Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Synergies of Targeting Angiogenesis and Immune Checkpoints in Cancer: From Mechanism to Clinical Applications

Author(s): Shi Zhou and Haijun Zhang*

Volume 20, Issue 7, 2020

Page: [768 - 776] Pages: 9

DOI: 10.2174/1871520620666200207091653

Price: $65

Abstract

Background: Angiogenesis marks key progress in the growth, recurrence, and metastasis of various cancers. Antiangiogenic drugs can improve the blood supply and oxygen content of tumors and enhance the effects of chemotherapy and radiotherapy by normalizing tumor blood vessels and microenvironment. The further recent developments of Immune Checkpoint Inhibitors (ICIs) provide significant progress in cancer immunotherapy. The study focused on programmed cell death protein 1 (PD-1) and Cytotoxic T Lymphocyte Antigen 4 (CTLA-4) blockade, reflecting on the evidence of durable responses among various tumor types. The aim of this review was to sum up present evidence and clarify the rationale behind supporting the benefits of combining antiangiogenic drugs with immunotherapy for cancer treatment as well as list the ongoing clinical trials that are being conducted.

Methods: Using PubMed and Web of Science, published articles have been searched and comprehensively reviewed.

Results: Antiangiogenic agents can trigger antitumor and immunity, and they can also be induced by the immune system. Combining antiangiogenic drugs with immunotherapy may be effective for the treatment of human cancers.

Conclusion: It is evidenced that combining angiogenesis inhibitors with immunotherapy has a synergistic effect thus improving the curative effect of both agents.

Keywords: Antiangiogenic, immunotherapy, combination therapy, cancer, PD-1, CTLA-4.

Graphical Abstract

[1]
Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med., 1971, 285(21), 1182-1186.
[http://dx.doi.org/10.1056/NEJM197111182852108] [PMID: 4938153]
[2]
Khalil, D.N.; Smith, E.L.; Brentjens, R.J.; Wolchok, J.D. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol., 2016, 13(5), 273-290.
[http://dx.doi.org/10.1038/nrclinonc.2016.25] [PMID: 26977780]
[3]
Yousefi, H.; Yuan, J.; Keshavarz-Fathi, M.; Murphy, J.F.; Rezaei, N. Immunotherapy of cancers comes of age. Expert Rev. Clin. Immunol., 2017, 13(10), 1001-1015.
[http://dx.doi.org/10.1080/1744666X.2017.1366315] [PMID: 28795649]
[4]
Garon, E.B.; Ciuleanu, T.E.; Arrieta, O.; Prabhash, K.; Syrigos, K.N.; Goksel, T.; Park, K.; Gorbunova, V.; Kowalyszyn, R.D.; Pikiel, J.; Czyzewicz, G.; Orlov, S.V.; Lewanski, C.R.; Thomas, M.; Bidoli, P.; Dakhil, S.; Gans, S.; Kim, J.H.; Grigorescu, A.; Karaseva, N.; Reck, M.; Cappuzzo, F.; Alexandris, E.; Sashegyi, A.; Yurasov, S.; Pérol, M. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet, 2014, 384(9944), 665-673.
[http://dx.doi.org/10.1016/S0140-6736(14)60845-X] [PMID: 24933332]
[5]
Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; Waterhouse, D.; Ready, N.; Gainor, J.; Arén Frontera, O.; Havel, L.; Steins, M.; Garassino, M.C.; Aerts, J.G.; Domine, M.; Paz-Ares, L.; Reck, M.; Baudelet, C.; Harbison, C.T.; Lestini, B.; Spigel, D.R. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med., 2015, 373(2), 123-135.
[http://dx.doi.org/10.1056/NEJMoa1504627] [PMID: 26028407]
[6]
Garber, K. Promising early results for immunotherapy-antiangiogenesis combination. J. Natl. Cancer Inst., 2014, 106(11)dju392
[http://dx.doi.org/10.1093/jnci/dju392] [PMID: 25421345]
[7]
Ramjiawan, R.R.; Griffioen, A.W.; Duda, D.G. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis, 2017, 20(2), 185-204.
[http://dx.doi.org/10.1007/s10456-017-9552-y] [PMID: 28361267]
[8]
Chung, A.S.; Lee, J.; Ferrara, N. Targeting the tumour vasculature: insights from physiological angiogenesis. Nat. Rev. Cancer, 2010, 10(7), 505-514.
[http://dx.doi.org/10.1038/nrc2868] [PMID: 20574450]
[9]
Kerbel, R.S. Tumor angiogenesis. N. Engl. J. Med., 2008, 358(19), 2039-2049.
[http://dx.doi.org/10.1056/NEJMra0706596] [PMID: 18463380]
[10]
Papetti, M.; Herman, I.M. Mechanisms of normal and tumor-derived angiogenesis. Am. J. Physiol. Cell Physiol., 2002, 282(5), C947-C970.
[http://dx.doi.org/10.1152/ajpcell.00389.2001] [PMID: 11940508]
[11]
Tartour, E.; Pere, H.; Maillere, B.; Terme, M.; Merillon, N.; Taieb, J.; Sandoval, F.; Quintin-Colonna, F.; Lacerda, K.; Karadimou, A.; Badoual, C.; Tedgui, A.; Fridman, W.H.; Oudard, S. Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev., 2011, 30(1), 83-95.
[http://dx.doi.org/10.1007/s10555-011-9281-4] [PMID: 21249423]
[12]
De Palma, M.; Biziato, D.; Petrova, T.V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer, 2017, 17(8), 457-474.
[http://dx.doi.org/10.1038/nrc.2017.51] [PMID: 28706266]
[13]
Bergers, G.; Benjamin, L.E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer, 2003, 3(6), 401-410.
[http://dx.doi.org/10.1038/nrc1093] [PMID: 12778130]
[14]
Flamme, I.; von Reutern, M.; Drexler, H.C.; Syed-Ali, S.; Risau, W. Overexpression of vascular endothelial growth factor in the avian embryo induces hypervascularization and increased vascular permeability without alterations of embryonic pattern formation. Dev. Biol., 1995, 171(2), 399-414.
[http://dx.doi.org/10.1006/dbio.1995.1291] [PMID: 7556923]
[15]
Zeng, H.; Sanyal, S.; Mukhopadhyay, D. Tyrosine residues 951 and 1059 of vascular endothelial growth factor receptor-2 (KDR) are essential for vascular permeability factor/vascular endothelial growth factor-induced endothelium migration and proliferation, respectively. J. Biol. Chem., 2001, 276(35), 32714-32719.
[http://dx.doi.org/10.1074/jbc.M103130200] [PMID: 11435426]
[16]
Schneider, B.P.; Sledge, G.W., Jr Drug insight: VEGF as a therapeutic target for breast cancer. Nat. Clin. Pract. Oncol., 2007, 4(3), 181-189.
[http://dx.doi.org/10.1038/ncponc0740] [PMID: 17327858]
[17]
Kanda, S.; Miyata, Y.; Kanetake, H. Current status and perspective of antiangiogenic therapy for cancer: urinary cancer. Int. J. Clin. Oncol., 2006, 11(2), 90-107.
[http://dx.doi.org/10.1007/s10147-006-0565-6] [PMID: 16622744]
[18]
Rini, B.I.; Rathmell, W.K. Biological aspects and binding strategies of vascular endothelial growth factor in renal cell carcinoma. Clin. Cancer Res., 2007, 13(2 Pt 2), 741s-746s.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2110] [PMID: 17255303]
[19]
Matkar, P.N.; Ariyagunarajah, R.; Leong-Poi, H.; Singh, K.K. Friends turned foes: Angiogenic growth factors beyond angiogenesis. Biomolecules, 2017, 7(4), E74.
[http://dx.doi.org/10.3390/biom7040074] [PMID: 28974056]
[20]
Chung, A.S.; Ferrara, N. Developmental and pathological angiogenesis. Annu. Rev. Cell Dev. Biol., 2011, 27, 563-584.
[http://dx.doi.org/10.1146/annurev-cellbio-092910-154002] [PMID: 21756109]
[21]
Ferrara, N. VEGF-A: a critical regulator of blood vessel growth. Eur. Cytokine Netw., 2009, 20(4), 158-163.
[http://dx.doi.org/10.1684/ecn.2009.0170] [PMID: 20167554]
[22]
Nagy, J.A.; Dvorak, A.M.; Dvorak, H.F. VEGF-A and the induction of pathological angiogenesis. Annu. Rev. Pathol., 2007, 2, 251-275.
[http://dx.doi.org/10.1146/annurev.pathol.2.010506.134925] [PMID: 18039100]
[23]
Carmeliet, P.; Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011, 473(7347), 298-307.
[http://dx.doi.org/10.1038/nature10144] [PMID: 21593862]
[24]
Ramalingam, S.S.; Shtivelband, M.; Soo, R.A.; Barrios, C.H.; Makhson, A.; Segalla, J.G.; Pittman, K.B.; Kolman, P.; Pereira, J.R.; Srkalovic, G.; Belani, C.P.; Axelrod, R.; Owonikoko, T.K.; Qin, Q.; Qian, J.; McKeegan, E.M.; Devanarayan, V.; McKee, M.D.; Ricker, J.L.; Carlson, D.M.; Gorbunova, V.A. Randomized phase II study of carboplatin and paclitaxel with either linifanib or placebo for advanced nonsquamous non-small-cell lung cancer. J. Clin. Oncol., 2015, 33(5), 433-441.
[http://dx.doi.org/10.1200/JCO.2014.55.7173] [PMID: 25559798]
[25]
Sia, D.; Alsinet, C.; Newell, P.; Villanueva, A. VEGF signaling in cancer treatment. Curr. Pharm. Des., 2014, 20(17), 2834-2842.
[http://dx.doi.org/10.2174/13816128113199990590] [PMID: 23944367]
[26]
Bouzin, C.; Brouet, A.; De Vriese, J.; Dewever, J.; Feron, O. Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. J. Immunol., 2007, 178(3), 1505-1511.
[http://dx.doi.org/10.4049/jimmunol.178.3.1505] [PMID: 17237399]
[27]
Motz, G.T.; Santoro, S.P.; Wang, L.P.; Garrabrant, T.; Lastra, R.R.; Hagemann, I.S.; Lal, P.; Feldman, M.D.; Benencia, F.; Coukos, G. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat. Med., 2014, 20(6), 607-615.
[http://dx.doi.org/10.1038/nm.3541] [PMID: 24793239]
[28]
Yang, J.; Yan, J.; Liu, B. Targeting VEGF/VEGFR to modulate antitumor immunity. Front. Immunol., 2018, 9, 978.
[http://dx.doi.org/10.3389/fimmu.2018.00978] [PMID: 29774034]
[29]
Gabrilovich, D.I.; Chen, H.L.; Girgis, K.R.; Cunningham, H.T.; Meny, G.M.; Nadaf, S.; Kavanaugh, D.; Carbone, D.P. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med., 1996, 2(10), 1096-1103.
[http://dx.doi.org/10.1038/nm1096-1096] [PMID: 8837607]
[30]
Gabrilovich, D.; Ishida, T.; Oyama, T.; Ran, S.; Kravtsov, V.; Nadaf, S.; Carbone, D.P. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood, 1998, 92(11), 4150-4166.
[http://dx.doi.org/10.1182/blood.V92.11.4150] [PMID: 9834220]
[31]
Terme, M.; Pernot, S.; Marcheteau, E.; Sandoval, F.; Benhamouda, N.; Colussi, O.; Dubreuil, O.; Carpentier, A.F.; Tartour, E.; Taieb, J. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res., 2013, 73(2), 539-549.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2325] [PMID: 23108136]
[32]
Goel, H.L.; Mercurio, A.M. VEGF targets the tumour cell. Nat. Rev. Cancer, 2013, 13(12), 871-882.
[http://dx.doi.org/10.1038/nrc3627] [PMID: 24263190]
[33]
Bhattacharya, R.; Ye, X.C.; Wang, R.; Ling, X.; McManus, M.; Fan, F.; Boulbes, D.; Ellis, L.M. Intracrine VEGF signaling mediates the activity of prosurvival pathways in human colorectal cancer cells. Cancer Res., 2016, 76(10), 3014-3024.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1605] [PMID: 26988990]
[34]
Roviello, G.; Bachelot, T.; Hudis, C.A.; Curigliano, G.; Reynolds, A.R.; Petrioli, R.; Generali, D. The role of bevacizumab in solid tumours: A literature based meta-analysis of randomised trials. Eur. J. Cancer, 2017, 75, 245-258.
[http://dx.doi.org/10.1016/j.ejca.2017.01.026] [PMID: 28242502]
[35]
Aprile, G.; Rijavec, E.; Fontanella, C.; Rihawi, K.; Grossi, F. Ramucirumab: preclinical research and clinical development. OncoTargets Ther., 2014, 7, 1997-2006.
[http://dx.doi.org/10.2147/OTT.S61132] [PMID: 25378934]
[36]
Andrick, B.J.; Gandhi, A. Olaratumab: A novel platelet-derived growth factor receptor α-inhibitor for advanced soft tissue sarcoma. Ann. Pharmacother., 2017, 51(12), 1090-1098.
[http://dx.doi.org/10.1177/1060028017723935] [PMID: 28778132]
[37]
Lee, S.J.; Lee, S.Y.; Lee, W.S.; Yoo, J.S.; Sun, J.M.; Lee, J.; Park, S.H.; Park, J.O.; Ahn, M.J.; Lim, H.Y.; Kang, W.K.; Park, Y.S. Phase I trial and pharmacokinetic study of tanibirumab, a fully human monoclonal antibody to vascular endothelial growth factor receptor 2, in patients with refractory solid tumors. Invest. New Drugs, 2017, 35(6), 782-790.
[http://dx.doi.org/10.1007/s10637-017-0463-y] [PMID: 28391576]
[38]
Scott, A.J.; Messersmith, W.A.; Jimeno, A. Apatinib: a promising oral antiangiogenic agent in the treatment of multiple solid tumors. Drugs Today (Barc), 2015, 51(4), 223-229.
[http://dx.doi.org/10.1358/dot.2015.51.4.2320599] [PMID: 26020064]
[39]
Yu, J.P.; Sun, S.P.; Sun, Z.Q.; Ni, X.C.; Wang, J.; Li, Y.; Hu, L.J.; Li, D.Q. Clinical trial of thalidomide combined with radiotherapy in patients with esophageal cancer. World J. Gastroenterol., 2014, 20(17), 5098-5103.
[http://dx.doi.org/10.3748/wjg.v20.i17.5098] [PMID: 24803825]
[40]
Bocca, C.; Bozzo, F.; Bassignana, A.; Miglietta, A. Antiproliferative effects of COX-2 inhibitor celecoxib on human breast cancer cell lines. Mol. Cell. Biochem., 2011, 350(1-2), 59-70.
[http://dx.doi.org/10.1007/s11010-010-0682-4] [PMID: 21140284]
[41]
Wraith, D.C. The future of immunotherapy: A 20-year perspective. Front. Immunol., 2017, 8, 1668.
[http://dx.doi.org/10.3389/fimmu.2017.01668] [PMID: 29234325]
[42]
Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D.; Spigel, D.R.; Antonia, S.J.; Horn, L.; Drake, C.G.; Pardoll, D.M.; Chen, L.; Sharfman, W.H.; Anders, R.A.; Taube, J.M.; McMiller, T.L.; Xu, H.; Korman, A.J.; Jure-Kunkel, M.; Agrawal, S.; McDonald, D.; Kollia, G.D.; Gupta, A.; Wigginton, J.M.; Sznol, M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med., 2012, 366(26), 2443-2454.
[http://dx.doi.org/10.1056/NEJMoa1200690] [PMID: 22658127]
[43]
Hamid, O.; Robert, C.; Daud, A.; Hodi, F.S.; Hwu, W.J.; Kefford, R.; Wolchok, J.D.; Hersey, P.; Joseph, R.W.; Weber, J.S.; Dronca, R.; Gangadhar, T.C.; Patnaik, A.; Zarour, H.; Joshua, A.M.; Gergich, K.; Elassaiss-Schaap, J.; Algazi, A.; Mateus, C.; Boasberg, P.; Tumeh, P.C.; Chmielowski, B.; Ebbinghaus, S.W.; Li, X.N.; Kang, S.P.; Ribas, A. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med., 2013, 369(2), 134-144.
[http://dx.doi.org/10.1056/NEJMoa1305133] [PMID: 23724846]
[44]
Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; Carcereny, E.; Ahn, M.J.; Felip, E.; Lee, J.S.; Hellmann, M.D.; Hamid, O.; Goldman, J.W.; Soria, J.C.; Dolled-Filhart, M.; Rutledge, R.Z.; Zhang, J.; Lunceford, J.K.; Rangwala, R.; Lubiniecki, G.M.; Roach, C.; Emancipator, K.; Gandhi, L.; Investigators, K. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med., 2015, 372(21), 2018-2028.
[http://dx.doi.org/10.1056/NEJMoa1501824] [PMID: 25891174]
[45]
Zalcman, G.; Mazieres, J.; Margery, J.; Greillier, L.; Audigier-Valette, C.; Moro-Sibilot, D.; Molinier, O.; Corre, R.; Monnet, I.; Gounant, V.; Rivière, F.; Janicot, H.; Gervais, R.; Locher, C.; Milleron, B.; Tran, Q.; Lebitasy, M.P.; Morin, F.; Creveuil, C.; Parienti, J.J.; Scherpereel, A. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, controlled, open-label, phase 3 trial. Lancet, 2016, 387(10026), 1405-1414.
[http://dx.doi.org/10.1016/S0140-6736(15)01238-6] [PMID: 26719230]
[46]
Ferris, R.L.; Blumenschein, G., Jr; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; Worden, F.; Saba, N.F.; Iglesias Docampo, L.C.; Haddad, R.; Rordorf, T.; Kiyota, N.; Tahara, M.; Monga, M.; Lynch, M.; Geese, W.J.; Kopit, J.; Shaw, J.W.; Gillison, M.L. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med., 2016, 375(19), 1856-1867.
[http://dx.doi.org/10.1056/NEJMoa1602252] [PMID: 27718784]
[47]
Bardhan, K.; Anagnostou, T.; Boussiotis, V.A. The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation. Front. Immunol., 2016, 7, 550.
[48]
Francisco, L.M.; Salinas, V.H.; Brown, K.E.; Vanguri, V.K.; Freeman, G.J.; Kuchroo, V.K.; Sharpe, A.H. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med., 2009, 206(13), 3015-3029.
[http://dx.doi.org/10.1084/jem.20090847] [PMID: 20008522]
[49]
Chen, J.; Jiang, C.C.; Jin, L.; Zhang, X.D. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann. Oncol., 2016, 27(3), 409-416.
[http://dx.doi.org/10.1093/annonc/mdv615] [PMID: 26681673]
[50]
Teng, M.W.; Ngiow, S.F.; Ribas, A.; Smyth, M.J. Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res., 2015, 75(11), 2139-2145.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0255] [PMID: 25977340]
[51]
Dolan, D.E.; Gupta, S. PD-1 pathway inhibitors: changing the landscape of cancer immunotherapy. Cancer Contr., 2014, 21(3), 231-237.
[http://dx.doi.org/10.1177/107327481402100308] [PMID: 24955707]
[52]
Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; Barlesi, F.; Kohlhäufl, M.; Arrieta, O.; Burgio, M.A.; Fayette, J.; Lena, H.; Poddubskaya, E.; Gerber, D.E.; Gettinger, S.N.; Rudin, C.M.; Rizvi, N.; Crinò, L.; Blumenschein, G.R., Jr; Antonia, S.J.; Dorange, C.; Harbison, C.T.; Graf Finckenstein, F.; Brahmer, J.R. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med., 2015, 373(17), 1627-1639.
[http://dx.doi.org/10.1056/NEJMoa1507643] [PMID: 26412456]
[53]
Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; Majem, M.; Fidler, M.J.; de Castro, G., Jr; Garrido, M.; Lubiniecki, G.M.; Shentu, Y.; Im, E.; Dolled-Filhart, M.; Garon, E.B. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet, 2016, 387(10027), 1540-1550.
[http://dx.doi.org/10.1016/S0140-6736(15)01281-7] [PMID: 26712084]
[54]
Linsley, P.S.; Brady, W.; Urnes, M.; Grosmaire, L.S.; Damle, N.K.; Ledbetter, J.A. CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med., 1991, 174(3), 561-569.
[http://dx.doi.org/10.1084/jem.174.3.561] [PMID: 1714933]
[55]
Weber, J.; Gibney, G.; Kudchadkar, R.; Yu, B.; Cheng, P.; Martinez, A.J.; Kroeger, J.; Richards, A.; McCormick, L.; Moberg, V.; Cronin, H.; Zhao, X.; Schell, M.; Chen, Y.A. Phase I/II study of metastatic melanoma patients treated with nivolumab who had progressed after ipilimumab. Cancer Immunol. Res., 2016, 4(4), 345-353.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0193] [PMID: 26873574]
[56]
Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[57]
Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; Pitot, H.C.; Hamid, O.; Bhatia, S.; Martins, R.; Eaton, K.; Chen, S.; Salay, T.M.; Alaparthy, S.; Grosso, J.F.; Korman, A.J.; Parker, S.M.; Agrawal, S.; Goldberg, S.M.; Pardoll, D.M.; Gupta, A.; Wigginton, J.M. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med., 2012, 366(26), 2455-2465.
[http://dx.doi.org/10.1056/NEJMoa1200694] [PMID: 22658128]
[58]
Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; Akerley, W.; van den Eertwegh, A.J.; Lutzky, J.; Lorigan, P.; Vaubel, J.M.; Linette, G.P.; Hogg, D.; Ottensmeier, C.H.; Lebbé, C.; Peschel, C.; Quirt, I.; Clark, J.I.; Wolchok, J.D.; Weber, J.S.; Tian, J.; Yellin, M.J.; Nichol, G.M.; Hoos, A.; Urba, W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med., 2010, 363(8), 711-723.
[http://dx.doi.org/10.1056/NEJMoa1003466] [PMID: 20525992]
[59]
Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell, 2015, 27(4), 450-461.
[http://dx.doi.org/10.1016/j.ccell.2015.03.001] [PMID: 25858804]
[60]
Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer, 2012, 12(4), 237-251.
[http://dx.doi.org/10.1038/nrc3237] [PMID: 22437869]
[61]
Hendry, S.A.; Farnsworth, R.H.; Solomon, B.; Achen, M.G.; Stacker, S.A.; Fox, S.B. The Role of the tumor vasculature in the host immune response: Implications for therapeutic strategies targeting the tumor microenvironment. Front. Immunol., 2016, 7, 621.
[http://dx.doi.org/10.3389/fimmu.2016.00621] [PMID: 28066431]
[62]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[63]
Tabchi, S.; Blais, N. Antiangiogenesis for advanced non-small-cell lung cancer in the era of immunotherapy and personalized medicine. Front. Oncol., 2017, 7, 52.
[http://dx.doi.org/10.3389/fonc.2017.00052] [PMID: 28424759]
[64]
Hughes, P.E.; Caenepeel, S.; Wu, L.C. Targeted therapy and checkpoint immunotherapy combinations for the treatment of cancer. Trends Immunol., 2016, 37(7), 462-476.
[http://dx.doi.org/10.1016/j.it.2016.04.010] [PMID: 27216414]
[65]
Voron, T.; Marcheteau, E.; Pernot, S.; Colussi, O.; Tartour, E.; Taieb, J.; Terme, M. Control of the immune response by pro-angiogenic factors. Front. Oncol., 2014, 4, 70.
[http://dx.doi.org/10.3389/fonc.2014.00070]
[66]
Huang, Y.; Goel, S.; Duda, D.G.; Fukumura, D.; Jain, R.K. Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res., 2013, 73(10), 2943-2948.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4354] [PMID: 23440426]
[67]
Albini, A.; Bruno, A.; Noonan, D.M.; Mortara, L. Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: Implications for immunotherapy. Front. Immunol., 2018, 9, 527.
[http://dx.doi.org/10.3389/fimmu.2018.00527] [PMID: 29675018]
[68]
Einstein, D.J.; McDermott, D.F. Combined blockade of vascular endothelial growth factor and programmed death 1 pathways in advanced kidney cancer. Clin. Adv. Hematol. Oncol., 2017, 15(6), 478-488.
[PMID: 28749908]
[69]
Voron, T.; Colussi, O.; Marcheteau, E.; Pernot, S.; Nizard, M.; Pointet, A.L.; Latreche, S.; Bergaya, S.; Benhamouda, N.; Tanchot, C.; Stockmann, C.; Combe, P.; Berger, A.; Zinzindohoue, F.; Yagita, H.; Tartour, E.; Taieb, J.; Terme, M. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med., 2015, 212(2), 139-148.
[http://dx.doi.org/10.1084/jem.20140559] [PMID: 25601652]
[70]
Ozao-Choy, J.; Ma, G.; Kao, J.; Wang, G.X.; Meseck, M.; Sung, M.; Schwartz, M.; Divino, C.M.; Pan, P.Y.; Chen, S.H. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res., 2009, 69(6), 2514-2522.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4709] [PMID: 19276342]
[71]
Kwilas, A.R.; Ardiani, A.; Donahue, R.N.; Aftab, D.T.; Hodge, J.W. Dual effects of a targeted small-molecule inhibitor (cabozantinib) on immune-mediated killing of tumor cells and immune tumor microenvironment permissiveness when combined with a cancer vaccine. J. Transl. Med., 2014, 12, 294.
[http://dx.doi.org/10.1186/s12967-014-0294-y] [PMID: 25388653]
[72]
Kwilas, A.R.; Donahue, R.N.; Tsang, K.Y.; Hodge, J.W. Immune consequences of tyrosine kinase inhibitors that synergize with cancer immunotherapy. Cancer Cell Microenviron., 2015, 2(1), e677
[PMID: 26005708]
[73]
Campesato, L.F.; Merghoub, T. Antiangiogenic therapy and immune checkpoint blockade go hand in hand. Ann. Transl. Med., 2017, 5(24), 497.
[http://dx.doi.org/10.21037/atm.2017.10.12] [PMID: 29299458]
[74]
Chen, P.L.; Roh, W.; Reuben, A.; Cooper, Z.A.; Spencer, C.N.; Prieto, P.A.; Miller, J.P.; Bassett, R.L.; Gopalakrishnan, V.; Wani, K.; De Macedo, M.P.; Austin-Breneman, J.L.; Jiang, H.; Chang, Q.; Reddy, S.M.; Chen, W.S.; Tetzlaff, M.T.; Broaddus, R.J.; Davies, M.A.; Gershenwald, J.E.; Haydu, L.; Lazar, A.J.; Patel, S.P.; Hwu, P.; Hwu, W.J.; Diab, A.; Glitza, I.C.; Woodman, S.E.; Vence, L.M.; Wistuba, I.I.; Amaria, R.N.; Kwong, L.N.; Prieto, V.; Davis, R.E.; Ma, W.; Overwijk, W.W.; Sharpe, A.H.; Hu, J.; Futreal, P.A.; Blando, J.; Sharma, P.; Allison, J.P.; Chin, L.; Wargo, J.A. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov., 2016, 6(8), 827-837.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1545] [PMID: 27301722]
[75]
Huang, Y.; Yuan, J.; Righi, E.; Kamoun, W.S.; Ancukiewicz, M.; Nezivar, J.; Santosuosso, M.; Martin, J.D.; Martin, M.R.; Vianello, F.; Leblanc, P.; Munn, L.L.; Huang, P.; Duda, D.G.; Fukumura, D.; Jain, R.K.; Poznansky, M.C. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc. Natl. Acad. Sci. USA, 2012, 109(43), 17561-17566.
[http://dx.doi.org/10.1073/pnas.1215397109] [PMID: 23045683]
[76]
Meder, L.; Schuldt, P.; Thelen, M.; Schmitt, A.; Dietlein, F.; Klein, S.; Borchmann, S.; Wennhold, K.; Vlasic, I.; Oberbeck, S.; Riedel, R.; Florin, A.; Golfmann, K.; Schlößer, H.A.; Odenthal, M.; Buettner, R.; Wolf, J.; Hallek, M.; Herling, M.; von Bergwelt-Baildon, M.; Reinhardt, H.C.; Ullrich, R.T. Combined VEGF and PD-L1 blockade displays synergistic treatment effects in an autochthonous mouse model of small cell lung cancer. Cancer Res., 2018, 78(15), 4270-4281.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2176] [PMID: 29776963]
[77]
Huang, Y.; Kim, B.Y.S.; Chan, C.K.; Hahn, S.M.; Weissman, I.L.; Jiang, W. Improving immune-vascular crosstalk for cancer immunotherapy. Nat. Rev. Immunol., 2018, 18(3), 195-203.
[http://dx.doi.org/10.1038/nri.2017.145] [PMID: 29332937]
[78]
Rivera, L.B.; Meyronet, D.; Hervieu, V.; Frederick, M.J.; Bergsland, E.; Bergers, G. Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy. Cell Rep., 2015, 11(4), 577-591.
[http://dx.doi.org/10.1016/j.celrep.2015.03.055] [PMID: 25892230]
[79]
Shojaei, F.; Ferrara, N. Refractoriness to antivascular endothelial growth factor treatment: role of myeloid cells. Cancer Res., 2008, 68(14), 5501-5504.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0925] [PMID: 18632597]
[80]
Allen, E.; Jabouille, A.; Rivera, L.B.; Lodewijckx, I.; Missiaen, R.; Steri, V.; Feyen, K.; Tawney, J.; Hanahan, D.; Michael, I.P.; Bergers, G. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med., 2017, 9(385), eaak9679
[http://dx.doi.org/10.1126/scitranslmed.aak9679 PMID: 28404866]
[81]
Hodi, F.S.; Lawrence, D.; Lezcano, C.; Wu, X.; Zhou, J.; Sasada, T.; Zeng, W.; Giobbie-Hurder, A.; Atkins, M.B.; Ibrahim, N.; Friedlander, P.; Flaherty, K.T.; Murphy, G.F.; Rodig, S.; Velazquez, E.F.; Mihm, M.C., Jr; Russell, S.; DiPiro, P.J.; Yap, J.T.; Ramaiya, N.; Van den Abbeele, A.D.; Gargano, M.; McDermott, D. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol. Res., 2014, 2(7), 632-642.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0053] [PMID: 24838938]
[82]
De Palma, M.; Jain, R.K. CD4+ T Cell activation and vascular normalization: Two sides of the same coin? Immunity, 2017, 46(5), 773-775.
[http://dx.doi.org/10.1016/j.immuni.2017.04.015] [PMID: 28514684]
[83]
Pircher, A.; Wolf, D.; Heidenreich, A.; Hilbe, W.; Pichler, R.; Heidegger, I. Synergies of targeting tumor angiogenesis and immune checkpoints in non-small cell lung cancer and renal cell cancer: From basic concepts to clinical reality. Int. J. Mol. Sci., 2017, 18(11), E2291
[http://dx.doi.org/10.3390/ijms18112291 PMID: 29088109]
[84]
McDermott, D.F.; Huseni, M.A.; Atkins, M.B.; Motzer, R.J.; Rini, B.I.; Escudier, B.; Fong, L.; Joseph, R.W.; Pal, S.K.; Reeves, J.A.; Sznol, M.; Hainsworth, J.; Rathmell, W.K.; Stadler, W.M.; Hutson, T.; Gore, M.E.; Ravaud, A.; Bracarda, S.; Suárez, C.; Danielli, R.; Gruenwald, V.; Choueiri, T.K.; Nickles, D.; Jhunjhunwala, S.; Piault-Louis, E.; Thobhani, A.; Qiu, J.; Chen, D.S.; Hegde, P.S.; Schiff, C.; Fine, G.D.; Powles, T. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat. Med., 2018, 24(6), 749-757.
[http://dx.doi.org/10.1038/s41591-018-0053-3] [PMID: 29867230]
[85]
Dudek, A.Z.; Sica, R.A.; Sidani, A.; Jha, G.G.; Xie, H.; Alva, A.S.; Stein, M.N.; Singer, E.A. Phase Ib study of pembrolizumab in combination with bevacizumab for the treatment of metastatic renal cell carcinoma: Big Ten Cancer Research Consortium BTCRC-GU14-003. J. Clin. Oncol., 2016, 34(2)
[http://dx.doi.org/10.1200/jco.2016.34.2_suppl.559]
[86]
Motzer, R.J.; Powles, T.; Atkins, M.B.; Escudier, B.; McDermott, D.F.; Suarez, C.; Bracarda, S.; Stadler, W.M.; Donskov, F.; Lee, J-L.; Hawkins, R.E.; Ravaud, A.; Alekseev, B.Y.; Staehler, M.D.; Uemura, M.; Donaldson, F.; Li, S.; Huseni, M.A.; Schiff, C.; Rini, B.I. IMmotion 151: Randomized phase III study of atezolizumab plus bevacizumab versus sunitinib in untreated metastatic renal cell carcinoma. J. Clin. Oncol., 2018, 36, 578.
[87]
Bracarda, S.; Porta, C.; Sabbatini, R.; Rivoltini, L. Angiogenic and immunological pathways in metastatic renal cell carcinoma: A counteracting paradigm or two faces of the same medal? The GIANUS Review. Crit. Rev. Oncol. Hematol., 2019, 139, 149-157.
[PMID: 30424938]
[88]
Zhang, L.; Conejo-Garcia, J.R.; Katsaros, D.; Gimotty, P.A.; Massobrio, M.; Regnani, G.; Makrigiannakis, A.; Gray, H.; Schlienger, K.; Liebman, M.N.; Rubin, S.C.; Coukos, G. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med., 2003, 348(3), 203-213.
[http://dx.doi.org/10.1056/NEJMoa020177] [PMID: 12529460]
[89]
Coukos, G.; Tanyi, J.; Kandalaft, L.E. Opportunities in immunotherapy of ovarian cancer. Ann. Oncol., 2016, 27(Suppl. 1), i11-i15.
[http://dx.doi.org/10.1093/annonc/mdw084] [PMID: 27141063]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy