Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Chemosensitization of Therapy Resistant Tumors: Targeting Multiple Cell Signaling Pathways by Lupeol, A Pentacyclic Triterpene

Author(s): Santosh K. Maurya, G.G.H.A. Shadab and Hifzur R. Siddique*

Volume 26, Issue 4, 2020

Page: [455 - 465] Pages: 11

DOI: 10.2174/1381612826666200122122804

Price: $65

Abstract

Background: The resistance of cancer cells to different therapies is one of the major stumbling blocks for successful cancer treatment. Various natural and pharmaceuticals drugs are unable to control drug-resistance cancer cell's growth. Also, chemotherapy and radiotherapy have several side effects and cannot apply to the patient in excess. In this context, chemosensitization to the therapy-resistant cells by non-toxic phytochemicals could be an excellent alternative to combat therapy-resistant cancers.

Objective: To review the currently available literature on chemosensitization of therapy resistance cancers by Lupeol for clinically approved drugs through targeting different cell signaling pathways.

Methods: We reviewed relevant published articles in PubMed and other search engines from 1999 to 2019 to write this manuscript. The key words used for the search were “Lupeol and Cancer”, “Lupeol and Chemosensitization”, “Lupeol and Cell Signaling Pathways”, “Cancer Stem Cells and Lupeol” etc. The published results on the chemosensitization of Lupeol were compared and discussed.

Results: Lupeol chemosensitizes drug-resistant cancer cells for clinically approved drugs. Lupeol alone or in combination with approved drugs inhibits inflammation in different cancer cells through modulation of expression of IL-6, TNF-α, and IFN-γ. Lupeol, through altering the expression levels of BCL-2, BAX, Survivin, FAS, Caspases, and PI3K-AKT-mTOR signaling pathway, significantly induce cell deaths among therapy-resistant cells. Lupeol also modulates the molecules involved in cell cycle regulation such as Cyclins, CDKs, P53, P21, and PCNA in different cancer types.

Conclusion: Lupeol chemosensitizes the therapy-resistant cancer cells for the treatment of various clinically approved drugs via modulating different signaling pathways responsible for chemoresistance cancer. Thus, Lupeol might be used as an adjuvant molecule along with clinically approved drugs to reduce the toxicity and increase the effectiveness.

Keywords: Lupeol, chemosensitization, cancer signaling pathways, cell growth & apoptosis, inflammation, cancer stemness.

[1]
Hochberg ME, Noble RJ. A framework for how environment contributes to cancer risk. Ecol Lett 2017; 20(2): 117-34.
[http://dx.doi.org/10.1111/ele.12726] [PMID: 28090737]
[2]
Campbell TC. Cancer prevention and treatment by wholistic nutrition. J Nat Sci 2017; 3(10) e448
[PMID: 29057328]
[3]
Roy PS, Saikia BJ. Cancer and cure: a critical analysis. Indian J Cancer 2016; 53(3): 441-2.
[PMID: 28244479]
[4]
Hamilton G, Rath B. A short update on cancer chemoresistance. Wien Med Wochenschr 2014; 164(21-22): 456-60.
[http://dx.doi.org/10.1007/s10354-014-0311-z] [PMID: 25249024]
[5]
Zheng HC. The molecular mechanisms of chemoresistance in cancers. Oncotarget 2017; 8(35): 59950-64.
[http://dx.doi.org/10.18632/oncotarget.19048] [PMID: 28938696]
[6]
Butera G, Pacchiana R, Donadelli M. Autocrine mechanisms of cancer chemoresistance. Semin Cell Dev Biol 2018; 78: 3-12.
[http://dx.doi.org/10.1016/j.semcdb.2017.07.019] [PMID: 28751251]
[7]
Siddique HR, Saleem M. Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences. Stem Cells 2012; 30(3): 372-8.
[http://dx.doi.org/10.1002/stem.1035] [PMID: 22252887]
[8]
Siddique HR, Feldman DE, Chen CL, Punj V, Tokumitsu H, Machida K. NUMB phosphorylation destabilizes p53 and promotes self-renewal of tumor-initiating cells by a NANOG-dependent mechanism in liver cancer. Hepatology 2015; 62(5): 1466-79.
[http://dx.doi.org/10.1002/hep.27987] [PMID: 26174965]
[9]
Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell 2004; 116(6): 769-78.
[http://dx.doi.org/10.1016/S0092-8674(04)00255-7] [PMID: 15035980]
[10]
Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature 2004; 432(7015): 332-7.
[http://dx.doi.org/10.1038/nature03096] [PMID: 15549095]
[11]
Dillard CJ, German JB. Phytochemicals: nutraceuticals and human health. J Sci Food Agric 2000; 80: 1744-56.
[http://dx.doi.org/10.1002/1097-0010(20000915)80:12<1744:AID-JSFA725>3.0.CO;2-W]
[12]
Kotecha R, Takami A, Espinoza JL. Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget 2016; 7(32): 52517-29.
[http://dx.doi.org/10.18632/oncotarget.9593] [PMID: 27232756]
[13]
Mirzaei H, Khoi MJ, Azizi M, Goodarzi M. Can curcumin and its analogs be a new treatment option in cancer therapy? Cancer Gene Ther 2016; 23(11): 410.
[http://dx.doi.org/10.1038/cgt.2016.47] [PMID: 27853147]
[14]
Siddique HR, Saleem M. Beneficial health effects of lupeol triterpene: a review of preclinical studies. Life Sci 2011; 88(7-8): 285-93.
[http://dx.doi.org/10.1016/j.lfs.2010.11.020] [PMID: 21118697]
[15]
Imam S, Azhar I, Hasan MM, Ali MS, Ahmed SW. Two triterpenes lupanone and lupeol isolated and identified from Tamarindus indica linn. Pak J Pharm Sci 2007; 20(2): 125-7.
[PMID: 17416567]
[16]
Siddique HR, Mishra SK, Karnes RJ, Saleem M. Lupeol, a novel androgen receptor inhibitor: implications in prostate cancer therapy. Clin Cancer Res 2011; 17(16): 5379-91.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0916] [PMID: 21712449]
[17]
Senthebane DA, Rowe A, Thomford NE, et al. The role of tumor microenvironment in chemoresistance: to survive, keep your enemies closer. Int J Mol Sci 2017; 18(7): 1586.
[http://dx.doi.org/10.3390/ijms18071586] [PMID: 28754000]
[18]
Tilborghs S, Corthouts J, Verhoeven Y, et al. The role of nuclear factor-kappa B signaling in human cervical cancer. Crit Rev Oncol Hematol 2017; 120: 141-50.
[http://dx.doi.org/10.1016/j.critrevonc.2017.11.001] [PMID: 29198328]
[19]
Bharti R, Dey G, Mandal M. Cancer development, chemoresistance, epithelial to mesenchymal transition and stem cells: a snapshot of IL-6 mediated involvement. Cancer Lett 2016; 375(1): 51-61.
[http://dx.doi.org/10.1016/j.canlet.2016.02.048] [PMID: 26945971]
[20]
Milosevic Z, Pesic M, Stankovic T, et al. Targeting RAS-MAPK-ERK and PI3K-AKT-mTOR signal transduction pathways to chemosensitize anaplastic thyroid carcinoma. Transl Res 2014; 164(5): 411-23.
[http://dx.doi.org/10.1016/j.trsl.2014.06.005] [PMID: 25016932]
[21]
Takahashi-Yanaga F, Kahn M. Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res 2010; 16(12): 3153-62.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2943] [PMID: 20530697]
[22]
Liu QH, Shi ML, Sun C, Bai J, Zheng JN. Role of the ERK1/2 pathway in tumor chemoresistance and tumor therapy. Bioorg Med Chem Lett 2015; 25(2): 192-7.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.076] [PMID: 25515559]
[23]
Letai AG. Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer 2008; 8(2): 121-32.
[http://dx.doi.org/10.1038/nrc2297] [PMID: 18202696]
[24]
Villella JA, Cohen S, Smith DH, Hibshoosh H, Hershman D. HER-2/neu overexpression in uterine papillary serous cancers and its possible therapeutic implications. Int J Gynecol Cancer 2006; 16(5): 1897-902.
[http://dx.doi.org/10.1111/j.1525-1438.2006.00664.x] [PMID: 17009989]
[25]
Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007; 26(22): 3291-310.
[http://dx.doi.org/10.1038/sj.onc.1210422] [PMID: 17496923]
[26]
Siddique HR, Nanda S, Parray A, et al. Androgen receptor in human health: a potential therapeutic target. Curr Drug Targets 2012; 13(14): 1907-16.
[27]
Saleem M, Afaq F, Adhami VM, Mukhtar H. Lupeol modulates NF-kappaB and PI3K/Akt pathways and inhibits skin cancer in CD-1 mice. Oncogene 2004; 23(30): 5203-14.
[http://dx.doi.org/10.1038/sj.onc.1207641] [PMID: 15122342]
[28]
Saleem M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett 2009; 285(2): 109-15.
[http://dx.doi.org/10.1016/j.canlet.2009.04.033] [PMID: 19464787]
[29]
Lee TK, Castilho A, Cheung VC, Tang KH, Ma S, Ng IO. Lupeol targets liver tumor-initiating cells through phosphatase and tensin homolog modulation. Hepatology 2011; 53(1): 160-70.
[http://dx.doi.org/10.1002/hep.24000] [PMID: 20979057]
[30]
Hao J, Pei Y, Ji G, Li W, Feng S, Qiu S. Autophagy is induced by 3β-O-succinyl-lupeol (LD9-4) in A549 cells via up-regulation of Beclin 1 and down-regulation mTOR pathway. Eur J Pharmacol 2011; 670(1): 29-38.
[http://dx.doi.org/10.1016/j.ejphar.2011.08.045] [PMID: 21939652]
[31]
Tarapore RS, Siddiqui IA, Adhami VM, Spiegelman VS, Mukhtar H. The dietary terpene lupeol targets colorectal cancer cells with constitutively active Wnt/β-catenin signaling. Mol Nutr Food Res 2013; 57(11): 1950-8.
[http://dx.doi.org/10.1002/mnfr.201300155] [PMID: 23836602]
[32]
Saleem M, Kaur S, Kweon MH, Adhami VM, Afaq F, Mukhtar H. Lupeol, a fruit and vegetable based triterpene, induces apoptotic death of human pancreatic adenocarcinoma cells via inhibition of Ras signaling pathway. Carcinogenesis 2005; 26(11): 1956-64.
[http://dx.doi.org/10.1093/carcin/bgi157] [PMID: 15958516]
[33]
Soares DCF, de Paula Oliveira DC, Barcelos LS, et al. Antiangiogenic activity of PLGA-Lupeol implants for potential intravitreal applications. Biomed Pharmacother 2017; 92: 394-402.
[http://dx.doi.org/10.1016/j.biopha.2017.05.093] [PMID: 28558353]
[34]
Tarapore RS, Siddiqui IA, Saleem M, Adhami VM, Spiegelman VS, Mukhtar H. Specific targeting of Wnt/β-catenin signaling in human melanoma cells by a dietary triterpene lupeol. Carcinogenesis 2010; 31(10): 1844-53.
[http://dx.doi.org/10.1093/carcin/bgq169] [PMID: 20732907]
[35]
Bhattacharyya S, Sekar V, Majumder B, et al. CDKN2A-p53 mediated antitumor effect of Lupeol in head and neck cancer. Cell Oncol (Dordr) 2017; 40(2): 145-55.
[http://dx.doi.org/10.1007/s13402-016-0311-7] [PMID: 28039610]
[36]
Gupta SC, Kannappan R, Reuter S, Kim JH, Aggarwal BB. Chemosensitization of tumors by resveratrol. Ann N Y Acad Sci 2011; 1215: 150-60.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05852.x] [PMID: 21261654]
[37]
Vinod BS, Maliekal TT, Anto RJ. Phytochemicals as chemosensitizers: from molecular mechanism to clinical significance. Antioxid Redox Signal 2013; 18(11): 1307-48.
[http://dx.doi.org/10.1089/ars.2012.4573]
[38]
Liu Y, Bi T, Dai W, et al. Lupeol enhances inhibitory effect of 5-fluorouracil on human gastric carcinoma cells. Naunyn Schmiedebergs Arch Pharmacol 2016; 389(5): 477-84.
[http://dx.doi.org/10.1007/s00210-016-1221-y] [PMID: 26892272]
[39]
Lee TK, Poon RT, Wo JY, et al. Lupeol suppresses cisplatin-induced nuclear factor-kappaB activation in head and neck squamous cell carcinoma and inhibits local invasion and nodal metastasis in an orthotopic nude mouse model. Cancer Res 2007; 67(18): 8800-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0801] [PMID: 17875721]
[40]
He Y, Liu F, Zhang L, et al. Growth inhibition and apoptosis induced by lupeol, a dietary triterpene, in human hepatocellular carcinoma cells. Biol Pharm Bull 2011; 34(4): 517-22.
[http://dx.doi.org/10.1248/bpb.34.517] [PMID: 21467639]
[41]
Lambertini E, Lampronti I, Penolazzi L, et al. Expression of estrogen receptor alpha gene in breast cancer cells treated with transcription factor decoy is modulated by Bangladeshi natural plant extracts. Oncol Res 2005; 15(2): 69-79.
[http://dx.doi.org/10.3727/096504005775082057] [PMID: 16119004]
[42]
Kässmeyer S, Plendl J, Custodis P, Bahramsoltani M. New insights in vascular development: vasculogenesis and endothelial progenitor cells. Anat Histol Embryol 2009; 38(1): 1-11.
[http://dx.doi.org/10.1111/j.1439-0264.2008.00894.x] [PMID: 18983622]
[43]
Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 2007; 117(5): 1175-83.
[http://dx.doi.org/10.1172/JCI31537] [PMID: 17476347]
[44]
Wang SW, Sun YM. The IL-6/JAK/STAT3 pathway: potential therapeutic strategies in treating colorectal cancer. (Review) Int J Oncol 2014; 44(4): 1032-40.
[http://dx.doi.org/10.3892/ijo.2014.2259] [PMID: 24430672]
[45]
Chung YC, Chang YF. Serum interleukin-6 levels reflect the disease status of colorectal cancer. J Surg Oncol 2003; 83(4): 222-6.
[http://dx.doi.org/10.1002/jso.10269] [PMID: 12884234]
[46]
Knüpfer H, Preiss R. Serum interleukin-6 levels in colorectal cancer patients-a summary of published results. Int J Colorectal Dis 2010; 25(2): 135-40.
[http://dx.doi.org/10.1007/s00384-009-0818-8] [PMID: 19898853]
[47]
Liu H, Shen J, Lu K. IL-6 and PD-L1 blockade combination inhibits hepatocellular carcinoma cancer development in mouse model. Biochem Biophys Res Commun 2017; 486(2): 239-44.
[http://dx.doi.org/10.1016/j.bbrc.2017.02.128] [PMID: 28254435]
[48]
Kim SJ, Cho HI, Kim SJ, et al. Protective effects of lupeol against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure in mice. J Nat Prod 2014; 77(11): 2383-8.
[http://dx.doi.org/10.1021/np500296b] [PMID: 25325613]
[49]
Kwon HH, Yoon JY, Park SY, et al. Activity-guided purification identifies lupeol, a pentacyclic triterpene, as a therapeutic agent multiple pathogenic factors of acne. J Invest Dermatol 2015; 135(6): 1491-500.
[http://dx.doi.org/10.1038/jid.2015.29] [PMID: 25647437]
[50]
Imanish J. Basis and clinical applications of interferon. Japan Med Assoc J 2004; 47: 7-12.
[51]
Iraldo BR, Yanelda GV, Yaquelin DR, et al. HeberFERON, a new formulation of IFNs with improved pharmacodynamics Perspective for cancer treatment. In seminars in oncology. WB Saunders. 2018; 7754: 30091-95
[52]
Wu XT, Liu JQ, Lu XT, et al. The enhanced effect of lupeol on the destruction of gastric cancer cells by NK cells. Int Immunopharmacol 2013; 16(2): 332-40.
[http://dx.doi.org/10.1016/j.intimp.2013.04.017] [PMID: 23639256]
[53]
Ahmad SF, Pandey A, Kour K, Bani S. Downregulation of pro-inflammatory cytokines by lupeol measured using cytometric bead array immunoassay. Phytother Res 2010; 24(1): 9-13.
[http://dx.doi.org/10.1002/ptr.2844] [PMID: 19548206]
[54]
Bani S, Kaul A, Khan B, et al. Suppression of T lymphocyte activity by lupeol isolated from Crataeva religiosa. Phytother Res 2006; 20(4): 279-87.
[http://dx.doi.org/10.1002/ptr.1852] [PMID: 16557610]
[55]
Lejeune FJ. Clinical use of TNF revisited: improving penetration of anti-cancer agents by increasing vascular permeability. J Clin Invest 2002; 110(4): 433-5.
[http://dx.doi.org/10.1172/JCI0216493] [PMID: 12189235]
[56]
Szlosarek PW, Balkwill FR. Tumour necrosis factor α: a potential target for the therapy of solid tumours. Lancet Oncol 2003; 4(9): 565-73.
[http://dx.doi.org/10.1016/S1470-2045(03)01196-3] [PMID: 12965278]
[57]
Wang X, Yang L, Huang F, et al. Inflammatory cytokines IL-17 and TNF-α up-regulate PD-L1 expression in human prostate and colon cancer cells. Immunol Lett 2017; 184: 7-14.
[http://dx.doi.org/10.1016/j.imlet.2017.02.006] [PMID: 28223102]
[58]
Lau TS, Chan LK, Wong EC, et al. A loop of cancer-stroma-cancer interaction promotes peritoneal metastasis of ovarian cancer via TNFα-TGFα-EGFR. Oncogene 2017; 36(25): 3576-87.
[http://dx.doi.org/10.1038/onc.2016.509] [PMID: 28166193]
[59]
de Lima FO, Alves V, Barbosa Filho JM, et al. Antinociceptive effect of lupeol: evidence for a role of cytokines inhibition. Phytother Res 2013; 27(10): 1557-63.
[PMID: 23208998]
[60]
Kangsamaksin T, Chaithongyot S, Wootthichairangsan C, Hanchaina R, Tangshewinsirikul C, Svasti J. Lupeol and stigmasterol suppress tumor angiogenesis and inhibit cholangiocarcinoma growth in mice via downregulation of tumor necrosis factor-α. PLoS One 2017; 12(12)e0189628
[http://dx.doi.org/10.1371/journal.pone.0189628] [PMID: 29232409]
[61]
Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 2014; 13(2): 140-56.
[http://dx.doi.org/10.1038/nrd4204] [PMID: 24481312]
[62]
Xue G, Zippelius A, Wicki A, et al. Integrated Akt/PKB signaling in immunomodulation and its potential role in cancer immunotherapy. J Natl Cancer Inst 2015; 107(7): 107.
[http://dx.doi.org/10.1093/jnci/djv171] [PMID: 26071042]
[63]
Matsuoka T, Yashiro M. The role of PI3K/Akt/mTOR signaling in gastric carcinoma. Cancers (Basel) 2014; 6(3): 1441-63.
[http://dx.doi.org/10.3390/cancers6031441] [PMID: 25003395]
[64]
Liu Y, Bi T, Dai W, et al. RETRACTED: lupeol induces apoptosis and cell cycle arrest of human osteosarcoma cells through PI3K/AKT/mTOR pathway. Technol Cancer Res Treat 2016; 15: 16-24.
[http://dx.doi.org/10.1177/1533034615609014]
[65]
Zhang L, Tu Y, He W, Peng Y, Qiu Z. A novel mechanism of hepatocellular carcinoma cell apoptosis induced by lupeol via brain-derived neurotrophic factor inhibition and glycogen synthase kinase 3 beta reactivation. Eur J Pharmacol 2015; 762: 55-62.
[http://dx.doi.org/10.1016/j.ejphar.2015.05.030] [PMID: 26004524]
[66]
Liu F, He Y, Liang Y, et al. PI3-kinase inhibition synergistically promoted the anti-tumor effect of lupeol in hepatocellular carcinoma. Cancer Cell Int 2013; 13(1): 108.
[http://dx.doi.org/10.1186/1475-2867-13-108] [PMID: 24176221]
[67]
Wincewicz A, Sulkowska M, Koda M, Kanczuga-Koda L, Witkowska E, Sulkowski S. Significant coexpression of GLUT-1, Bcl-xL, and Bax in colorectal cancer. Ann N Y Acad Sci 2007; 1095: 53-61.
[http://dx.doi.org/10.1196/annals.1397.007] [PMID: 17404017]
[68]
Shen X, Cui X, Cui H, Jin Y, Jin W, Sun H. Geraniol and lupeol inhibit growth and promote apoptosis in human hepatocarcinoma cells through the MAPK signaling pathway. J Cell Biochem 2019; 120(4): 5033-41.
[http://dx.doi.org/10.1002/jcb.27779] [PMID: 30506710]
[69]
Saleem M, Maddodi N, Abu Zaid M, et al. Lupeol inhibits growth of highly aggressive human metastatic melanoma cells in vitro and in vivo by inducing apoptosis. Clin Cancer Res 2008; 14(7): 2119-27.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4413] [PMID: 18381953]
[70]
Yuan Y, Wu J, Li B, Niu J, Tan H, Qiu S. Regulation of signaling pathways involved in the anti-proliferative and apoptosis-inducing effects of M22 against non-small cell lung adenocarcinoma A549 cells. Sci Rep 2018; 8(1): 992.
[http://dx.doi.org/10.1038/s41598-018-19368-0] [PMID: 29343765]
[71]
Fianco G, Contadini C, Ferri A, Cirotti C, Stagni V, Barilà D. Caspase-8: a novel target to overcome resistance to chemotherapy in glioblastoma. Int J Mol Sci 2018; 19(12): 3798.
[http://dx.doi.org/10.3390/ijms19123798] [PMID: 30501030]
[72]
Khalilzadeh B, Shadjou N, Kanberoglu GS, et al. Advances in nanomaterial based optical biosensing and bioimaging of apoptosis via caspase-3 activity: a review. Mikrochim Acta 2018; 185(9): 434.
[http://dx.doi.org/10.1007/s00604-018-2980-6] [PMID: 30159750]
[73]
Murtaza I, Saleem M, Adhami VM, Hafeez BB, Mukhtar H. Suppression of cFLIP by lupeol, a dietary triterpene, is sufficient to overcome resistance to TRAIL-mediated apoptosis in chemoresistant human pancreatic cancer cells. Cancer Res 2009; 69(3): 1156-65.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2917] [PMID: 19176377]
[74]
Prabhu B, Sivakumar A, Sundaresan S. Diindolylmethane and Lupeol modulates apoptosis and cell proliferation in N-butyl-N-[4-hydroxybutyl] nitrosamine initiated and dimethylarsinic acid promoted rat bladder carcinogenesis. Pathol Oncol Res 2016; 22(4): 747-54.
[http://dx.doi.org/10.1007/s12253-016-0054-9] [PMID: 27091758]
[75]
Vanamee ES, Faustman DL. Structural principles of tumor necrosis factor superfamily signaling. Sci Signal 2018; 11(511) eaao4910
[http://dx.doi.org/10.1126/scisignal.aao4910] [PMID: 29295955]
[76]
Blok EJ, van den Bulk J, Dekker-Ensink NG, et al. Combined evaluation of the FAS cell surface death receptor and CD8+ tumor infiltrating lymphocytes as a prognostic biomarker in breast cancer. Oncotarget 2017; 8(9): 15610-20.
[http://dx.doi.org/10.18632/oncotarget.14779] [PMID: 28121628]
[77]
Gupta P, Goyal R, Chauhan Y, Sharma PL. Possible modulation of FAS and PTP-1B signaling in ameliorative potential of bombax ceiba against high fat diet induced obesity. BMC Complement Altern Med 2013; 13: 281.
[http://dx.doi.org/10.1186/1472-6882-13-281] [PMID: 24160453]
[78]
Saleem M, Kweon MH, Yun JM, et al. A novel dietary triterpene Lupeol induces fas-mediated apoptotic death of androgen-sensitive prostate cancer cells and inhibits tumor growth in a xenograft model. Cancer Res 2005; 65(23): 11203-13.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1965] [PMID: 16322271]
[79]
Martínez-García D, Manero-Rupérez N, Quesada R, Korrodi-Gregório L, Soto-Cerrato V. Therapeutic strategies involving surviving inhibition in cancer. Med Res Rev 2019; 39(3): 887-909.
[http://dx.doi.org/10.1002/med.21547] [PMID: 30421440]
[80]
Saleem M, Murtaza I, Tarapore RS, et al. Lupeol inhibits proliferation of human prostate cancer cells by targeting β-catenin signaling. Carcinogenesis 2009; 30(5): 808-17.
[http://dx.doi.org/10.1093/carcin/bgp044] [PMID: 19233958]
[81]
Nigam N, Prasad S, George J, Shukla Y. Lupeol induces p53 and cyclin-B-mediated G2/M arrest and targets apoptosis through activation of caspase in mouse skin. Biochem Biophys Res Commun 2009; 381(2): 253-8.
[http://dx.doi.org/10.1016/j.bbrc.2009.02.033] [PMID: 19232320]
[82]
Singh P, Arora D, Shukla Y. Enhanced chemoprevention by the combined treatment of pterostilbene and lupeol in B[a]P-induced mouse skin tumorigenesis. Food Chem Toxicol 2017; 99: 182-9.
[http://dx.doi.org/10.1016/j.fct.2016.11.007] [PMID: 27836749]
[83]
Sherr CJ, Beach D, Shapiro GI. Targeting CDK4 and CDK6: From Discovery to Therapy. Cancer Discov 2016; 6(4): 353-67.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0894] [PMID: 26658964]
[84]
Qie S, Diehl JA. Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med (Berl) 2016; 94(12): 1313-26.
[http://dx.doi.org/10.1007/s00109-016-1475-3] [PMID: 27695879]
[85]
Gupta A, Shah K, Oza MJ, Behl T. Reactivation of p53 gene by MDM2 inhibitors: a novel therapy for cancer treatment. Biomed Pharmacother 2019; 109: 484-92.
[http://dx.doi.org/10.1016/j.biopha.2018.10.155] [PMID: 30551517]
[86]
Wang S, Zhao Y, Aguilar A, Bernard D, Yang CY. Targeting the MDM2-p53 protein-protein interaction for new cancer therapy: progress and challenges. Cold Spring Harb Perspect Med 2017; 7(5)a026245
[http://dx.doi.org/10.1101/cshperspect.a026245] [PMID: 28270530]
[87]
Wang Y, Hong D, Qian Y, et al. Lupeol inhibits growth and migration in two human colorectal cancer cell lines by suppression of Wnt-β-catenin pathway. OncoTargets Ther 2018; 11: 7987-99.
[http://dx.doi.org/10.2147/OTT.S183925] [PMID: 30519040]
[88]
Huang SP, Ho TM, Yang CW, et al. Chemopreventive potential of ethanolic extracts of luobuma leaves [Apocynum venetum L.] in androgen insensitive prostate cancer. Nutrients 2017; 9(9): 948.
[http://dx.doi.org/10.3390/nu9090948] [PMID: 28846663]
[89]
Georgakilas AG, Martin OA, Bonner WM. p21: a two-faced genome guardian. Trends Mol Med 2017; 23(4): 310-9.
[http://dx.doi.org/10.1016/j.molmed.2017.02.001] [PMID: 28279624]
[90]
Liu Y, Bi T, Wang G, et al. Lupeol inhibits proliferation and induces apoptosis of human pancreatic cancer PCNA-1 cells through AKT/ERK pathways. Naunyn Schmiedebergs Arch Pharmacol 2015; 388(3): 295-304.
[http://dx.doi.org/10.1007/s00210-014-1071-4] [PMID: 25418891]
[91]
Srivastava AK, Mishra S, Ali W, Shukla Y. Protective effects of lupeol against mancozeb-induced genotoxicity in cultured human lymphocytes. Phytomedicine 2016; 23(7): 714-24.
[http://dx.doi.org/10.1016/j.phymed.2016.03.010] [PMID: 27235710]
[92]
Wang SC. PCNA: a silent housekeeper or a potential therapeutic target? Trends Pharmacol Sci 2014; 35(4): 178-86.
[http://dx.doi.org/10.1016/j.tips.2014.02.004] [PMID: 24655521]
[93]
Zhu Q, Chang Y, Yang J, Wei Q. Post-translational modifications of proliferating cell nuclear antigen: a key signal integrator for DNA damage response. (Review) Oncol Lett 2014; 7(5): 1363-9.
[http://dx.doi.org/10.3892/ol.2014.1943] [PMID: 24765138]
[94]
Hoelz DJ, Arnold RJ, Dobrolecki LE, et al. The discovery of labile methyl esters on proliferating cell nuclear antigen by MS/MS. Proteomics 2006; 6(17): 4808-16.
[http://dx.doi.org/10.1002/pmic.200600142] [PMID: 16888766]
[95]
Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 2008; 8(8): 579-91.
[http://dx.doi.org/10.1038/nrc2403] [PMID: 18596824]
[96]
Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer 2013; 13(12): 871-82.
[http://dx.doi.org/10.1038/nrc3627] [PMID: 24263190]
[97]
Costache MI, Ioana M, Iordache S, Ene D, Costache CA, Săftoiu A. VEGF expression in pancreatic cancer and other malignancies: a review of the literature. Rom J Intern Med 2015; 53(3): 199-208.
[http://dx.doi.org/10.1515/rjim-2015-0027] [PMID: 26710495]
[98]
Sakr HI, Chute DJ, Nasr C, Sturgis CD. cMYC expression in thyroid follicular cell-derived carcinomas: a role in thyroid tumorigenesis. Diagn Pathol 2017; 12(1): 71.
[http://dx.doi.org/10.1186/s13000-017-0661-0] [PMID: 28974238]
[99]
Ba M, Long H, Yan Z, et al. BRD4 promotes gastric cancer progression through the transcriptional and epigenetic regulation of c-MYC. J Cell Biochem 2018; 119(1): 973-82.
[http://dx.doi.org/10.1002/jcb.26264] [PMID: 28681984]
[100]
Ougolkov A, Zhang B, Yamashita K, et al. Associations among β-TrCP, an E3 ubiquitin ligase receptor, β-catenin, and NF-kappaB in colorectal cancer. J Natl Cancer Inst 2004; 96(15): 1161-70.
[http://dx.doi.org/10.1093/jnci/djh219] [PMID: 15292388]
[101]
Lee SY, Saito T, Mitomi H, et al. Mutation spectrum in the Wnt/β-catenin signaling pathway in gastric fundic gland-associated neoplasms/polyps. Virchows Arch 2015; 467(1): 27-38.
[http://dx.doi.org/10.1007/s00428-015-1753-4] [PMID: 25820416]
[102]
Onyido EK, Sweeney E, Nateri AS. Wnt-signalling pathways and microRNAs network in carcinogenesis: experimental and bioinformatics approaches. Mol Cancer 2016; 15(1): 56.
[http://dx.doi.org/10.1186/s12943-016-0541-3] [PMID: 27590724]
[103]
Gajos-Michniewicz A, Czyz M. Modulation of WNT/β-catenin pathway in melanoma by biologically active components derived from plants. Fitoterapia 2016; 109: 283-92.
[http://dx.doi.org/10.1016/j.fitote.2016.02.002] [PMID: 26851176]
[104]
Gomez-Cambronero J. p42-MAP kinase is activated in EGF-stimulated interphase but not in metaphase-arrested HeLa cells. FEBS Lett 1999; 443(2): 126-30.
[http://dx.doi.org/10.1016/S0014-5793(98)01685-8] [PMID: 9989589]
[105]
Rauth S, Ray S, Bhattacharyya S, et al. Lupeol evokes anticancer effects in oral squamous cell carcinoma by inhibiting oncogenic EGFR pathway. Mol Cell Biochem 2016; 417(1-2): 97-110.
[http://dx.doi.org/10.1007/s11010-016-2717-y] [PMID: 27206736]
[106]
Liu Y, Bi T, Shen G, et al. Lupeol induces apoptosis and inhibits invasion in gallbladder carcinoma GBC-SD cells by suppression of EGFR/MMP-9 signaling pathway. Cytotechnology 2016; 68(1): 123-33.
[http://dx.doi.org/10.1007/s10616-014-9763-7] [PMID: 25037728]
[107]
Lira SR, Rao VS, Carvalho AC, et al. Gastroprotective effect of lupeol on ethanol-induced gastric damage and the underlying mechanism. Inflammopharmacology 2009; 17(4): 221-8.
[http://dx.doi.org/10.1007/s10787-009-0009-9] [PMID: 19609650]
[108]
Hata K, Ogihara K, Takahashi S, et al. Effects of lupeol on melanoma in vitro and in vivo: fundamental and clinical trials. Anim. Cell Tech. Basic Appl Aspects 2010; 16: 339-44.
[http://dx.doi.org/10.1007/978-90-481-3892-0_56]
[109]
Bhattacharyya S, Mitra D, Ray S, et al. Reversing effect of lupeol on vasculogenic mimicry in murine melanoma progression. Microvasc Res 2019; 121: 52-62.
[http://dx.doi.org/10.1016/j.mvr.2018.10.008] [PMID: 30381268]
[110]
Jin Y, Lyu Y, Tang X, et al. Lupeol enhances radiosensitivity of human hepatocellular carcinoma cell line SMMC-7721 in vitro and in vivo. Int J Radiat Biol 2015; 91(2): 202-8.
[http://dx.doi.org/10.3109/09553002.2015.966209] [PMID: 25241960]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy