Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Mini-Review Article

Abscisic Acid, a Plant Hormone, Could be a Promising Candidate as an Anti-Japanese Encephalitis Virus (JEV) Agent

Author(s): Sai Priyanka Bhimaneni and Anoop Kumar*

Volume 18, Issue 4, 2020

Page: [326 - 331] Pages: 6

DOI: 10.2174/2211352518666200108092127

Price: $65

Abstract

Japanese encephalitis virus (JEV) is an arthropod-borne flavivirus that belongs to the Flaviviridae family affecting millions of people worldwide. There is no specific drug approved for the treatment of this infection and also available vaccines are not effective against all the clinical isolates. Thus, the exploration of novel mechanistic pathways of existing molecules may help to develop more effective anti-JEV agents. Abscisic acid is a naturally occurring phytohormone released particularly in stress conditions, which controls leaf abscission. Recent studies have shown that the abscisic acid has the potential to inhibit the virus by inhibiting protein disulfide isomerase enzyme, which is important for the formation of viral proteins. Apart from this, abscisic acid could also reduce the neuroinflammation (a major hallmark of JEV infection) through the stimulation of PPAR gamma. Thus, abscisic acid thereof could have the potential to develop as an anti-JEV agent.

Keywords: Japanese encephalitis virus, plant hormone, abscisic acid, mechanistic pathways, flavivirus, PPAR gamma.

Graphical Abstract

[1]
Wang, S.; Liu, Y.; Guo, J.; Wang, P.; Zhang, L.; Xiao, G.; Wang, W. Screening of FDA-Approved drugs for inhibitors of japanese encephalitis virus infection. J. Virol., 2017, 91(21), 1055-17.
[http://dx.doi.org/10.1128/JVI.01055-17] [PMID: 28814523]
[2]
Kant Upadhyay, R. japanese encephalitis virus generated neurovirulence, antigenicity, and host immune responses. ISRN Virol., 2013, 2013830396
[http://dx.doi.org/10.5402/2013/830396]
[3]
Luca, V.C. AbiMansour, J.; Nelson, C.A.; Fremont, D.H. Crystal structure of the Japanese encephalitis virus envelope protein. J. Virol., 2012, 86(4), 2337-2346.
[http://dx.doi.org/10.1128/JVI.06072-11] [PMID: 22156523]
[4]
Wu, J.; Lu, G.; Zhang, B.; Gong, P. Perturbation in the conserved methyltransferase-polymerase interface of flavivirus NS5 differentially affects polymerase initiation and elongation. J. Virol., 2015, 89(1), 249-261.
[http://dx.doi.org/10.1128/JVI.02085-14] [PMID: 25320292]
[5]
Bandyopadhyay, B.; Das, S.; Sengupta, M.; Saha, C.; Das, K.C.; Sarkar, D.; Nayak, C. Decreased intensity of japanese encephalitis virus infection in chick chorioallantoic membrane under influence of ultradiluted belladonna extract. Am. J. Infect. Dis., 2010, 6(2), 24-28.
[http://dx.doi.org/10.3844/ajidsp.2010.24.28]
[6]
Saxena, S.K.; Tiwari, S.; Saxena, R.; Mathur, A.; Nair, M.P.N. Japanese Encephalitis Virus: The Complex Biology of an Emerging Pathogen in Encephalitis; Sergey Tkachev, Intech Open, 2013.
[7]
Halstead, S.B.; Thomas, S.J. New Japanese encephalitis vaccines: alternatives to production in mouse brain. Expert Rev. Vaccines, 2011, 10(3), 355-364.
[http://dx.doi.org/10.1586/erv.11.7] [PMID: 21434803]
[8]
Rakic, B.; Clarke, J.; Tremblay, T.L.; Taylor, J.; Schreiber, K.; Nelson, K.M.; Abrams, S.R.; Pezacki, J.P. A small-molecule probe for hepatitis C virus replication that blocks protein folding. Chem. Biol., 2006, 13(10), 1051-1060.
[http://dx.doi.org/10.1016/j.chembiol.2006.08.010] [PMID: 17052609]
[9]
Zocchi, E.; Honectalis, R.; Laber, A.; Elinerhand, A.; Carbo, A.; Bruzzone, S. tubao N, Strula L. Abscisic acid: A novel nutraceutical for glycemic control. Front. Nutr., 2017, 4(24), 1-13.
[10]
Bassaganya-Riera, J.; Guri, A.J.; Lu, P.; Climent, M.; Carbo, A.; Sobral, B.W.; Horne, W.T.; Lewis, S.N.; Bevan, D.R.; Hontecillas, R. Abscisic acid regulates inflammation via ligand-binding domain-independent activation of peroxisome proliferator-activated receptor γ. J. Biol. Chem., 2011, 286(4), 2504-2516.
[http://dx.doi.org/10.1074/jbc.M110.160077] [PMID: 21088297]
[11]
Sturla, L.; Fresia, C.; Guida, L.; Bruzzone, S.; Scarfì, S.; Usai, C.; Fruscione, F.; Magnone, M.; Millo, E.; Basile, G.; Grozio, A.; Jacchetti, E.; Allegretti, M.; De Flora, A.; Zocchi, E. LANCL2 is necessary for abscisic acid binding and signaling in human granulocytes and in rat insulinoma cells. J. Biol. Chem., 2009, 284(41), 28045-28057.
[http://dx.doi.org/10.1074/jbc.M109.035329] [PMID: 19667068]
[12]
Chanclud, E.; Morel, J.B. Plant hormones: a fungal point of view. Mol. Plant Pathol., 2016, 17(8), 1289-1297.
[http://dx.doi.org/10.1111/mpp.12393] [PMID: 26950404]
[13]
Hontecillas, R.; Roberts, P.C.; Carbo, A.; Vives, C.; Horne, W.T.; Genis, S.; Velayudhan, B.; Bassaganya-Riera, J. Dietary abscisic acid ameliorates influenza-virus-associated disease and pulmonary immunopathology through a PPARγ-dependent mechanism. J. Nutr. Biochem., 2013, 24(6), 1019-1027.
[http://dx.doi.org/10.1016/j.jnutbio.2012.07.010] [PMID: 22995385]
[14]
Huang, W.; Rha, G.B.; Han, M.J.; Eum, S.Y.; András, I.E.; Zhong, Y.; Hennig, B.; Toborek, M. PPARalpha and PPARgamma effectively protect against HIV-induced inflammatory responses in brain endothelial cells. J. Neurochem., 2008, 107(2), 497-509.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05626.x PMID: 18710415]
[15]
Buck, K.W. Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv. Virus Res., 1996, 47, 159-251.
[http://dx.doi.org/10.1016/S0065-3527(08)60736-8] [PMID: 8895833]
[16]
Baliño, P.; Gómez-Cadenas, A.; López-Malo, D.; Romero, F.J.; Muriach, M. Is There A Role for Abscisic Acid, A Proven Anti-Inflammatory Agent, in the Treatment of Ischemic Retinopathies? Antioxidants, 2019, 8(4), 104.
[http://dx.doi.org/10.3390/antiox8040104] [PMID: 30999583]
[17]
Fresia, C.; Vigliarolo, T.; Guida, L.; Booz, V.; Bruzzone, S.; Sturla, L.; Di Bona, M.; Pesce, M.; Usai, C.; De Flora, A.; Zocchi, E. G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2. Sci. Rep., 2016, 6(3), 26658.
[http://dx.doi.org/10.1038/srep26658] [PMID: 27222287]
[18]
Lievens, L.; Pollier, J.; Goossens, A.; Beyaert, R.; Staal, J. Abscisic acid as pathogen effector and immune regulator. Front. Plant Sci., 2017, 8, 587.
[http://dx.doi.org/10.3389/fpls.2017.00587] [PMID: 28469630]
[19]
Munemasa, S.; Hauser, F.; Park, J.; Waadt, R.; Brandt, B.; Schroeder, J.I. Mechanisms of abscisic acid-mediated control of stomatal aperture. Curr. Opin. Plant Biol., 2015, 28, 154-162.
[http://dx.doi.org/10.1016/j.pbi.2015.10.010] [PMID: 26599955]
[20]
Eisenreich, W.; Bacher, A.; Arigoni, D.; Rohdich, F. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell. Mol. Life Sci., 2004, 61(12), 1401-1426.
[http://dx.doi.org/10.1007/s00018-004-3381-z] [PMID: 15197467]
[21]
Nambara, E.; Marion-Poll, A. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol., 2005, 56(1), 165-185.
[http://dx.doi.org/10.1146/annurev.arplant.56.032604.144046 PMID: 15862093]
[22]
Finkelstein, R. Abscisic Acid synthesis and response. Arabidopsis Book, 2013, 11e0166
[http://dx.doi.org/10.1199/tab.0166] [PMID: 24273463]
[23]
González-Guzmán, M.; Apostolova, N.; Bellés, J.M.; Barrero, J.M.; Piqueras, P.; Ponce, M.R.; Micol, J.L.; Serrano, R.; Rodríguez, P.L. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell, 2002, 14(8), 1833-1846.
[http://dx.doi.org/10.1105/tpc.002477] [PMID: 12172025]
[24]
Kumar, A.; Sasmal, D.; Sharma, N.; Bhaskar, A.; Chandra, S.; Mukhopadhyay, K.; Kumar, M. Deltamethrin, a pyrethroid insecticide, could be a promising candidate as an anticancer agent. Med. Hypotheses, 2015, 85(2), 145-147.
[http://dx.doi.org/10.1016/j.mehy.2015.04.018] [PMID: 25981874]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy