Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Evaluation of the Antioxidant and Antidiabetic Potential of the Poly Herbal Formulation: Identification of Bioactive Factors

Author(s): V.V. Sathibabu Uddandrao, Parim Brahmanaidu and Saravanan Ganapathy*

Volume 18, Issue 2, 2020

Page: [111 - 123] Pages: 13

DOI: 10.2174/1871525718666200207103238

Price: $65

Abstract

Background and Objectives: The present investigation is intended to prepare a Poly Herbal Formulation (PHF) with Piper nigrum (fruits), Terminalia paniculata (bark) and Bauhinia purpurea (bark) and assess their antioxidant and glucose-lowering effects utilizing in vitro models.

Methods: The individual plant methanolic extracts and PHF are exposed to phytochemical examination and to distinguish the bioactive factors by GC-MS. We assessed the antioxidant properties of individual plant extracts and the PHF by using the DPPH scavenging method, H2O2 scavenging assay, TBARS assay and total antioxidant estimation. Likewise, the anti-diabetic activity was assessed by ɑ-amylase and α-glucosidase enzyme inhibition and glucose diffusion inhibitory techniques.

Results: We found that PHF contains a high measure of total phenolics, total flavonoids and tannin compared to individual plant extracts. The GC-MS identified the bioactive components. We also found that PHF had significantly higher antioxidant and glucose-lowering effects than the individual plant concentrates.

Conclusion: In conclusion, it could be reasoned that due to the nearness of antioxidant components, the PHF has good potential in the administration of hyperglycemia, diabetes and the related state of oxidative stress. This study shows that PHF is superior to individual plant extracts, supporting the conventional PHF concept.

Keywords: Antioxidants, Bauhinia purpurea, diabetes mellitus, Piper nigrum, polyherbal formulation, Terminalia paniculata.

Graphical Abstract

[1]
Sathibabu Uddandrao, V.V.; Brahmanaidu, P.; Ravindarnaik, R.; Suresh, P.; Vadivukkarasi, S.; Saravanan, G. Restorative potentiality of S-allylcysteine against diabetic nephropathy through attenuation of oxidative stress and inflammation in streptozotocin-nicotinamide-induced diabetic rats. Eur. J. Nutr., 2019, 58(6), 2425-2437.
[http://dx.doi.org/10.1007/s00394-018-1795-x] [PMID: 30062492]
[2]
[3]
Abate, N.; Chandalia, M. Ethnicity, type 2 diabetes & migrant Asian Indians. Indian J. Med. Res., 2007, 125(3), 251-258.
[PMID: 17496354]
[4]
Son, S.M. Reactive oxygen and nitrogen species in pathogenesis of vascular complications of diabetes. Diabetes Metab. J., 2012, 36(3), 190-198.
[http://dx.doi.org/10.4093/dmj.2012.36.3.190] [PMID: 22737658]
[5]
Maritim, A.C.; Sanders, R.A.; Watkins, J.B. III Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol., 2003, 17(1), 24-38.
[http://dx.doi.org/10.1002/jbt.10058] [PMID: 12616644]
[6]
Sathibabu Uddandrao, V.V.; Brahmanaidu, P.; Nivedha, P.R.; Vadivukkarasi, S.; Saravanan, G. Beneficial role of some natural products to attenuate the diabetic cardiomyopathy through Nrf2 pathway in cell culture and animal models. Cardiovasc. Toxicol., 2018, 18(3), 199-205.
[http://dx.doi.org/10.1007/s12012-017-9430-2] [PMID: 29080123]
[7]
Parim, B.; Sathibabu Uddandrao, V.V.; Saravanan, G. Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy. Heart Fail. Rev., 2019, 24(2), 279-299.
[http://dx.doi.org/10.1007/s10741-018-9749-1] [PMID: 30349977]
[8]
Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; Sasapu, A.; Beebe, A.; Patil, N.; Musham, C.K.; Lohani, G.P.; Mirza, W. Clinical review of antidiabetic drugs: Implications for Type 2 diabetes mellitus management. Front. Endocrinol. (Lausanne), 2017, 8, 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[9]
Sathibabu, U. Brahmanaidu.; Saravanan, G. Therapeutical perspectives of S-allylcysteine: Effect on diabetes and other disorders in animal models. Cardiovasc. Hematol. Agents Med. Chem., 2017, 15, 71-77.
[10]
Parasuraman, S.; Thing, G.S.; Dhanaraj, S.A. Polyherbal formulation: Concept of ayurveda. Pharmacogn. Rev., 2014, 8(16), 73-80.
[http://dx.doi.org/10.4103/0973-7847.134229] [PMID: 25125878]
[11]
Kokate, C.K. Preliminary phytochemical screening, practical pharmacognosy.Vallabh Prakashan, editor, ; 1st ed.; New Delhi, , 1986, p. 111.
[12]
Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with Phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Vitic., 1965, 16, 144-158.
[13]
Ordonez, A.A.L.; Gomez, J.G.; Vattuone, M.A.; Isla, M.I. Antioxidant activities of Sechium edule (Jacq.) Swart extracts. Food Chem., 2006, 97, 452-458.
[http://dx.doi.org/10.1016/j.foodchem.2005.05.024]
[14]
Folin, O.; Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem., 1927, 73, 627-650.
[15]
Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthan on the anti-oxidation of soybean oil incyclodextrin emulsion. J. Agric. Food Chem., 1992, 40, 945-948.
[http://dx.doi.org/10.1021/jf00018a005]
[16]
Ruch, R.J.; Cheng, S.J.; Klaunig, J.E. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 1989, 10(6), 1003-1008.
[http://dx.doi.org/10.1093/carcin/10.6.1003] [PMID: 2470525]
[17]
Kikuzaki, H.; Nakatani, N. Antioxidant effects of some ginger constituents. J. Food Sci., 1993, 58, 1407-1410.
[http://dx.doi.org/10.1111/j.1365-2621.1993.tb06194.x]
[18]
Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem., 1999, 269(2), 337-341.
[http://dx.doi.org/10.1006/abio.1999.4019] [PMID: 10222007]
[19]
Thalapaneni, N.R.; Chidambaram, K.A.; Ellappan, T.; Sabapati, M.L.; Mandal, S.C. Inhibition of carbohydrate digestive enzymes by Talinum portulacifolium (Forssk) leaf extract. J. Complement. Integr. Med., 2008, 5(1), 1-10.
[http://dx.doi.org/10.2202/1553-3840.1120]
[20]
Andrade-Cetto, A.; Becerra-Jiménez, J.; Cárdenas-Vázquez, R. Alfa-glucosidase-inhibiting activity of some Mexican plants used in the treatment of type 2 diabetes. J. Ethnopharmacol., 2008, 116(1), 27-32.
[http://dx.doi.org/10.1016/j.jep.2007.10.031] [PMID: 18082348]
[21]
Gallagher, A.M.; Flatt, P.R.; Duffy, G.; Abdelwahab, Y.H.A. The effects of traditional antidiabeticplants on in vitro glucose diffusion. Nutr. Res., 2003, 23, 413-424.
[http://dx.doi.org/10.1016/S0271-5317(02)00533-X]
[22]
Brahmanaidu, P.; Uddandrao, V.V.S.; Sasikumar, V.; Naik, R.R.; Pothani, S.; Begum, M.S.; Rajeshkumar, M.P.; Varatharaju, C.; Meriga, B.; Rameshreddy, P.; Kalaivani, A.; Saravanan, G. Reversal of endothelial dysfunction in aorta of streptozotocin-nicotinamide-induced type-2 diabetic rats by S-Allylcysteine. Mol. Cell. Biochem., 2017, 432(1-2), 25-32.
[http://dx.doi.org/10.1007/s11010-017-2994-0] [PMID: 28258439]
[23]
Petchi, R.R.; Vijaya, C.; Parasuraman, S. Antidiabetic activity of polyherbal formulation in streptozotocin - nicotinamide induced diabetic wistar rats. J. Tradit. Complement. Med., 2014, 4(2), 108-117.
[http://dx.doi.org/10.4103/2225-4110.126174] [PMID: 24860734]
[24]
Pimple, B.P.; Kadam, V.; Patil, J. Antidiabetic and antihyperlipidemic activity of Luffa acutangula fruit extracts in streptozotocin induced niddm rats. Asian J. Pharmaceut. Clin. Res., 2011, 4, 156-163.
[25]
Banerjee, A. In Vitro antidiabetic and anti-oxidant activities of methanol extract of . Tinospora Sinensis. J. App. Biol. Biotech; , 2017, 5, pp. 061-067 .
[26]
Li, Z.; Liu, Z.; Uddandrao, V.V.S.; Ponnusamy, P.; Balakrishnan, S.; Brahmanaidu, P.; Vadivukkarasi, S.; Ganapathy, S. Asthma-alleviating potential of 6-gingerol: Effect on cytokines, related mRNA and c-Myc, and NFAT1 Expression in Ovalbumin-sensitized asthma in rats. J. Environ. Pathol. Toxicol. Oncol., 2019, 38(1), 41-50.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2018027172] [PMID: 30806289]
[27]
Meriga, B.; Parim, B.; Chunduri, V.R.; Naik, R.R.; Nemani, H.; Suresh, P.; Ganapathy, S.; Sathibabu Uddandrao, V.V. Antiobesity potential of Piperonal: promising modulation of body composition lipid profiles and obesogenic marker expression in HFD-induced obese rats. Nutr. Metab. (Lond.), 2017, 14, 72.
[http://dx.doi.org/10.1186/s12986-017-0228-9] [PMID: 29176994]
[28]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[29]
Rösen, P.; Nawroth, P.P.; King, G.; Möller, W.; Tritschler, H.J.; Packer, L. The role of oxidative stress in the onset and progression of diabetes and its complications: A summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab. Res. Rev., 2001, 17(3), 189-212.
[http://dx.doi.org/10.1002/dmrr.196] [PMID: 11424232]
[30]
Vladimir-Knežević, S.; Blažeković, B.; Štefan, M.B.; Alegro, A.; Koszegi, T.; Petrik, J. Antioxidant activities and polyphenolic contents of three selected Micromeria species from Croatia. Molecules, 2011, 16(2), 1454-1470.
[http://dx.doi.org/10.3390/molecules16021454] [PMID: 21311413]
[31]
Michalak, A. Phenolic compounds and their antioxidant activityin plants growing under heavy metal stress. Pol. J. Environ. Stud., 2006, 15, 523-530.
[32]
Beyhan, O.; Elmastas, M.; Gedikli, F. Total phenolic compounds and antioxidant capacity of leaf, dry fruit and fresh fruit of fei-joa (Acca sellowiana, Myrtaceae). J. Med. Plants Res., 2010, 4, 1065-1072.
[33]
Hossain, M.A.; Shah, M.D. A study on the total phenols content and antioxidant activity of essential oil and different solvent extracts of endemic plant Merremia borneensis. Arab. J. Chem., 2015, 8, 66-71.
[http://dx.doi.org/10.1016/j.arabjc.2011.01.007]
[34]
Hara, Y.; Honda, M. The inhibition of alpha amylase by tea polyphenols. Agric. Biol. Chem., 1990, 54, 1939-1945.
[http://dx.doi.org/10.1271/bbb1961.54.1939]
[35]
Matsui, T.; Tanaka, T.; Tamura, S.; Toshima, A.; Tamaya, K.; Miyata, Y.; Tanaka, K.; Matsumoto, K. Alpha-glucosidase inhibitory profile of catechins and theaflavins. J. Agric. Food Chem., 2007, 55(1), 99-105.
[http://dx.doi.org/10.1021/jf0627672] [PMID: 17199319]
[36]
Narkhede, M.B.; Ajimire, P.V.; Wagh, A.E. Manoj Mohan.; Shivashanmugam, A.T. In vitro antidiabetic activity of Caesalpina digyna (R.) methanol root extract. Asian J. Plant Sci. Res., 2011, 1(2), 101-106.
[37]
Davis, S.N.; Granner, D.K. Insulin, oral hypoglycemic agents and the pharmacology of endocrine pancreas.Goodman and Gilman’s: The pharmacological basis of therapeutics, ; 11th ed; Brunton, L.L.; Lazo, J.S.; Parker, K.L., Eds.; . McGraw-Hill Medical Publication Division: New York, , 2001, pp. pp. 1706 -1707..
[38]
Conforti, F.; Statti, G.; Loizzo, M.R.; Sacchetti, G.; Poli, F.; Menichini, F. In Vitro antioxidant effect and inhibition of alpha-amylase of two varieties of Amaranthus caudatus seeds. Biol. Pharm. Bull., 2005, 28(6), 1098-1102.
[http://dx.doi.org/10.1248/bpb.28.1098] [PMID: 15930754]
[39]
Marín-Peñalver, J.J.; Martín-Timón, I.; Sevillano-Collantes, C.; Del Cañizo-Gómez, F.J. Update on the treatment of type 2 diabetes mellitus. World J. Diabetes, 2016, 7(17), 354-395.
[http://dx.doi.org/10.4239/wjd.v7.i17.354] [PMID: 27660695]
[40]
Duraiswamy, A.; Shanmugasundaram, D.; Sasikumar, C.S.; Cherian, S.M.; Cherian, K.M. Development of an antidiabetic formulation (ADJ6) and its inhibitory activity against α-amylase and α-glucosidase. J. Tradit. Complement. Med., 2015, 6(3), 204-208.
[http://dx.doi.org/10.1016/j.jtcme.2014.12.006] [PMID: 27419082]
[41]
Kim, J.S.; Kwon, C.S.; Son, K.H. Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Biosci. Biotechnol. Biochem., 2000, 64(11), 2458-2461.
[http://dx.doi.org/10.1271/bbb.64.2458] [PMID: 11193416]
[42]
Ou, S.; Kwok, K.; Li, Y.; Fu, L. In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. J. Agric. Food Chem., 2001, 49(2), 1026-1029.
[http://dx.doi.org/10.1021/jf000574n] [PMID: 11262066]
[43]
Aba, P.E.; Asuzu, I.U. Mechanisms of actions of some bioactive anti-diabetic principles from phytochemicals of medicinal plants: A review. Indian J. Nat. Prod. Resour., 2018, 9(2), 85-96.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy