Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

The Role of Chemokines in Alzheimer's Disease

Author(s): Adrian Jorda, Juan Campos-Campos, Antonio Iradi, Martin Aldasoro, Constanza Aldasoro, Jose M. Vila and Soraya L. Valles*

Volume 20, Issue 9, 2020

Page: [1383 - 1390] Pages: 8

DOI: 10.2174/1871530320666200131110744

Price: $65

Abstract

Objective: The most common multifactorial neurodegenerative disorder occurring in old age is Alzheimer’s disease. The neuropathological hallmarks of that disorder are amyloid plaques with the presence of β -amyloid aggregates, intraneuronal tau protein tangles, and chronic inflammation. Brain cells such as microglia and astrocytes are inflammatory cells associated with Alzheimer’s disease and involved in the production of inflammatory mediators, such as cytokines and chemokines. Chemokines consist of a large family of protein mediators with low molecular weight, which able to control the migration and residence of all immune cells. In pathological conditions, such as Alzheimer’s disease, chemokines contribute to the inflammatory response by recruiting T cells and controlling microglia/ macrophages activation.

Methods: The present study focuses on the role that chemokines and their receptors play in Alzheimer's disease and in processes such as inflammation and oxidative stress.

Results: Chemokines are important mediators in AD and inflammation. They promote Aβ deposition and TAU hyperphosphorylation aggravating and increasing the progression of AD. Moreover, they affect the processing of senile plaques and produce abnormal TAU phosphorylation.

Conclusion: There is no cure for AD but the therapeutic potential of chemokines to control the development of the disease may be a field of study to consider in the future.

Keywords: Alzheimer's disease, amyloid precursor protein, β-amyloid, chemokines, chemokine receptors, inflammation.

Graphical Abstract

[1]
Selkoe, D.J. Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev., 2001, 81(2), 741-766.
[http://dx.doi.org/10.1152/physrev.2001.81.2.741 ] [PMID: 11274343]
[2]
Huang, Y.; Mucke, L. Alzheimer mechanisms and therapeutic strategies. Cell, 2012, 148(6), 1204-1222.
[http://dx.doi.org/10.1016/j.cell.2012.02.040 ] [PMID: 22424230]
[3]
Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol., 1991, 82(4), 239-259.
[http://dx.doi.org/10.1007/BF00308809 ] [PMID: 1759558]
[4]
Tuppo, E.E.; Arias, H.R. The role of inflammation in Alzheimer’s disease. Int. J. Biochem. Cell Biol., 2005, 37(2), 289-305.
[http://dx.doi.org/10.1016/j.biocel.2004.07.009 ] [PMID: 15474976]
[5]
Heneka, M.T.; O’Banion, M.K.; Terwel, D.; Kummer, M.P. Neuroinflammatory processes in Alzheimer’s disease. J. Neural Transm. (Vienna), 2010, 117(8), 919-947.
[http://dx.doi.org/10.1007/s00702-010-0438-z ] [PMID: 20632195]
[6]
Valles, S.L.; Dolz-Gaiton, P.; Gambini, J.; Borras, C.; Lloret, A.; Pallardo, F.V.; Viña, J. Estradiol or genistein prevent Alzheimer’s disease-associated inflammation correlating with an increase PPAR gamma expression in cultured astrocytes. Brain Res., 2010, 1312, 138-144.
[http://dx.doi.org/10.1016/j.brainres.2009.11.044 ] [PMID: 19948157]
[7]
Jorda, A.; Cauli, O.; Santonja, J.M.; Aldasoro, M.; Aldasoro, C.; Obrador, E.; Vila, J.M.; Mauricio, M.D.; Iradi, A.; Guerra-Ojeda, S.; Marchio, P.; Valles, S.L. Changes in chemokines and chemokine receptors expression in a mouse model of Alzheimer’s disease. Int. J. Biol. Sci., 2019, 15(2), 453-463.
[http://dx.doi.org/10.7150/ijbs.26703 ] [PMID: 30745834]
[8]
Anderson, M.A.; Ao, Y.; Sofroniew, M.V. Heterogeneity of reactive astrocytes. Neurosci. Lett., 2014, 565, 23-29.
[http://dx.doi.org/10.1016/j.neulet.2013.12.030 ] [PMID: 24361547]
[9]
Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487.
[http://dx.doi.org/10.1038/nature21029 ] [PMID: 28099414]
[10]
Hickman, S.E.; Allison, E.K.; El Khoury, J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J. Neurosci., 2008, 28(33), 8354-8360.
[http://dx.doi.org/10.1523/JNEUROSCI.0616-08.2008 ] [PMID: 18701698]
[11]
López-González, I.; Schlüter, A.; Aso, E.; Garcia-Esparcia, P.; Ansoleaga, B. LLorens, F.; Carmona, M.; Moreno, J.; Fuso, A.; Portero-Otin, M.; Pamplona, R.; Pujol, A.; Ferrer, I. Neuroinflammatory signals in Alzheimer disease and APP/PS1 transgenic mice: correlations with plaques, tangles, and oligomeric species. J. Neuropathol. Exp. Neurol., 2015, 74(4), 319-344.
[http://dx.doi.org/10.1097/NEN.0000000000000176 ] [PMID: 25756590]
[12]
Liu, C.; Cui, G.; Zhu, M.; Kang, X.; Guo, H. Neuroinflammation in Alzheimer’s disease: chemokines produced by astrocytes and chemokine receptors. Int. J. Clin. Exp. Pathol., 2014, 7(12), 8342-8355.
[http://dx.doi.org/25674199]
[13]
Horuk, R. Chemokine receptors. Cytokine Growth Factor Rev., 2001, 12(4), 313-335.
[http://dx.doi.org/10.1016/S1359-6101(01)00014-4 ] [PMID: 11544102]
[14]
Ramesh, G.; MacLean, A.G.; Philipp, M.T. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm., 2013. 2013480739
[http://dx.doi.org/10.1155/2013/480739 ] [PMID: 23997430]
[15]
Djukic, M.; Mildner, A.; Schmidt, H.; Czesnik, D.; Brück, W.; Priller, J.; Nau, R.; Prinz, M. Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice. Brain, 2006, 129(Pt 9), 2394-2403.
[http://dx.doi.org/10.1093/brain/awl206 ] [PMID: 16891321]
[16]
Palomino, D.C.; Marti, L.C. Chemokines and immunity. Einstein (Sao Paulo), 2015, 13(3), 469-473.
[http://dx.doi.org/10.1590/S1679-45082015RB3438 ] [PMID: 26466066]
[17]
Garlisi, C.G.; Xiao, H.; Tian, F.; Hedrick, J.A.; Billah, M.M.; Egan, R.W.; Umland, S.P. The assignment of chemokine-chemokine receptor pairs: TARC and MIP-1 beta are not ligands for human CC-chemokine receptor 8. Eur. J. Immunol., 1999, 29(10), 3210-3215.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199910)29:10<3210:AID-IMMU3210>3.0.CO;2-W ] [PMID: 10540332]
[18]
Akimoto, N.; Ifuku, M.; Mori, Y.; Noda, M. Effects of chemokine (C-C motif) ligand 1 on microglial function. Biochem. Biophys. Res. Commun., 2013, 436(3), 455-461.
[http://dx.doi.org/10.1016/j.bbrc.2013.05.126 ] [PMID: 23747724]
[19]
Gorelick, P.B. Role of inflammation in cognitive impairment: results of observational epidemiological studies and clinical trials. Ann. N. Y. Acad. Sci., 2010, 1207, 155-162.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05726.x ] [PMID: 20955439]
[20]
Zychowska, M.; Rojewska, E.; Piotrowska, A.; Kreiner, G.; Nalepa, I.; Mika, J. Spinal CCL1/CCR8 signaling interplay as a potential therapeutic target - Evidence from a mouse diabetic neuropathy model. Int. Immunopharmacol., 2017, 52, 261-271.
[http://dx.doi.org/10.1016/j.intimp.2017.09.021 ] [PMID: 28961489]
[21]
Trebst, C.; Staugaitis, S.M.; Kivisäkk, P.; Mahad, D.; Cathcart, M.K.; Tucky, B.; Wei, T.; Rani, M.R.; Horuk, R.; Aldape, K.D.; Pardo, C.A.; Lucchinetti, C.F.; Lassmann, H.; Ransohoff, R.M. CC chemokine receptor 8 in the central nervous system is associated with phagocytic macrophages. Am. J. Pathol., 2003, 162(2), 427-438.
[http://dx.doi.org/10.1016/S0002-9440(10)63837-0 ] [PMID: 12547701]
[22]
Takata, K.; Amamiya, T.; Mizoguchi, H.; Kawanishi, S.; Kuroda, E.; Kitamura, R.; Ito, A.; Saito, Y.; Tawa, M.; Nagasawa, T.; Okamoto, H.; Sugino, Y.; Takegami, S.; Kitade, T.; Toda, Y.; Kem, W.R.; Kitamura, Y.; Shimohama, S.; Ashihara, E. Alpha7 nicotinic acetylcholine receptor-specific agonist DMXBA (GTS-21) attenuates Aβ accumulation through suppression of neuronal γ-secretase activity and promotion of microglial amyloid-β phagocytosis and ameliorates cognitive impairment in a mouse model of Alzheimer’s disease. Neurobiol. Aging, 2018, 62, 197-209.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.10.021 ] [PMID: 29175709]
[23]
Soto-Rodriguez, G.; Gonzalez-Barrios, J.A.; Martinez-Fong, D.; Blanco-Alvarez, V.M.; Eguibar, J.R.; Ugarte, A.; Martinez-Perez, F.; Brambila, E.; Peña, L.M.; Pazos-Salazar, N.G.; Torres-Soto, M.; Garcia-Robles, G.; Tomas-Sanchez, C.; Leon-Chavez, B.A. Analysis of chemokines and receptors expression profile in the myelin mutant taiep rat. Oxid. Med. Cell. Longev., 2015. 2015397310
[http://dx.doi.org/10.1155/2015/397310 ] [PMID: 25883747]
[24]
Corbeau, P.; Reynes, J. CCR5 antagonism in HIV infection: ways, effects, and side effects. AIDS, 2009, 23(15), 1931-1943.
[http://dx.doi.org/10.1097/QAD.0b013e32832e71cd ] [PMID: 19724192]
[25]
Sorce, S.; Myburgh, R.; Krause, K.H. The chemokine receptor CCR5 in the central nervous system. Prog. Neurobiol., 2011, 93(2), 297-311.
[http://dx.doi.org/10.1016/j.pneurobio.2010.12.003 ] [PMID: 21163326]
[26]
Rostène, W.; Kitabgi, P.; Parsadaniantz, S.M. Chemokines: a new class of neuromodulator? Nat. Rev. Neurosci., 2007, 8(11), 895-903.
[http://dx.doi.org/10.1038/nrn2255 ] [PMID: 17948033]
[27]
Kaul, M.; Ma, Q.; Medders, K.E.; Desai, M.K.; Lipton, S.A. HIV-1 coreceptors CCR5 and CXCR4 both mediate neuronal cell death but CCR5 paradoxically can also contribute to protection. Cell Death Differ., 2007, 14(2), 296-305.
[http://dx.doi.org/10.1038/sj.cdd.4402006 ] [PMID: 16841089]
[28]
Glass, W.G.; Liu, M.T.; Kuziel, W.A.; Lane, T.E. Reduced macrophage infiltration and demyelination in mice lacking the chemokine receptor CCR5 following infection with a neurotropic coronavirus. Virology, 2001, 288(1), 8-17.
[http://dx.doi.org/10.1006/viro.2001.1050 ] [PMID: 11543653]
[29]
Choi, D.Y.; Lee, M.K.; Hong, J.T. Lack of CCR5 modifies glial phenotypes and population of the nigral dopaminergic neurons, but not MPTP-induced dopaminergic neurodegeneration. Neurobiol. Dis., 2013, 49, 159-168.
[http://dx.doi.org/10.1016/j.nbd.2012.08.001 ] [PMID: 22922220]
[30]
Hwang, C.J.; Park, M.H.; Hwang, J.Y.; Kim, J.H.; Yun, N.Y.; Oh, S.Y.; Song, J.K.; Seo, H.O.; Kim, Y.B.; Hwang, D.Y.; Oh, K.W.; Han, S.B.; Hong, J.T. CCR5 deficiency accelerates lipopolysaccharide-induced astrogliosis, amyloid-beta deposit and impaired memory function. Oncotarget, 2016, 7(11), 11984-11999.
[http://dx.doi.org/10.18632/oncotarget.7453 ] [PMID: 26910914]
[31]
Man, S.M.; Ma, Y.R.; Shang, D.S.; Zhao, W.D.; Li, B.; Guo, D.W.; Fang, W.G.; Zhu, L.; Chen, Y.H. Peripheral T cells overexpress MIP-1alpha to enhance its transendothelial migration in Alzheimer’s disease. Neurobiol. Aging, 2007, 28(4), 485-496.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.02.013 ] [PMID: 16600437]
[32]
Zhang, F.; Zhong, R.; Li, S.; Fu, Z.; Cheng, C.; Cai, H.; Le, W. Acute hypoxia induced an imbalanced M1/M2 activation of microglia through NF-ᴋb signalling in Alzheimer’s disease mice and wild-type littermates. Front. Aging Neurosci., 2017, 9, 282.
[http://dx.doi.org/10.3389/fnagi.2017.00282 ] [PMID: 28890695]
[33]
Lue, L.F.; Rydel, R.; Brigham, E.F.; Yang, L.B.; Hampel, H.; Murphy, G.M., Jr; Brachova, L.; Yan, S.D.; Walker, D.G.; Shen, Y.; Rogers, J. Inflammatory repertoire of Alzheimer’s disease and nondemented elderly microglia in vitro. Glia, 2001, 35(1), 72-79.
[http://dx.doi.org/10.1002/glia.1072 ] [PMID: 11424194]
[34]
Walker, D.G.; Lue, L.F.; Beach, T.G. Gene expression profiling of amyloid beta peptide-stimulated human post-mortem brain microglia. Neurobiol. Aging, 2001, 22(6), 957-966.
[http://dx.doi.org/10.1016/S0197-4580(01)00306-2 ] [PMID: 11755004]
[35]
Mietelska-Porowska, A.; Wojda, U. Lymphocytes ad inflammatory mediators in the interplay between brain and blood in Alzheimer’s disease: Potential pools of new biomarker. J. Immunol. Res., 2017. 20174626540
[http://dx.doi.org/10.1155/2017/4626540 ] [PMID: 28293644]
[36]
Zhu, M.; Allard, J.S.; Zhang, Y.; Perez, E.; Spangler, E.L.; Becker, K.G.; Rapp, P.R. Age-related brain expression and regulation of the chemokine CCL4/MIP-1β in APP/PS1 double-transgenic mice. J. Neuropathol. Exp. Neurol., 2014, 73(4), 362-374.
[http://dx.doi.org/10.1097/NEN.0000000000000060 ] [PMID: 24607962]
[37]
Rossner, S.; Lange-Dohna, C.; Zeitschel, U.; Perez-Polo, J.R. Alzheimer’s disease beta-secretase BACE1 is not a neuron-specific enzyme. J. Neurochem., 2005, 92(2), 226-234.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02857.x ] [PMID: 15663471]
[38]
Lee, Y.K.; Kwak, D.H.; Oh, K.W.; Nam, S.Y.; Lee, B.J.; Yun, Y.W.; Kim, Y.B.; Han, S.B.; Hong, J.T. CCR5 deficiency induces astrocyte activation, Abeta deposit and impaired memory function. Neurobiol. Learn. Mem., 2009, 92(3), 356-363.
[http://dx.doi.org/10.1016/j.nlm.2009.04.003 ] [PMID: 19394434]
[39]
Song, M.; Jin, J.; Lim, J.E.; Kou, J.; Pattanayak, A.; Rehman, J.A.; Kim, H.D.; Tahara, K.; Lalonde, R.; Fukuchi, K. TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. J. Neuroinflammation, 2011, 8, 92.
[http://dx.doi.org/10.1186/1742-2094-8-92 ] [PMID: 21827663]
[40]
Bruno, V.; Copani, A.; Besong, G.; Scoto, G.; Nicoletti, F. Neuroprotective activity of chemokines against N-methyl-D-aspartate or beta-amyloid-induced toxicity in culture. Eur. J. Pharmacol., 2000, 399(2-3), 117-121.
[http://dx.doi.org/10.1016/S0014-2999(00)00367-8 ] [PMID: 10884510]
[41]
Tripathy, D.; Thirumangalakudi, L.; Grammas, P. RANTES upregulation in the Alzheimer’s disease brain: a possible neuroprotective role. Neurobiol. Aging, 2010, 31(1), 8-16.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.03.009 ] [PMID: 18440671]
[42]
Subramanian, S.; Ayala, P.; Wadsworth, T.L.; Harris, C.J.; Vandenbark, A.A.; Quinn, J.F.; Offner, H. CCR6: a biomarker for Alzheimer’s-like disease in a triple transgenic mouse model. J. Alzheimers Dis., 2010, 22(2), 619-629.
[http://dx.doi.org/10.3233/JAD-2010-100852 ] [PMID: 20847401]
[43]
Haskins, M.; Jones, T.E.; Lu, Q.; Bareiss, S.K. Early alterations in blood and brain RANTES and MCP-1 expression and the effect of exercise frequency in the 3xTg-AD mouse model of Alzheimer’s disease. Neurosci. Lett., 2016, 610, 165-170.
[http://dx.doi.org/10.1016/j.neulet.2015.11.002 ] [PMID: 26547034]
[44]
Réaux-Le Goazigo, A.; Van Steenwinckel, J.; Rostène, W.; Mélik Parsadaniantz, S. Current status of chemokines in the adult CNS. Prog. Neurobiol., 2013, 104, 67-92.
[http://dx.doi.org/10.1016/j.pneurobio.2013.02.001 ] [PMID: 23454481]
[45]
Porcellini, E.; Ianni, M.; Carbone, I.; Franceschi, M.; Licastro, F. Monocyte chemoattractant protein-1 promoter polymorphism and plasma levels in alzheimer’s disease. Immun. Ageing, 2013, 10(1), 6.
[http://dx.doi.org/10.1186/1742-4933-10-6 ] [PMID: 23432970]
[46]
Sokolova, A.; Hill, M.D.; Rahimi, F.; Warden, L.A.; Halliday, G.M.; Shepherd, C.E. Monocyte chemoattractant protein-1 plays a dominant role in the chronic inflammation observed in Alzheimer’s disease. Brain Pathol., 2009, 19(3), 392-398.
[http://dx.doi.org/10.1111/j.1750-3639.2008.00188.x ] [PMID: 18637012]
[47]
Vukic, V.; Callaghan, D.; Walker, D.; Lue, L.F.; Liu, Q.Y.; Couraud, P.O.; Romero, I.A.; Weksler, B.; Stanimirovic, D.B.; Zhang, W. Expression of inflammatory genes induced by beta-amyloid peptides in human brain endothelial cells and in Alzheimer’s brain is mediated by the JNK-AP1 signaling pathway. Neurobiol. Dis., 2009, 34(1), 95-106.
[http://dx.doi.org/10.1016/j.nbd.2008.12.007 ] [PMID: 19162185]
[48]
Grammas, P.; Ovase, R. Inflammatory factors are elevated in brain microvessels in Alzheimer’s disease. Neurobiol. Aging, 2001, 22(6), 837-842.
[http://dx.doi.org/10.1016/S0197-4580(01)00276-7 ] [PMID: 11754990]
[49]
Westin, K.; Buchhave, P.; Nielsen, H.; Minthon, L.; Janciauskiene, S.; Hansson, O. CCL2 is associated with a faster rate of cognitive decline during early stages of Alzheimer’s disease. PLoS One, 2012, 7(1)
[http://dx.doi.org/10.1371/journal.pone.0030525]
[50]
Zhang, R.; Miller, R.G.; Madison, C.; Jin, X.; Honrada, R.; Harris, W.; Katz, J.; Forshew, D.A.; McGrath, M.S. Systemic immune system alterations in early stages of Alzheimer’s disease. J. Neuroimmunol., 2013, 256(1-2), 38-42.
[http://dx.doi.org/10.1016/j.jneuroim.2013.01.002 ] [PMID: 23380586]
[51]
Kimura, A.; Yoshikura, N.; Hayashi, Y.; Inuzuka, T. Cerebrospinal fluid C-C motif chemokine ligand 2 correlates with brain atrophy ad cognitive impairment in Alzheimer’s disease. J. Alzheimers Dis., 2018, 61(2), 581-588.
[http://dx.doi.org/10.3233/JAD-170519 ] [PMID: 29171996]
[52]
Lee, W.J.; Liao, Y.C.; Wang, Y.F.; Lin, I.F.; Wang, S.J.; Fuh, J.L. Plasma MCP-1 and cognitive decline in patients with Alzheimer’s disease ad mild cognitive impairment: a Two year Follow-up Study. Sci. Rep., 2018, 8(1), 1280.
[http://dx.doi.org/10.1038/s41598-018-19807-y ] [PMID: 29352259]
[53]
Yamamoto, M.; Horiba, M.; Buescher, J.L.; Huang, D.; Gendelman, H.E.; Ransohoff, R.M.; Ikezu, T. Overexpression of monocyte chemotactic protein-1/CCL2 in beta-amyloid precursor protein transgenic mice show accelerated diffuse beta-amyloid deposition. Am. J. Pathol., 2005, 166(5), 1475-1485.
[http://dx.doi.org/10.1016/S0002-9440(10)62364-4 ] [PMID: 15855647]
[54]
El Khoury, J.; Toft, M.; Hickman, S.E.; Means, T.K.; Terada, K.; Geula, C.; Luster, A.D. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat. Med., 2007, 13(4), 432-438.
[http://dx.doi.org/10.1038/nm1555 ] [PMID: 17351623]
[55]
Xia, M.Q.; Bacskai, B.J.; Knowles, R.B.; Qin, S.X.; Hyman, B.T. Expression of the chemokine receptor CXCR3 on neurons and the elevated expression of its ligand IP-10 in reactive astrocytes: in vitro ERK1/2 activation and role in Alzheimer’s disease. J. Neuroimmunol., 2000, 108(1-2), 227-235.
[http://dx.doi.org/10.1016/S0165-5728(00)00285-X ] [PMID: 10900358]
[56]
Naert, G.; Rivest, S. CC chemokine receptor 2 deficiency aggravates cognitive impairments and amyloid pathology in a transgenic mouse model of Alzheimer’s disease. J. Neurosci., 2011, 31(16), 6208-6220.
[http://dx.doi.org/10.1523/JNEUROSCI.0299-11.2011 ] [PMID: 21508244]
[57]
Zaheer, S.; Thangavel, R.; Wu, Y.; Khan, M.M.; Kempuraj, D.; Zaheer, A. Enhanced expression of glia maturation factor correlates with glial activation in the brain of triple transgenic Alzheimer’s disease mice. Neurochem. Res., 2013, 38(1), 218-225.
[http://dx.doi.org/10.1007/s11064-012-0913-z ] [PMID: 23086473]
[58]
Duan, R.S.; Yang, X.; Chen, Z.G.; Lu, M.O.; Morris, C.; Winblad, B.; Zhu, J. Decreased fractalkine and increased IP-10 expression in aged brain of APP(swe) transgenic mice. Neurochem. Res., 2008, 33(6), 1085-1089.
[http://dx.doi.org/10.1007/s11064-007-9554-z ] [PMID: 18095157]
[59]
Galimberti, D.; Schoonenboom, N.; Scheltens, P.; Fenoglio, C.; Bouwman, F.; Venturelli, E.; Guidi, I.; Blankenstein, M.A.; Bresolin, N.; Scarpini, E. Intrathecal chemokine synthesis in mild cognitive impairment and Alzheimer disease. Arch. Neurol., 2006, 63(4), 538-543.
[http://dx.doi.org/10.1001/archneur.63.4.538 ] [PMID: 16606766]
[60]
Ren, L.Q.; Gourmala, N.; Boddeke, H.W.; Gebicke-Haerter, P.J. Lipopolysaccharide-induced expression of IP-10 mRNA in rat brain and in cultured rat astrocytes and microglia. Brain Res. Mol. Brain Res., 1998, 59(2), 256-263.
[http://dx.doi.org/10.1016/S0169-328X(98)00170-3 ] [PMID: 9729417]
[61]
Krauthausen, M.; Kummer, M.P.; Zimmermann, J.; Reyes-Irisarri, E.; Terwel, D.; Bulic, B.; Heneka, M.T.; Müller, M. CXCR3 promotes plaque formation and behavioral deficits in an Alzheimer’s disease model. J. Clin. Invest., 2015, 125(1), 365-378.
[http://dx.doi.org/10.1172/JCI66771 ] [PMID: 25500888]
[62]
Mizuno, T.; Kawanokuchi, J.; Numata, K.; Suzumura, A. Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res., 2003, 979(1-2), 65-70.
[http://dx.doi.org/10.1016/S0006-8993(03)02867-1 ] [PMID: 12850572]
[63]
Cardona, A.E.; Pioro, E.P.; Sasse, M.E.; Kostenko, V.; Cardona, S.M.; Dijkstra, I.M.; Huang, D.; Kidd, G.; Dombrowski, S.; Dutta, R.; Lee, J.C.; Cook, D.N.; Jung, S.; Lira, S.A.; Littman, D.R.; Ransohoff, R.M. Control of microglial neurotoxicity by the fractalkine receptor. Nat. Neurosci., 2006, 9(7), 917-924.
[http://dx.doi.org/10.1038/nn1715 ] [PMID: 16732273]
[64]
Limatola, C.; Giovannelli, A.; Maggi, L.; Ragozzino, D.; Castellani, L.; Ciotti, M.T.; Vacca, F.; Mercanti, D.; Santoni, A.; Eusebi, F. SDF-1alpha-mediated modulation of synaptic transmission in rat cerebellum. Eur. J. Neurosci., 2000, 12(7), 2497-2504.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00139.x ] [PMID: 10947825]
[65]
Kim, T.S.; Lim, H.K.; Lee, J.Y.; Kim, D.J.; Park, S.; Lee, C.; Lee, C.U. Changes in the levels of plasma soluble fractalkine in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci. Lett., 2008, 436(2), 196-200.
[http://dx.doi.org/10.1016/j.neulet.2008.03.019 ] [PMID: 18378084]
[66]
Strobel, S.; Grünblatt, E.; Riederer, P.; Heinsen, H.; Arzberger, T.; Al-Sarraj, S.; Troakes, C.; Ferrer, I.; Monoranu, C.M. Changes in the expression of genes related to neuroinflammation over the course of sporadic Alzheimer’s disease progression: CX3CL1, TREM2, and PPARγ. J. Neural Transm. (Vienna), 2015, 122(7), 1069-1076.
[http://dx.doi.org/10.1007/s00702-015-1369-5 ] [PMID: 25596843]
[67]
Lee, S.; Varvel, N.H.; Konerth, M.E.; Xu, G.; Cardona, A.E.; Ransohoff, R.M.; Lamb, B.T. CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models. Am. J. Pathol., 2010, 177(5), 2549-2562.
[http://dx.doi.org/10.2353/ajpath.2010.100265 ] [PMID: 20864679]
[68]
Wu, J.; Bie, B.; Yang, H.; Xu, J.J.; Brown, D.L.; Naguib, M. Suppression of central chemokine fractalkine receptor signaling alleviates amyloid-induced memory deficiency. Neurobiol. Aging, 2013, 34(12), 2843-2852.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.06.003 ] [PMID: 23855980]
[69]
Cho, S.H.; Sun, B.; Zhou, Y.; Kauppinen, T.M.; Halabisky, B.; Wes, P.; Ransohoff, R.M.; Gan, L. CX3CR1 protein signaling modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease. J. Biol. Chem., 2011, 286(37), 32713-32722.
[http://dx.doi.org/10.1074/jbc.M111.254268 ] [PMID: 21771791]
[70]
Ashutosh, K.; Kou, W.; Cotter, R.; Borgmann, K.; Wu, L.; Persidsky, R.; Sakhuja, N.; Ghorpade, A. CXCL8 protects human neurons from amyloid-β-induced neurotoxicity: relevance to Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2011, 412(4), 565-571.
[http://dx.doi.org/10.1016/j.bbrc.2011.07.127 ] [PMID: 21840299]
[71]
Alsadany, M.A.; Shehata, H.H.; Mohamad, M.I.; Mahfouz, R.G. Histone deacetylases enzyme, copper, and IL-8 levels in patients with Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen., 2013, 28(1), 54-61.
[http://dx.doi.org/10.1177/1533317512467680 ] [PMID: 23242124]
[72]
Xiong, H.; Boyle, J.; Winkelbauer, M.; Gorantla, S.; Zheng, J.; Ghorpade, A.; Persidsky, Y.; Carlson, K.A.; Gendelman, H.E. Inhibition of long-term potentiation by interleukin-8: implications for human immunodeficiency virus-1-associated dementia. J. Neurosci. Res., 2003, 71(4), 600-607.
[http://dx.doi.org/10.1002/jnr.10503 ] [PMID: 12548717]
[73]
Flynn, G.; Maru, S.; Loughlin, J.; Romero, I.A.; Male, D. Regulation of chemokine receptor expression in human microglia and astrocytes. J. Neuroimmunol., 2003, 136(1-2), 84-93.
[http://dx.doi.org/10.1016/S0165-5728(03)00009-2 ] [PMID: 12620646]
[74]
Bakshi, P.; Margenthaler, E.; Reed, J.; Crawford, F.; Mullan, M. Depletion of CXCR2 inhibits γ-secretase activity and amyloid-β production in a murine model of Alzheimer’s disease. Cytokine, 2011, 53(2), 163-169.
[http://dx.doi.org/10.1016/j.cyto.2010.10.008 ] [PMID: 21084199]
[75]
Liu, Y.J.; Guo, D.W.; Tian, L.; Shang, D.S.; Zhao, W.D.; Li, B.; Fang, W.G.; Zhu, L.; Chen, Y.H. Peripheral T cells derived from Alzheimer’s disease patients overexpress CXCR2 contributing to its transendothelial migration, which is microglial TNF-alpha-dependent. Neurobiol. Aging, 2010, 31(2), 175-188.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.03.024 ] [PMID: 18462836]
[76]
Schönemeier, B.; Kolodziej, A.; Schulz, S.; Jacobs, S.; Hoellt, V.; Stumm, R. Regional and cellular localization of the CXCl12/SDF-1 chemokine receptor CXCR7 in the developing and adult rat brain. J. Comp. Neurol., 2008, 510(2), 207-220.
[http://dx.doi.org/10.1002/cne.21780 ] [PMID: 18615560]
[77]
Laske, C.; Stellos, K.; Eschweiler, G.W.; Leyhe, T.; Gawaz, M. Decreased CXCL12 (SDF-1) plasma levels in early Alzheimer’s disease: a contribution to a deficient hematopoietic brain support? J. Alzheimers Dis., 2008, 15(1), 83-95.
[http://dx.doi.org/10.3233/JAD-2008-15107 ] [PMID: 18780969]
[78]
Parachikova, A.; Cotman, C.W. Reduced CXCL12/CXCR4 results in impaired learning and is downregulated in a mouse model of Alzheimer disease. Neurobiol. Dis., 2007, 28(2), 143-153.
[http://dx.doi.org/10.1016/j.nbd.2007.07.001 ] [PMID: 17764962]
[79]
Parachikova, A.; Nichol, K.E.; Cotman, C.W. Short-term exercise in aged Tg2576 mice alters neuroinflammation and improves cognition. Neurobiol. Dis., 2008, 30(1), 121-129.
[http://dx.doi.org/10.1016/j.nbd.2007.12.008 ] [PMID: 18258444]
[80]
Lu, M.; Grove, E.A.; Miller, R.J. Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor. Proc. Natl. Acad. Sci. USA, 2002, 99(10), 7090-7095.
[http://dx.doi.org/10.1073/pnas.092013799 ] [PMID: 11983855]
[81]
Raman, D.; Milatovic, S.Z.; Milatovic, D.; Splittgerber, R.; Fan, G.H.; Richmond, A. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1α, suppress amyloid β-induced neurotoxicity. Toxicol. Appl. Pharmacol., 2011, 256(3), 300-313.
[http://dx.doi.org/10.1016/j.taap.2011.06.006 ] [PMID: 21704645]
[82]
Capsoni, S.; Malerba, F.; Carucci, N.M.; Rizzi, C.; Criscuolo, C.; Origlia, N.; Calvello, M.; Viegi, A.; Meli, G.; Cattaneo, A. The chemokine CXCL12 mediates the anti-amyloidogenic action of painless human nerve growth factor. Brain, 2017, 140(1), 201-217.
[http://dx.doi.org/10.1093/brain/aww271 ] [PMID: 28031222]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy