Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

A Review of Catalytic Upgrading of Biodiesel Waste Glycerol to Valuable Products

Author(s): Xue-Lian Li, Quan Zhou, Shen-Xi Pan, Yu He and Fei Chang*

Volume 7, Issue 3, 2020

Page: [259 - 266] Pages: 8

DOI: 10.2174/2213346107666200108114217

Abstract

Glycerol is an organic polyol compound, and is an important raw material with extensive applications in daily/petrochemical and pharmaceutical industry. Glycerol is typically obtained by propylene chlorination, while the method used is complicated process and requires high energy consumption. Interestingly, glycerol is recognized as a major by-product of biodiesel production. Approximately 100 kg of glycerol is yielded for 1 tonne of biodiesel production. With the rapid development of the biodiesel industry, glycerol production capacity has been a serious surplus. This review introduces the selective conversion of glycerol into a variety of value-added chemicals such as propylene glycol, propanol, glyceraldehyde, and dihydroxyacetone via selective hydrogenation and oxidation, as well as hydrocarbons and ethers via pyrolysis, gasification and etherification, respectively. The efficiency of different types of catalysts and the influence of reaction parameters on the valorisation of glycerol have been elucidated. Emphasis is also laid on the study of catalytic mechanisms and pathways for some specific reactions.

Keywords: Biodiesel, glycerol, hydrogenolysis, oxidation, etherification, glyceraldehyde.

Graphical Abstract

[1]
Ciriminna, R.; Pina, C.D.; Rossi, M.; Pagliaro, M. Understanding the glycerol market. Eur. J. Lipid Sci. Technol., 2014, 116, 1432-1439.
[http://dx.doi.org/10.1002/ejlt.201400229]
[2]
Arcanjo, M.R.A.; Silva, I.J. Jr.; Rodríguez-Castellón, E.; Infantes-Molina, A.; Vieira, R.S. Conversion of glycerol into lactic acid using Pd or Pt supported on carbon as catalyst. Catal. Today, 2017, 279, 317-326.
[http://dx.doi.org/10.1016/j.cattod.2016.02.015]
[3]
Anitha, M.; Kamarudin, S.K.; Kofli, N.T. The potential of glycerol as a value-added commodity. Chem. Eng. J., 2016, 295, 119-130.
[http://dx.doi.org/10.1016/j.cej.2016.03.012]
[4]
Luo, X.; Ge, X.; Cui, S.; Li, Y. Value-added processing of crude glycerol into chemicals and polymers. Bioresour. Technol., 2016, 215, 144-154.
[http://dx.doi.org/10.1016/j.biortech.2016.03.042] [PMID: 27004448]
[5]
Quispe, C.A.; Coronado, C.J.; Carvalho, J.A., Jr Glycerol: Production, consumption, prices, characterization and new trends in com-bustion. Renew. Sustain. Energy Rev., 2013, 27, 475-493.
[http://dx.doi.org/10.1016/j.rser.2013.06.017]
[6]
Christoph, R.; Schmidt, B.; Steinberner, U.; Dilla, W.; Karinen, R. Ullmann's encyclopedia of industrial chemistry, 2000.
[7]
Konstantinović, S.S.; Danilović, B.R.; Ćirić, J.T.; Ilić, S.B.; Savić, D.S.; Veljković, V.B. Valorization of crude glycerol from biodiesel production. Chem. Ind. Chem. Eng. Q., 2016, 22, 461-489.
[http://dx.doi.org/10.2298/CICEQ160303019K]
[8]
Zhou, C.H.C.; Beltramini, J.N.; Fan, Y.X.; Lu, G.Q. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem. Soc. Rev., 2008, 37(3), 527-549.
[http://dx.doi.org/10.1039/B707343G] [PMID: 18224262]
[9]
Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev., 2010, 14, 217-232.
[http://dx.doi.org/10.1016/j.rser.2009.07.020]
[10]
Demirbas, A. Importance of biodiesel as transportation fuel. Energy Policy, 2007, 35, 4661-4670.
[http://dx.doi.org/10.1016/j.enpol.2007.04.003]
[11]
Ayoub, M.; Abdullah, A.Z. Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew. Sustain. Energy Rev., 2012, 16, 2671-2686.
[http://dx.doi.org/10.1016/j.rser.2012.01.054]
[12]
Yin, A.Y.; Guo, X.Y.; Dai, W.L.; Fan, K.N. The synthesis of propylene glycol and ethylene glycol from glycerol using Raney Ni as a versatile catalyst. Green Chem., 2009, 11(10), 1514-1516.
[http://dx.doi.org/10.1039/b913395j]
[13]
Maris, E.P.; Davis, R.J. Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts. J. Catal., 2007, 249, 328-337.
[http://dx.doi.org/10.1016/j.jcat.2007.05.008]
[14]
Yu, Z.; Xu, L.; Wei, Y.; Wang, Y.; He, Y.; Xia, Q.; Zhang, X.; Liu, Z. A new route for the synthesis of propylene oxide from bio-glycerol derivated propylene glycol. Chem. Commun. (Camb.), 2009, (26), 3934-3936.
[http://dx.doi.org/10.1039/b907530e] [PMID: 19662257]
[15]
Wang, J.; Shen, S.; Li, B.; Lin, H.; Yuan, Y. Ruthenium nanoparticles supported on carbon nanotubes for selective hydrogenolysis of glycerol to glycols. Chem. Lett., 2009, 38, 572-573.
[http://dx.doi.org/10.1246/cl.2009.572]
[16]
Rajkhowa, T.; Marin, G.B.; Thybaut, J.W. A comprehensive kinetic model for Cu catalyzed liquid phase glycerol hydrogenolysis. Appl. Catal. B, 2017, 205, 469-480.
[http://dx.doi.org/10.1016/j.apcatb.2016.12.042]
[17]
Dasari, M.A.; Kiatsimkul, P.P.; Sutterlin, W.R.; Suppes, G.J. Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl. Catal. A Gen., 2005, 281, 225-231.
[http://dx.doi.org/10.1016/j.apcata.2004.11.033]
[18]
Xia, S.; Yuan, Z.; Wang, L.; Chen, P.; Hou, Z. Catalytic production of 1,2-propanediol from glycerol in bio-ethanol solvent. Bioresour. Technol., 2012, 104, 814-817.
[http://dx.doi.org/10.1016/j.biortech.2011.11.031] [PMID: 22137273]
[19]
Zhu, S.; Gao, X.; Zhu, Y.; Zhu, Y.; Zheng, H.; Li, Y. Promoting effect of boron oxide on Cu/SiO2 catalyst for glycerol hydrogenolysis to 1, 2-propanediol. J. Catal., 2013, 303, 70-79.
[http://dx.doi.org/10.1016/j.jcat.2013.03.018]
[20]
Wang, C.; Jiang, H.; Chen, C.; Chen, R.; Xing, W. Solvent effect on hydrogenolysis of glycerol to 1, 2-propanediol over Cu–ZnO catalyst. Chem. Eng. J., 2015, 264, 344-350.
[http://dx.doi.org/10.1016/j.cej.2014.11.113]
[21]
Lee, M.; Hwang, Y.K.; Chang, J.S.; Chae, H.J.; Hwang, D.W. Vapor-phase hydrogenolysis of glycerol to 1, 2-propanediol using a chromium-free Ni-Cu-SiO2 nanocomposite catalyst. Catal. Commun., 2016, 84, 5-10.
[http://dx.doi.org/10.1016/j.catcom.2016.05.022]
[22]
Lee, C.S.; Aroua, M.K.; Daud, W.M.A.W.; Cognet, P.; Pérès-Lucchese, Y.; Fabre, P.L.; Latapie, L. A review: Conversion of bioglycerol into 1, 3-propanediol via biological and chemical method. Renew. Sust. Eengr. Rrv., 2015, 42, 963-972.
[http://dx.doi.org/10.1016/j.rser.2014.10.033]
[23]
Research, TM 1,3-Propanediol market: global industry analysis, size, share, growth, trends and forecasts,, 2012, 2013-2019. A Review of Catalytic Upgrading of Biodiesel Waste Glycerol Current Green Chemistry, 2012, 2013-2019.
[24]
Sun, D.; Yamada, Y.; Sato, S.; Ueda, W. Glycerol hydrogenolysis into useful C3 chemicals. Appl. Catal. B, 2016, 193, 75-92.
[http://dx.doi.org/10.1016/j.apcatb.2016.04.013]
[25]
Zhou, W.; Zhao, Y.; Wang, Y.; Wang, S.; Ma, X. Glycerol hydrogenolysis to 1, 3‐propanediol on tungstate/zirconia‐supported platinum: Hydrogen spillover facilitated by Pt (1 1 1) formation. ChemCatChem, 2016, 8, 3663-3671.
[http://dx.doi.org/10.1002/cctc.201600981]
[26]
Priya, S.S.; Bhanuchander, P.; Kumar, V.P.; Dumbre, D.K. Platinum supported on H-mordenite: A highly efficient catalyst for selective hydrogenolysis of glycerol to 1, 3-propanediol. ACS Sustain. Chem.& Eng., 2016, 4, 1212-1222.
[http://dx.doi.org/10.1021/acssuschemeng.5b01272]
[27]
Baeza-Jimenez, R.; Lopez-Martinez, L.X.; Cruz-Medina, J. De la JJ. Espinosa-de-losMonteros, HS. Garcia-Galindo, Effect of Glucose on 1,3-propanediol production by Lactobacillus reuteri. Rev. Mex. Ing. Quim., 2011, 10, 39-46.
[28]
Priya, S.S.; Bhanuchander, P.; Kumar, V.P.; Bhargava, S.K.; Chary, K.V. Activity and selectivity of platinum–copper bimetallic catalysts supported on mordenite for glycerol hydrogenolysis to 1, 3-propanediol. Ind. Eng. Chem. Res., 2016, 55, 4461-4472.
[http://dx.doi.org/10.1021/acs.iecr.6b00161]
[29]
Nakagawa, Y.; Shinmi, Y.; Koso, S.; Tomishige, K. Direct hydrogenolysis of glycerol into 1, 3-propanediol over rhenium-modified iridium catalyst. J. Catal., 2010, 272, 191-194.
[http://dx.doi.org/10.1016/j.jcat.2010.04.009]
[30]
Katryniok, B.; Kimura, H.; Skrzyńska, E. Selective catalytic oxidation of glycerol: Perspectives for high value chemicals. Green Chem., 2011, 13, 1960.
[http://dx.doi.org/10.1039/c1gc15320j]
[31]
Namiki, M. Chemistry of maillard reactions: Recent studies on the browning reaction mechanism and the development of antioxidants and mutagens. Adv. Food Res., 1988, 32, 115-184.
[http://dx.doi.org/10.1016/S0065-2628(08)60287-6] [PMID: 3075879]
[32]
Ciriminna, R.; Pagliaro, M. One‐pot homogeneous and heterogeneous oxidation of glycerol to ketomalonic acid mediated by TEMPO. Adv. Synth. Catal., 2003, 345, 383-388.
[http://dx.doi.org/10.1002/adsc.200390043]
[33]
Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng., 2006, 101(2), 87-96.
[http://dx.doi.org/10.1263/jbb.101.87] [PMID: 16569602]
[34]
da Silva, G.P.; Mack, M.; Contiero, J. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv., 2009, 27(1), 30-39.
[http://dx.doi.org/10.1016/j.biotechadv.2008.07.006] [PMID: 18775486]
[35]
Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr. Opin. Biotechnol., 2013, 24(3), 405-413.
[http://dx.doi.org/10.1016/j.copbio.2013.04.004] [PMID: 23647970]
[36]
Kimura, H.; Keiichi, D. (Kao Corp.) JP1992-224983, 1992. DE 4228487 A1
[37]
Villa, A.; Campisi, S.; Chan-Thaw, C.E.; Motta, D.; Wang, D.; Prati, L. Bismuth modified Au-Pt bimetallic catalysts for dihydroxyacetone production. Catal. Today, 2015, 249, 103-108.
[http://dx.doi.org/10.1016/j.cattod.2014.12.012]
[38]
Kimura, H. Selective oxidation of glycerol on a platinum-bismuth catalyst by using a fixed bed reactor. Appl. Catal. A Gen., 1993, 105(2), 147-158.
[http://dx.doi.org/10.1016/0926-860X(93)80245-L]
[39]
Dikshit, P.K.; Kharmawlong, G.J.; Moholkar, V.S. Investigations in sonication-induced intensification of crude glycerol fermentation to dihydroxyacetone by free and immobilized Gluconobacter oxydans. Bioresour. Technol., 2018, 256, 302-311.
[http://dx.doi.org/10.1016/j.biortech.2018.02.024] [PMID: 29455098]
[40]
Xiao, Y.; Greeley, J.; Varma, A.; Zhao, Z.J.; Xiao, G. An experimental and theoretical study of glycerol oxidation to 1, 3‐dihydroxyacetone over bimetallic Pt‐Bi catalysts. AlChE J., 2017, 63, 705-715.
[http://dx.doi.org/10.1002/aic.15418]
[41]
Xue, W.; Wang, Z.; Liang, Y.; Xu, H.; Liu, L.; Dong, J. Promoting role of bismuth on hydrotalcite-supported platinum catalysts in aqueous phase oxidation of glycerol to dihydroxyacetone. Catalysts, 2018, 8, 20.
[http://dx.doi.org/10.3390/catal8010020]
[42]
Ezhova, N.N.; Korosteleva, I.G. Glycerol carboxylation to glycerol carbonate in the presence of rhodium complexes with nitrogen-containing macroligands. Petrol. Chem., 2012, 52, 416-421.
[http://dx.doi.org/10.1134/S0965544112060060]
[43]
Dibenedetto, A.; Angelini, A.; Aresta, M.; Ethiraj, J.; Fragale, C.; Nocito, F. Converting wastes into added value products: From glycerol to glycerol carbonate, glycidol and epichlorohydrin using environmentally friendly synthetic routes. Tetrahedron, 2011, 67, 1308-1313.
[http://dx.doi.org/10.1016/j.tet.2010.11.070]
[44]
Viswanadham, N.; Saxena, S.K. Etherification of glycerol for improved production of oxygenates. Fuel, 2013, 103, 980-986.
[http://dx.doi.org/10.1016/j.fuel.2012.06.057]
[45]
Bagheri, S.; Julkapli, N.M.; Yehye, W.A. Catalytic conversion of biodiesel derived raw glycerol to value added products. Renew. Sust. Eengr. Rrv., 2015, 41, 113-127.
[http://dx.doi.org/10.1016/j.rser.2014.08.031]
[46]
Izquierdo, J.F.; Montiel, M.; Palés, I. Fuel additives from glycerol etherification with light olefins: State of the art. Renew. Sust. Eengr. Rrv., 2012, 16, 6717-6724.
[http://dx.doi.org/10.1016/j.rser.2012.08.005]
[47]
Frusteri, L.; Cannilla, C.; Bonura, G.; Chuvilin, A.L.; Perathoner, S.; Centi, G.; Frusteri, F. Carbon microspheres preparation, graphitization and surface functionalization for glycerol etherification. Catalysis Today, 277, 68-77. Catal. Today, 2016, 277, 68-77.
[http://dx.doi.org/10.1016/j.cattod.2016.02.044]
[48]
Simone, N.; Carvalho, W.A.; Mandelli, D.; Ryoo, R. Nanostructured MFI-type zeolites as catalysts in glycerol etherification with tert-butyl alcohol. J. Mol. Catal. Chem., 2016, 422, 115-121.
[http://dx.doi.org/10.1016/j.molcata.2016.02.005]
[49]
Roze, M.; Kampars, V.; Teivena, K.; Kampare, R.; Liepiņš, E. Catalytic etherification of glycerol with alcohols. Mate. Sci. Appl. Chem., 2013, 28, 67.
[http://dx.doi.org/10.7250/msac.2013.011]
[50]
Gholami, Z.; Abdullah, A.Z.; Lee, K.T. Catalytic etherification of glycerol to diglycerol over heterogeneous calcium-based mixed-oxide catalyst: Reusability and stability. Chem. Eng. Commun., 2015, 202, 1397-1405.
[http://dx.doi.org/10.1080/00986445.2014.952812]
[51]
Mufrodi, Z.; Budiman, A. Continuous process of reactive distillation to produce bio-additive triacetin from glycerol. Mod. Appl. Sci., 2013, 7, 70.
[http://dx.doi.org/10.5539/mas.v7n10p70]
[52]
Nanda, M.R.; Zhang, Y.; Yuan, Z.; Qin, W.; Ghaziaskar, H.S.; Xu, C.C. Catalytic conversion of glycerol for sustainable production of solketal as a fuel additive: A review. Renew. Sust. Eengr. Rrv., 2016, 56, 1022-1031.
[http://dx.doi.org/10.1016/j.rser.2015.12.008]
[53]
Couto, N.; Silva, V.; Monteiro, E.; Brito, P.S.D.; Rouboa, A. Experimental and numerical analysis of coffee husks biomass gasification in a fluidized bed reactor. Eng. Pro, 2013, 36, 591-595.
[http://dx.doi.org/10.1016/j.egypro.2013.07.067]
[54]
Skoulou, V.K.; Zabaniotou, A.A. Co-gasification of crude glycerol with lignocellulosic biomass for enhanced syngas production. J. Anal. Appl. Pyrolysis, 2013, 99, 110-116.
[http://dx.doi.org/10.1016/j.jaap.2012.10.015]
[55]
Eliasson, A.C.; Krog, N. Physical properties of amylose-monoglyceride complexes. J. Cereal Sci., 1985, 3, 239-248.
[http://dx.doi.org/10.1016/S0733-5210(85)80017-5]
[56]
Dinh, T.P.; Carpenter, D.; Leslie, F.M.; Freund, T.F.; Katona, I.; Sensi, S.L.; Kathuria, S.; Piomelli, D. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl. Acad. Sci. USA, 2002, 99(16), 10819-10824.
[http://dx.doi.org/10.1073/pnas.152334899] [PMID: 12136125]
[57]
Dinh, T.P.; Freund, T.F.; Piomelli, D. A role for monoglyceride lipase in 2-arachidonoylglycerol inactivation. Chem. Phys. Lipids, 2002, 121(1-2), 149-158.
[http://dx.doi.org/10.1016/S0009-3084(02)00150-0] [PMID: 12505697]
[58]
Berridge, M.J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J., 1984, 220(2), 345-360.
[http://dx.doi.org/10.1042/bj2200345] [PMID: 6146314]
[59]
Hofmann, T.; Obukhov, A.G.; Schaefer, M.; Harteneck, C.; Gudermann, T.; Schultz, G. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature, 1999, 397(6716), 259-263.
[http://dx.doi.org/10.1038/16711] [PMID: 9930701]
[60]
Griner, E.M.; Kazanietz, M.G. Protein kinase C and other diacylglycerol effectors in cancer. Nat. Rev. Cancer, 2007, 7(4), 281-294.
[http://dx.doi.org/10.1038/nrc2110] [PMID: 17384583]
[61]
Listenberger, L.L.; Han, X.; Lewis, S.E.; Cases, S.; Farese, R.V., Jr; Ory, D.S.; Schaffer, J.E. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl. Acad. Sci. USA, 2003, 100(6), 3077-3082.
[http://dx.doi.org/10.1073/pnas.0630588100] [PMID: 12629214]
[62]
Güner, F.S.; Yağcı, Y.; Erciyes, A.T. Polymers from triglyceride oils. Prog. Polym. Sci., 2006, 31, 633-670.
[http://dx.doi.org/10.1016/j.progpolymsci.2006.07.001]
[63]
Saxena, R.; Voight, B.F.; Lyssenko, V.; Burtt, N.P.; de Bakker, P.I.; Chen, H.; Roix, J.J.; Kathiresan, S.; Hirschhorn, J.N.; Daly, M.J.; Hughes, T.E.; Groop, L.; Altshuler, D.; Almgren, P.; Florez, J.C.; Meyer, J.; Ardlie, K.; Bengtsson Boström, K.; Isomaa, B.; Lettre, G.; Lindblad, U.; Lyon, H.N.; Melander, O.; Newton-Cheh, C.; Nilsson, P.; Orho-Melander, M.; Råstam, L.; Speliotes, E.K.; Taskinen, M.R.; Tuomi, T.; Guiducci, C.; Berglund, A.; Carlson, J.; Gianniny, L.; Hackett, R.; Hall, L.; Holmkvist, J.; Laurila, E.; Sjögren, M.; Sterner, M.; Surti, A.; Svensson, M.; Svensson, M.; Tewhey, R.; Blumenstiel, B.; Parkin, M.; Defelice, M.; Barry, R.; Brodeur, W.; Camarata, J.; Chia, N.; Fava, M.; Gibbons, J.; Handsaker, B.; Healy, C.; Nguyen, K.; Gates, C.; Sougnez, C.; Gage, D.; Nizzari, M.; Gabriel, S.B.; Chirn, G.W.; Ma, Q.; Parikh, H.; Richardson, D.; Ricke, D.; Purcell, S. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science, 2007, 316(5829), 1331-1336.
[http://dx.doi.org/10.1126/science.1142358] [PMID: 17463246]
[64]
Harvey, L.; Sánchez, G.; Kennedy, E.M.; Stockenhuber, M. Enhancing allyl alcohol selectivity in the catalytic conversion of glycerol; influence of product distribution on the subsequent epoxidation step. A-Pacific. Chem. Eng. J., 2015, 10, 598-606.
[65]
Marchetti, J.M. Heterogeneous esterification of glycerol by using a gold catalyst. Biomass Convers. Bior., 2016, 6, 457-463.
[http://dx.doi.org/10.1007/s13399-016-0202-1]
[66]
Hamerski, F.; Prado, M.A.; da Silva, V.R.; Voll, F.A.P.; Corazza, M.L. Kinetics of layered double hydroxide catalyzed esterification of fatty acids with glycerol. React. Kinet. Mech. Catal., 2015, 117, 253-268.
[http://dx.doi.org/10.1007/s11144-015-0942-0]
[67]
Mostafa, N.A.; Maher, A.; Abdelmoez, W. Production of mono-, di-, and triglycerides from waste fatty acids through esterification with glycerol. Adv. Biosci. Biotechnol., 2013, 04, 900-907.
[http://dx.doi.org/10.4236/abb.2013.49118]
[68]
Mufrodi, Z.; Sutijan, R.; Budiman, A. Chemical kinetics for synthesis of triacetin from biodiesel byproduct. Int. J. Chem., 2012, 4(2), 101.
[http://dx.doi.org/10.5539/ijc.v4n2p101]
[69]
Kale, S; Armbruster, U; Umbarkar, S Esterification of glycerol with acetic acid for improved production of triacetin using toluene as an entrainer. STA,, 2013, 11(206) 274.5.
[70]
Khayoon, M.S.; Hameed, B.H. Acetylation of glycerol to biofuel additives over sulfated activated carbon catalyst. Bioresour. Technol., 2011, 102(19), 9229-9235.
[http://dx.doi.org/10.1016/j.biortech.2011.07.035] [PMID: 21840708]
[71]
Kumar, D.; Anand, N.; Pant, K.K. Glycerol conversion over palladium-and alumina-impregnated KIT-6 for the production of gasoline range hydrocarbons; Clean Technol. Envir, 2018, pp. 1-7.
[72]
Tomaszewska, L.; Rywińska, A.; Rymowicz, W. High selectivity of erythritol production from glycerol by Yarrowia lipolytica. Biomass Bioenergy, 2014, 64, 309-320.
[http://dx.doi.org/10.1016/j.biombioe.2014.03.005]
[73]
Yoshikawa, J.; Habe, H.; Morita, T.; Fukuoka, T.; Imura, T.; Iwabuchi, H.; Uemura, S.; Tamura, T.; Kitamoto, D. Production of mannitol from raw glycerol by Candida azyma. J. Biosci. Bioeng., 2014, 117(6), 725-729.
[http://dx.doi.org/10.1016/j.jbiosc.2013.11.016] [PMID: 24374122]
[74]
Caneppele, G.L.; Almeida, T.S.; Zanata, C.R.; Teixeira-Neto, É.; Fernández, P.S.; Camara, G.A.; Martins, C.A. Exponential improving in the activity of Pt/C nanoparticles towards glycerol electrooxidation by Sb ad-atoms deposition. Appl. Catal. B, 2017, 200, 114-120.
[http://dx.doi.org/10.1016/j.apcatb.2016.06.072]
[75]
Rymowicz, W.; Rywińska, A.; Marcinkiewicz, M. High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnol. Lett., 2009, 31(3), 377-380.
[http://dx.doi.org/10.1007/s10529-008-9884-1] [PMID: 19037599]
[76]
Khan, A.; Bhide, A.; Gadre, R. Mannitol production from glycerol by resting cells of Candida magnoliae. Bioresour. Technol., 2009, 100(20), 4911-4913.
[http://dx.doi.org/10.1016/j.biortech.2009.04.048] [PMID: 19467862]
[77]
Okoye, P.U.; Abdullah, A.Z.; Hameed, B.H. A review on recent developments and progress in the kinetics and deactivation of catalytic acetylation of glycerol-A byproduct of biodiesel. Renew. Sustain. Energy Rev., 2017, 74, 387-401.
[http://dx.doi.org/10.1016/j.rser.2017.02.017]

© 2024 Bentham Science Publishers | Privacy Policy