Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

A Computational Study of Natural Compounds from Bacopa monnieri in the Treatment of Alzheimer's Disease

Author(s): Qazi M.S. Jamal*, Mughees U. Siddiqui, Ali H. Alharbi, Fahad Albejaidi, Salman Akhtar , Mohammad A. Alzohairy, Mohammad A. Kamal and Kavindra K. Kesari

Volume 26, Issue 7, 2020

Page: [790 - 800] Pages: 11

DOI: 10.2174/1381612826666200102142257

Price: $65

Abstract

Keeping in view the public health-related issues of Alzheimer's disease (AD), its unpredictable occurrence and progression indicate the needs for best treatment options. The present bioinformatics study explores the binding pattern and molecular interactions between human acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes with natural compounds from Bacopa monnieri. The docking analysis between natural compounds as a ligand and AChE, BuChE as a receptor was completed using MGL tools Autodock 4.2 module. The analysis of the hydrophobic interactions, inhibition constants, and hydrogen bonds may indicates that they play a significant role in finding out the interacting position at the active site. However, after analyzing the binding energy (ΔG), the documented data shows that bacoside X, bacoside A, 3-beta-D-glucosylstigmasterol and daucosterol could be good inhibitors in the inhibition of AChE and BuChE activities. Therefore, our study indicates that the inhibition constants of the aforesaid natural compounds of Bacopa can be utilized for the development of inhibitors.

Keywords: AD, Bacopa, AChE, BuChE, docking, inhibitors.

« Previous
[1]
Preston AR, Eichenbaum H. Interplay of hippocampus and prefrontal cortex in memory. Curr Biol 2013; 23(17): R764-73.
[http://dx.doi.org/10.1016/j.cub.2013.05.041] [PMID: 24028960]
[2]
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011; 1(1) a006189
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[3]
Reitz C. Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis 2012; 2012 369808
[http://dx.doi.org/10.1155/2012/369808] [PMID: 22506132]
[4]
Kihara T, Shimohama S. Alzheimer’s disease and acetylcholine receptors. Acta Neurobiol Exp (Warsz) 2004; 64(1): 99-105.
[PMID: 15190684]
[5]
Lane RM, Potkin SG, Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol 2006; 9(1): 101-24.
[http://dx.doi.org/10.1017/S1461145705005833] [PMID: 16083515]
[6]
Giacobini E. Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacol Res 2004; 50(4): 433-40.
[http://dx.doi.org/10.1016/j.phrs.2003.11.017] [PMID: 15304240]
[7]
Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Db Syst Rev 2006; 1 CD005593
[8]
Colović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 2013; 11(3): 315-35.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[9]
Nordberg A, Svensson AL. Cholinesterase inhibitors in the treatment of Alzheimer’s disease: a comparison of tolerability and pharmacology. Drug Saf 1998; 19(6): 465-80.
[http://dx.doi.org/10.2165/00002018-199819060-00004] [PMID: 9880090]
[10]
Weinstock M. Selectivity of cholinesterase inhibition: clinical implication for the treatment of Alzheimer’s disease. CNS Drugs 1999; 12: 303-7.
[http://dx.doi.org/10.2165/00023210-199912040-00005]
[11]
Bullock R. Drug treatment in dementia. Curr Opin Psychiatry 2001; 14: 349-53.
[http://dx.doi.org/10.1097/00001504-200107000-00019]
[12]
Bullock R. New drugs for Alzheimer’s disease and other dementias. Br J Psychiatry 2002; 180: 135-9.
[http://dx.doi.org/10.1192/bjp.180.2.135] [PMID: 11823323]
[13]
Ahmad SS, Akhtar S, Jamal QM, et al. Multiple targets for the management of Alzheimer’s disease. CNS Neurol Disord Drug Targets 2016; 15(10): 1279-89.
[http://dx.doi.org/10.2174/1871527315666161003165855] [PMID: 27712576]
[14]
Ali B, Jamal QM, Shams S, et al. In Silico analysis of green tea polyphenols as inhibitors of AChE and BChE enzymes in Alzheimer’s disease treatment. CNS Neurol Disord Drug Targets 2016; 15(5): 624-8.
[http://dx.doi.org/10.2174/1871527315666160321110607] [PMID: 26996169]
[15]
Shukla SD, Bhatnagar M, Khurana S. Critical evaluation of ayurvedic plants for stimulating intrinsic antioxidant response. Front Neurosci 2012; 6: 112.
[http://dx.doi.org/10.3389/fnins.2012.00112] [PMID: 22855669]
[16]
Mufson EJ, Counts SE, Perez SE, Ginsberg SD. Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev Neurother 2008; 8(11): 1703-18.
[http://dx.doi.org/10.1586/14737175.8.11.1703] [PMID: 18986241]
[17]
Narendra S, Pandey BR, Verma P. An overview of phytotherapeutic approach in prevention and treatment of Alzheimer’s syndrome and dementia. Int J Pharm Sci Drug Res 2011; 3: 162-72.
[18]
Chowdhuri DK, Parmar D, Kakkar P, Shukla R, Seth PK, Srimal RC. Antistress effects of bacosides of Bacopa monnieri: modulation of Hsp70 expression, superoxide dismutase and cytochrome P450 activity in rat brain. Phytother Res 2002; 16(7): 639-45.
[http://dx.doi.org/10.1002/ptr.1023] [PMID: 12410544]
[19]
Kishore K, Singh M. Effect of bacosides, alcoholic extract of Bacopa monniera Linn. (brahmi), on experimental amnesia in mice. Indian J Exp Biol 2005; 43(7): 640-5.
[PMID: 16053272]
[20]
Tripathi YB, Chaurasia S, Tripathi E, Upadhyay A, Dubey GP. Bacopa monniera Linn. as an antioxidant: mechanism of action. Indian J Exp Biol 1996; 34(6): 523-6.
[PMID: 8792640]
[21]
Pence HE, Williams A. Chemspider: an online chemical information resource. J Chem Educ 2010; 87: 1123-4.
[http://dx.doi.org/10.1021/ed100697w]
[22]
Morris GM, Goodsell DS, Halliday RS, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 1998; 19: 1639-62.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B]
[23]
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and Auto- DockTools4: automated docking with selective receptor flexibility. J Comput Chem 2009; 30(16): 2785-91.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[24]
Brooks BR, Brooks CL III, Mackerell AD Jr, et al. CHARMM: the biomolecular simulation program. J Comput Chem 2009; 30(10): 1545-614.
[http://dx.doi.org/10.1002/jcc.21287] [PMID: 19444816]
[25]
Dhasmana A, Jamal QM, Gupta R, et al. Titanium dioxide nanoparticles provide protection against polycyclic aromatic hydrocarbon BaP and chrysene-induced perturbation of DNA repair machinery: a computational biology approach. Biotechnol Appl Biochem 2016; 63(4): 497-513.
[http://dx.doi.org/10.1002/bab.1388] [PMID: 25913286]
[26]
Goodsell DS, Morris GM, Olson AJ. Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 1996; 9(1): 1-5.
[http://dx.doi.org/10.1002/(SICI)1099-1352(199601)9:1<1:AID-JMR241>3.0.CO;2-6] [PMID: 8723313]
[27]
Tsai CW, Chen JL, Yang CS. An improved LGA for protein ligand docking prediction. Proc IEEE Congr Evol Comput 2012. 2012: 1-6.
[28]
Rai R, Singh HK, Prasad S. A Special Extract of Bacopa monnieri (CDRI-08) restores learning and memory by upregulating expression of the NMDA receptor subunit glun2b in the brain of scopolamine-induced amnesic mice. Evid Based Complement Alternat Med 2015; 2015 254303
[http://dx.doi.org/10.1155/2015/254303] [PMID: 26413117]
[29]
Goswami S, Saoji A, Kumar N, Thawani V, Tiwari M, Thawani M. Effect of Bacopa monnieri on cognitive functions in Alzheimer’s disease patients. Int J Collab Res Intern Med Public Health 2011; 3: 285-93.
[30]
Ramasamy S, Chin SP, Sukumaran SD, Buckle MJC, Kiew LV, Chung LY. In Silico and in vitro analysis of bacoside A aglycones and its derivatives as the constituents responsible for the cognitive effects of Bacopa monnieri. PLoS One 2015; 10(5) e0126565
[http://dx.doi.org/10.1371/journal.pone.0126565] [PMID: 25965066]
[31]
Roodenrys S, Booth D, Bulzomi S, Phipps A, Micallef C, Smoker J. Chronic effects of Brahmi (Bacopa monnieri) on human memory. Neuropsychopharmacology 2002; 27(2): 279-81.
[http://dx.doi.org/10.1016/S0893-133X(01)00419-5] [PMID: 12093601]
[32]
Lin JH, Yamazaki M. Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet 2003; 42(1): 59-98.
[http://dx.doi.org/10.2165/00003088-200342010-00003] [PMID: 12489979]
[33]
Kang MJ, Cho JY, Shim BH, Kim DK, Lee J. Bioavailability enhancing activities of natural compounds from medicinal Plants. J Med Plants Res 2009; 3: 1204-11.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy