Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Astaxanthin, the Natural Antioxidant, Reduces Reserpine Induced Depression in Mice

Author(s): Ferdous Khan, Syed A. Kuddus, Md. H. Shohag, Hasan M. Reza and Murad Hossain*

Volume 16, Issue 9, 2020

Page: [1319 - 1327] Pages: 9

DOI: 10.2174/1573407216666200203142722

Price: $65

Abstract

Background: An imbalance between pro-oxidants and antioxidants determines the level of oxidative stress which is implicated in the etiopathogenesis of various neuropsychiatric disorders including depression. Therefore, treatment with antioxidants could potentially improve the balance between pro-oxidants and antioxidants.

Objective: The objective of this study was to evaluate the ability of astaxanthin, a potential antioxidant, to reduce reserpine-induced depression in BALB/c mice (Mus musculus).

Methods: On the behavioral level, antidepressant property of astaxanthin (50 mg/kg, orally) on reserpine (2 mg/kg, subcutaneously) induced depressed mice was evaluated by Forced Swim Test (FST) and Tail Suspension Test (TST). In the biochemical level, the ability of astaxanthin to mitigate reserpine-induced oxidative stress was evaluated by the measurement of Malondialdehyde (MDA) and nitric oxide (NO) in brain, liver and plasma samples. On the other hand, the efficiency of astaxanthin to replenish glutathione depletion and antioxidant enzyme activity augmentation in the same samples were also investigated.

Results: Astaxanthin was able to lower reserpine induced immobility time significantly (p<0.05) in FST and TST. Mice treated with astaxanthin showed significantly (p<0.05) low level of oxidative stress markers such as Malondialdehyde (MDA), Nitric Oxide (NO). Consistently, the level of reduced Glutathione (GSH), and the activity of Superoxide Dismutase (SOD) and catalase were augmented due to the oral administration of astaxanthin.

Conclusion: This study suggests that astaxanthin reduces reserpine-induced oxidative stress and therefore might be effective in treating oxidative stress associated depression.

Keywords: Oxidative stress, depression, astaxanthin, reserpine, antioxidant, neurological disorder.

Graphical Abstract

[1]
Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov., 2004, 3(3), 205-214.
[http://dx.doi.org/10.1038/nrd1330] [PMID: 15031734]
[2]
Masood, A.; Nadeem, A.; Mustafa, S.J.; O’Donnell, J.M. Reversal of oxidative stress-induced anxiety by inhibition of phosphodiesterase-2 in mice. J. Pharmacol. Exp. Ther., 2008, 326(2), 369-379.
[http://dx.doi.org/10.1124/jpet.108.137208] [PMID: 18456873]
[3]
Sankar, V.G.; Venkatesh, R.; Muthiah, S. Divakar. Tuberoinfundibular peptide of 39 attenuates chronic unpredictable mild stress induced hpa axis dysregulation, inflammation and oxidative damage in depressive rats. Curr. Bioact. Compd., 2018, 14(4), 451-460.
[http://dx.doi.org/10.2174/1573407213666170905155415]
[4]
van Velzen, L.S.; Wijdeveld, M.; Black, C.N.; van Tol, M-J.; van der Wee, N.J.A.; Veltman, D.J.; Penninx, B.W.J.H.; Schmaal, L. Oxidative stress and brain morphology in individuals with depression, anxiety and healthy controls. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 76, 140-144.
[http://dx.doi.org/10.1016/j.pnpbp.2017.02.017] [PMID: 28249819]
[5]
Black, C.N.; Bot, M.; Scheffer, P.G.; Cuijpers, P.; Penninx, B.W. Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology, 2015, 51, 164-175.
[http://dx.doi.org/10.1016/j.psyneuen.2014.09.025] [PMID: 25462890]
[6]
Patki, G.; Allam, F.H.; Atrooz, F.; Dao, A.T.; Solanki, N.; Chugh, G.; Asghar, M.; Jafri, F.; Bohat, R.; Alkadhi, K.A.; Salim, S. Grape powder intake prevents ovariectomy-induced anxiety-like behavior, memory impairment and high blood pressure in female Wistar rats. PLoS One, 2013, 8(9)e74522
[http://dx.doi.org/10.1371/journal.pone.0074522] [PMID: 24040270]
[7]
Irie, Y. Effects of Eugenol on the central nervous system: Its possible application to treatment of Alzheimer’s disease, depression, and Parkinson’s disease. Curr. Bioact. Compd., 2006, 2(1), 57-66.
[http://dx.doi.org/10.2174/1573407210602010057]
[8]
Antonella, B. Federica. Old Strategies and new perspectives in modulating the Endocannabinoid System (ES) pessina. Curr. Bioact. Compd., 2019, 15(2), 159-173.
[http://dx.doi.org/10.2174/1573407214666180627144214]
[9]
Lee, S-Y.; Lee, S-J.; Han, C.; Patkar, A.A.; Masand, P.S.; Pae, C-U. Oxidative/nitrosative stress and antidepressants: Targets for novel an-tidepressants. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 46, 224-235.
[http://dx.doi.org/10.1016/j.pnpbp.2012.09.008] [PMID: 23022673]
[10]
Miyazaki, I.; Asanuma, M. Dopaminergic neuron-specific oxidative stress caused by dopamine itself. Acta Med. Okayama, 2008, 62(3), 141-150.
[PMID: 18596830]
[11]
Park, B-K.; Kim, Y.R.; Kim, Y.H.; Yang, C.; Seo, C-S.; Jung, I.C.; Jang, I-S.; Kim, S-H.; Lee, M.Y. Antidepressant-like effects of gyejibokryeong-hwan in a mouse model of reserpine-induced depression. BioMed Res. Int., 2018.20185845491
[http://dx.doi.org/10.1155/2018/5845491] [PMID: 30046601]
[12]
Martínez-Olivares, R.; Villanueva, I.; Racotta, R.; Piñón, M. Depletion and recovery of catecholamines in several organs of rats treated with reserpine. Auton. Neurosci., 2006, 128(1-2), 64-69.
[http://dx.doi.org/10.1016/j.autneu.2006.04.004] [PMID: 16723281]
[13]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[14]
Higuera-Ciapara, I.; Félix-Valenzuela, L.; Goycoolea, F.M. Astaxanthin: A review of its chemistry and applications. Crit. Rev. Food Sci. Nutr., 2006, 46(2), 185-196.
[http://dx.doi.org/10.1080/10408690590957188] [PMID: 16431409]
[15]
Fassett, R.G.; Coombes, J.S. Astaxanthin: A potential therapeutic agent in cardiovascular disease. Mar. Drugs, 2011, 9(3), 447-465.
[http://dx.doi.org/10.3390/md9030447] [PMID: 21556169]
[16]
Goto, S.; Kogure, K.; Abe, K.; Kimata, Y.; Kitahama, K.; Yamashita, E.; Terada, H. Efficient radical trapping at the surface and inside the phospholipid membrane is responsible for highly potent antiperoxidative activity of the carotenoid astaxanthin. Biochim. Biophys. Acta, 2001, 1512(2), 251-258.
[http://dx.doi.org/10.1016/S0005-2736(01)00326-1] [PMID: 11406102]
[17]
Genest, J. C-reactive protein: Risk factor, biomarker and/or therapeutic target? Can. J. Cardiol., 2010, 26(Suppl. A), 41A-44A.
[http://dx.doi.org/10.1016/S0828-282X(10)71061-8] [PMID: 20386760]
[18]
Sy, C.; Caris-Veyrat, C.; Dufour, C.; Boutaleb, M.; Borel, P.; Dangles, O. Inhibition of iron-induced lipid peroxidation by newly identified bacterial carotenoids in model gastric conditions: Comparison with common carotenoids. Food Funct., 2013, 4(5), 698-712.
[http://dx.doi.org/10.1039/c3fo30334a] [PMID: 23411789]
[19]
Yoshida, H.; Yanai, H.; Ito, K.; Tomono, Y.; Koikeda, T.; Tsukahara, H.; Tada, N. Administration of natural astaxanthin increases serum HDL-cholesterol and adiponectin in subjects with mild hyperlipidemia. Atherosclerosis, 2010, 209(2), 520-523.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.10.012] [PMID: 19892350]
[20]
Satoh, A.; Tsuji, S.; Okada, Y.; Murakami, N.; Urami, M.; Nakagawa, K.; Ishikura, M.; Katagiri, M.; Koga, Y.; Shirasawa, T. Preliminary clinical evaluation of toxicity and efficacy of a new astaxanthin-rich Haematococcus pluvialis extract. J. Clin. Biochem. Nutr., 2009, 44(3), 280-284.
[http://dx.doi.org/10.3164/jcbn.08-238] [PMID: 19430618]
[21]
Zhang, X.; Pan, L.; Wei, X.; Gao, H.; Liu, J. Impact of astaxanthin-enriched algal powder of Haematococcus pluvialis on memory improvement in BALB/c mice. Environ. Geochem. Health, 2007, 29(6), 483-489.
[http://dx.doi.org/10.1007/s10653-007-9117-x] [PMID: 17721823]
[22]
Zhou, X.Y.; Zhang, F.; Hu, X.T.; Chen, J.; Tang, R.X.; Zheng, K.Y.; Song, Y.J. Depression can be prevented by astaxanthin through inhibition of hippocampal inflammation in diabetic mice. Brain Res., 2017, 1657, 262-268.
[http://dx.doi.org/10.1016/j.brainres.2016.12.018] [PMID: 28017669]
[23]
Shen, H.; Kuo, C-C.; Chou, J.; Delvolve, A.; Jackson, S.N.; Post, J.; Woods, A.S.; Hoffer, B.J.; Wang, Y.; Harvey, B.K. Astaxanthin reduces ischemic brain injury in adult rats. FASEB J., 2009, 23(6), 1958-1968.
[http://dx.doi.org/10.1096/fj.08-123281] [PMID: 19218497]
[24]
Porsolt, R.D.; Le Pichon, M.; Jalfre, M. Depression: A new animal model sensitive to antidepressant treatments. Nature, 1977, 266(5604), 730-732.
[http://dx.doi.org/10.1038/266730a0] [PMID: 559941]
[25]
Veintramuthu, S.; Gunasekaran, V.; Ramanathan, M.; Selvaraj, D. Tuberoinfundibular peptide of 39 attenuates chronic unpredictable mild stress induced hpa axis dysregulation, inflammation and oxidative damage in depressive rats. Curr. Bioact. Compd., 2018, 14(4), 451-460.
[http://dx.doi.org/10.2174/1573407213666170905155415]
[26]
Ruiz-Larrea, M.B.; Leal, A.M.; Liza, M.; Lacort, M.; de Groot, H. Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids, 1994, 59(6), 383-388.
[http://dx.doi.org/10.1016/0039-128X(94)90006-X] [PMID: 7940617]
[27]
Moshage, H.; Kok, B.; Huizenga, J.R.; Jansen, P.L. Nitrite and nitrate determinations in plasma: a critical evaluation. Clin. Chem., 1995, 41(6 Pt 1), 892-896.
[http://dx.doi.org/10.1093/clinchem/41.6.892] [PMID: 7768008]
[28]
Rahman, I.; Kode, A.; Biswas, S.K. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc., 2006, 1(6), 3159-3165.
[http://dx.doi.org/10.1038/nprot.2006.378] [PMID: 17406579]
[29]
Fydrych, A.; Moir, R.D.; Huang, C.; Shi, Y.; Rogers, J.T.; Huang, X. Amyloid-targeted metal chelation, anti-oxidative stress, and anti- in-flammation as potential Alzheimer’s therapies. Curr. Bioact. Compd., 2008, 4(3), 140-149.
[http://dx.doi.org/10.2174/157340708786305989]
[30]
Ata, A.; Udenigwe, C.C. the discovery and application of inhibitors of glutathione S-transferase as therapeutic agents -A review. Curr. Bioact. Compd., 2008, 4(1), 41-50.
[http://dx.doi.org/10.2174/157340708784533384]
[31]
Kurian, M.A.; Gissen, P.; Smith, M.; Heales, S., Jr; Clayton, P.T. The monoamine neurotransmitter disorders: An expanding range of neurological syndromes. Lancet Neurol., 2011, 10(8), 721-733.
[http://dx.doi.org/10.1016/S1474-4422(11)70141-7] [PMID: 21777827]
[32]
LaBuda, C.J.; Fuchs, P.N. Catecholamine depletion by reserpine blocks the anxiolytic actions of ethanol in the rat. Alcohol, 2002, 26(1), 55-59.
[http://dx.doi.org/10.1016/S0741-8329(01)00193-8] [PMID: 11958948]
[33]
Blakely, R.D.; Edwards, R.H. Vesicular and plasma membrane transporters for neurotransmitters. Cold Spring Harb. Perspect. Biol., 2012, 4(2)a005595
[http://dx.doi.org/10.1101/cshperspect.a005595] [PMID: 22199021]
[34]
Eiden, L.E.; Weihe, E. VMAT2: A dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse. Ann. N. Y. Acad. Sci., 2011, 1216, 86-98.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05906.x] [PMID: 21272013]
[35]
de Freitas, C.M.; Busanello, A.; Schaffer, L.F.; Peroza, L.R.; Krum, B.N.; Leal, C.Q.; Ceretta, A.P.C.; da Rocha, J.B.T.; Fachinetto, R. Be-havioral and neurochemical effects induced by reserpine in mice. Psychopharmacology (Berl.), 2016, 233(3), 457-467.
[http://dx.doi.org/10.1007/s00213-015-4118-4] [PMID: 26514557]
[36]
Gao, Z.Y.; Yang, P.; Huang, Q-J.; Xu, H.Y. The influence of dizocilpine on the reserpine-induced behavioral and neurobiological changes in rats. Neurosci. Lett., 2016, 614, 89-94.
[http://dx.doi.org/10.1016/j.neulet.2016.01.006] [PMID: 26779676]
[37]
Teixeira, A.M.; Trevizol, F.; Colpo, G.; Garcia, S.C.; Charão, M.; Pereira, R.P.; Fachinetto, R.; Rocha, J.B.; Bürger, M.E. Influence of chronic exercise on reserpine-induced oxidative stress in rats: Behavioral and antioxidant evaluations. Pharmacol. Biochem. Behav., 2008, 88(4), 465-472.
[http://dx.doi.org/10.1016/j.pbb.2007.10.004] [PMID: 18001823]
[38]
Park, B.K.; Kim, Y.R.; Kim, Y.H.; Yang, C.; Seo, C.S.; Jung, I.C.; Jang, I.S.; Kim, S.H.; Lee, M.Y. Antidepressant-like effects of gyejibokryeong-hwan in a mouse model of reserpine-induced depression. Biomed. Res. (Aligarh), 2018.20185845491
[http://dx.doi.org/10.1155/2018/5845491] [PMID: 30046601]
[39]
Kovacic, P.; Somanathan, R. Nitric oxide, peroxynitrite, peroxynitrous acid, nitroxyl, nitrogen dioxide, nitrous oxide: Biochemical mechanisms and bioaction. Curr. Bioact. Compd., 2012, 8(4), 297-306.
[http://dx.doi.org/10.2174/1573407211208040001]
[40]
Wang, X.; Michaelis, E.K. Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci., 2010, 2, 12.
[http://dx.doi.org/10.3389/fnagi.2010.00012] [PMID: 20552050]
[41]
Salim, S. Oxidative stress and the central nervous system. J. Pharmacol. Exp. Ther., 2017, 360(1), 201-205.
[http://dx.doi.org/10.1124/jpet.116.237503] [PMID: 27754930]
[42]
Liu, T.; Zhong, S.; Liao, X.; Chen, J.; He, T.; Lai, S.; Jia, Y. A meta-analysis of oxidative stress markers in depression. PLoS One, 2015, 10(10)e0138904
[http://dx.doi.org/10.1371/journal.pone.0138904] [PMID: 26445247]
[43]
Novío, S.; Núñez, M.J.; Amigo, G.; Freire-Garabal, M. Effects of fluoxetine on the oxidative status of peripheral blood leucocytes of re-straint-stressed mice. Basic Clin. Pharmacol. Toxicol., 2011, 109(5), 365-371.
[http://dx.doi.org/10.1111/j.1742-7843.2011.00736.x] [PMID: 21624059]
[44]
Djordjevic, J.; Djordjevic, A.; Adzic, M.; Elaković, I.; Matić, G.; Radojcic, M.B. Fluoxetine affects antioxidant system and promotes apoptotic signaling in Wistar rat liver. Eur. J. Pharmacol., 2011, 659(1), 61-66.
[http://dx.doi.org/10.1016/j.ejphar.2011.03.003] [PMID: 21414309]
[45]
Bilici, M.; Efe, H.; Köroğlu, M.A.; Uydu, H.A.; Bekaroğlu, M.; Değer, O. Antioxidative enzyme activities and lipid peroxidation in major depression: Alterations by antidepressant treatments. J. Affect. Disord., 2001, 64(1), 43-51.
[http://dx.doi.org/10.1016/S0165-0327(00)00199-3] [PMID: 11292519]
[46]
Khanzode, S.D.; Dakhale, G.N.; Khanzode, S.S.; Saoji, A.; Palasodkar, R. Oxidative damage and major depression: The potential antioxidant action of selective serotonin re-uptake inhibitors. Redox Rep., 2003, 8(6), 365-370.
[http://dx.doi.org/10.1179/135100003225003393] [PMID: 14980069]
[47]
Beyza, O.S.S.; Ilhami, G. Radical scavenging and antioxidant capacity of serotonin. Curr. Bioact. Compd., 2013, 9(2), 143-152.
[http://dx.doi.org/10.2174/22115528112019990006]
[48]
Palozza, P.; Mele, C.M.; Cittadini, A.; Mastrantoni, M. Potential interactions of carotenoids with other bioactive food components in the prevention of chronic diseases. Curr. Bioact. Compd., 2011, 7(4), 243-261.
[http://dx.doi.org/10.2174/157340711798375877]
[49]
Dose, J.; Matsugo, S.; Yokokawa, H.; Koshida, Y.; Okazaki, S.; Seidel, U.; Eggersdorfer, M.; Rimbach, G.; Esatbeyoglu, T. Free radical scavenging and cellular antioxidant properties of astaxanthin. Int. J. Mol. Sci., 2016, 17(1), 103.
[http://dx.doi.org/10.3390/ijms17010103] [PMID: 26784174]
[50]
Jiang, X.; Zhu, K.; Xu, Q.; Wang, G.; Zhang, J.; Cao, R.; Ye, J.; Yu, X. The antidepressant-like effect of trans-astaxanthin involves the serotonergic system. Oncotarget, 2017, 8(15), 25552-25563.
[http://dx.doi.org/10.18632/oncotarget.16069] [PMID: 28424423]
[51]
Xu, Y.; Wang, Z.; You, W.; Zhang, X.; Li, S.; Barish, P.A.; Vernon, M.M.; Du, X.; Li, G.; Pan, J.; Ogle, W.O. Antidepressant-like effect of trans-resveratrol: Involvement of serotonin and noradrenaline system. Eur. Neuropsychopharmacol., 2010, 20(6), 405-413.
[http://dx.doi.org/10.1016/j.euroneuro.2010.02.013] [PMID: 20353885]
[52]
Xu, Y.; Wang, C.; Klabnik, J.J.; O’Donnell, J.M. Novel therapeutic targets in depression and anxiety: Antioxidants as a candidate treatment. Curr. Neuropharmacol., 2014, 12(2), 108-119.
[http://dx.doi.org/10.2174/1570159X11666131120231448] [PMID: 24669206]
[53]
Grimmig, B.; Kim, S.H.; Nash, K.; Bickford, P.C.; Douglas Shytle, R. Neuroprotective mechanisms of astaxanthin: A potential therapeutic role in preserving cognitive function in age and neurodegeneration. Geroscience, 2017, 39(1), 19-32.
[http://dx.doi.org/10.1007/s11357-017-9958-x] [PMID: 28299644]
[54]
Milaneschi, Y.; Bandinelli, S.; Penninx, B.W.; Corsi, A.M.; Lauretani, F.; Vazzana, R.; Semba, R.D.; Guralnik, J.M.; Ferrucci, L. The relationship between plasma carotenoids and depressive symptoms in older persons. World J. Biol. Psychiatry, 2012, 13(8), 588-598.
[http://dx.doi.org/10.3109/15622975.2011.597876] [PMID: 21929378]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy