of GO-FA loading with Temozolomide (TMZ) showed that the maximum drug loading of GO-FA was 8.05 ± 0.20 mg/mg, with the drug loading rate of 89.52 ± 0.19 %. When TMZ was released from the folate-modified graphene oxide loading with temozolomide (GO-FATMZ), its release behavior in vitro showed strong pH dependence and sustained release property. The growth of rat glioma cells can be effectively inhibited by GO-FA-TMZ, with the cell inhibition rate as high as 91.72 ± 0.13 % at the concentration of 600 μg/mL and time of 72 h.
Conclusion: According to the above experimental results, this composite carrier has potential applications in drug delivery and cancer therapy.
Keywords: Graphene oxide, folic acid, temozolomide, drug loading, drug release, cytotoxicity.
Graphical Abstract
[http://dx.doi.org/10.1007/s11060-013-1352-7] [PMID: 24395350]
(b) Ilkhanizadeh, S.; Lau, J.; Huang, M.; Foster, D.J.; Wong, R.; Frantz, A.; Wang, S.; Weiss, W.A.; Persson, A.I. Glial progenitors as targets for transformation in glioma. Adv. Cancer Res., 2014, 121, 1-65.
[http://dx.doi.org/10.1016/B978-0-12-800249-0.00001-9] [PMID: 24889528]
(c) Liu, H.; Zhang, J.; Chen, X.; Du, X-S.; Zhang, J-L.; Liu, G.; Zhang, W-G. Application of iron oxide nanoparticles in glioma imaging and therapy: From bench to bedside. Nanoscale, 2016, 8(15), 7808-7826.
[http://dx.doi.org/10.1039/C6NR00147E] [PMID: 27029509]
(d) Zhang, C-X.; Zhao, W-Y.; Liu, L.; Ju, R-J.; Mu, L-M.; Zhao, Y.; Zeng, F.; Xie, H-J.; Yan, Y.; Lu, W-L. A nanostructure of functional targeting epirubicin liposomes dually modified with aminophenyl glucose and cyclic pentapeptide used for brain glioblastoma treatment. Oncotarget, 2015, 6(32), 32681-32700.
[http://dx.doi.org/10.18632/oncotarget.5354] [PMID: 26418720]
[http://dx.doi.org/10.1007/s11095-017-2324-y] [PMID: 29294212]
[http://dx.doi.org/10.1039/C7NR00305F] [PMID: 28731079]
[http://dx.doi.org/10.2165/00023210-199912030-00006]
(b) Hanif, F.; Perveen, K.; Malhi, S.M.; Jawed, H.; Simjee, S.U. Verapamil potentiates anti-glioblastoma efficacy of temozolomide by modulating apoptotic signaling. Toxicol. In Vitro, 2018, 52, 306-313.
[http://dx.doi.org/10.1016/j.tiv.2018.07.001] [PMID: 30003979]
[http://dx.doi.org/10.1210/jc.2016-2768] [PMID: 27603910]
(b) Masi, B.C.; Tyler, B.M.; Bow, H.; Wicks, R.T.; Xue, Y.; Brem, H.; Langer, R.; Cima, M.J. Intracranial MEMS based temozolomide delivery in a 9L rat gliosarcoma model. Biomaterials, 2012, 33(23), 5768-5775.
[http://dx.doi.org/10.1016/j.biomaterials.2012.04.048] [PMID: 22591609]
[http://dx.doi.org/10.1007/s00204-016-1810-z] [PMID: 27519711]
[http://dx.doi.org/10.5582/ddt.2015.01016] [PMID: 26193943]
(b) Sawyer, A.J.; Saucier-Sawyer, J.K.; Booth, C.J.; Liu, J.; Patel, T.; Piepmeier, J.M.; Saltzman, W.M. Convection-enhanced delivery of camptothecin-loaded polymer nanoparticles for treatment of intracranial tumors. Drug Deliv. Transl. Res., 2011, 1(1), 34-42.
[http://dx.doi.org/10.1007/s13346-010-0001-3] [PMID: 21691426]
[http://dx.doi.org/10.1039/C3CS60303B] [PMID: 24121318]
(b) Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. nano-graphene oxide for cellular imaging and drug delivery. Nano Res., 2008, 1(3), 203-212.
[http://dx.doi.org/10.1007/s12274-008-8021-8] [PMID: 20216934]
[http://dx.doi.org/10.1007/s10008-012-1858-5]
[http://dx.doi.org/10.3389/fbioe.2015.00042] [PMID: 25654078]
[http://dx.doi.org/10.1039/c0nr00680g] [PMID: 21270989]
[http://dx.doi.org/10.1016/j.carbpol.2015.08.058] [PMID: 26453853]
(b) Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 2010, 6(4), 537-544.
[http://dx.doi.org/10.1002/smll.200901680] [PMID: 20033930]
[http://dx.doi.org/10.1016/S1359-6446(00)01594-4] [PMID: 11165172]
[PMID: 17900207]
[http://dx.doi.org/10.1016/j.bios.2015.08.060] [PMID: 26342582]
(b) Thapa, R.K.; Choi, Y.; Jeong, J.H.; Youn, Y.S.; Choi, H.G.; Yong, C.S.; Kim, J.O. Folate-mediated targeted delivery of combination chemotherapeutics loaded reduced graphene oxide for synergistic chemo-photothermal therapy of cancers. Pharm. Res., 2016, 33(11), 2815-2827.
[http://dx.doi.org/10.1007/s11095-016-2007-0] [PMID: 27573575]
(c) Wang, Z.; Zhou, C.; Xia, J.; Via, B.; Xia, Y.; Zhang, F.; Li, Y.; Xia, L. Fabrication and characterization of a triple functionalization of graphene oxide with Fe3O4, folic acid and doxorubicin as dual-targeted drug nanocarrier. Colloid. Surface. B, 2013, 106, 60-65.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.032]
[http://dx.doi.org/10.1007/s11051-013-1965-y]
(b) Huang, P.; Xu, C.; Lin, J.; Wang, C.; Wang, X.; Zhang, C.; Zhou, X.; Guo, S.; Cui, D. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics, 2011, 1, 240-250.
[http://dx.doi.org/10.7150/thno/v01p0240] [PMID: 21562631]
(c) Qin, X.C.; Guo, Z.Y.; Liu, Z.M.; Zhang, W.; Wan, M.M.; Yang, B.W.; Photoch, J. Folic acid-conjugated graphene oxide for cancer targeted chemo-photothermal therapy. Photobio. B, 2013, 120, 156-162.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.12.005]
[http://dx.doi.org/10.1007/s11051-014-2709-3]
[PMID: 27358565]
[http://dx.doi.org/10.1007/s12274-012-0200-y]
[http://dx.doi.org/10.1007/s00253-018-8880-1] [PMID: 29511845]
[http://dx.doi.org/10.1208/s12249-015-0359-0] [PMID: 26271189]
[http://dx.doi.org/10.1007/s13726-017-0592-3]
[http://dx.doi.org/10.1016/j.cej.2011.05.093]
[http://dx.doi.org/10.1021/am100293r]
(b) Liu, Y.; Yu, D.; Zeng, C.; Miao, Z.; Dai, L. Biocompatible graphene oxide-based glucose biosensors. Langmuir, 2010, 26(9), 6158-6160.
[http://dx.doi.org/10.1021/la100886x] [PMID: 20349968]
[http://dx.doi.org/10.1021/cg400322t]
[http://dx.doi.org/10.1016/S0305-7372(97)90019-0] [PMID: 9189180]
[http://dx.doi.org/10.1007/s11051-013-1708-0]